]> git.karo-electronics.de Git - karo-tx-linux.git/blob - Documentation/PCI/MSI-HOWTO.txt
PCI MSI: Add support for multiple MSI
[karo-tx-linux.git] / Documentation / PCI / MSI-HOWTO.txt
1                 The MSI Driver Guide HOWTO
2         Tom L Nguyen tom.l.nguyen@intel.com
3                         10/03/2003
4         Revised Feb 12, 2004 by Martine Silbermann
5                 email: Martine.Silbermann@hp.com
6         Revised Jun 25, 2004 by Tom L Nguyen
7         Revised Jul  9, 2008 by Matthew Wilcox <willy@linux.intel.com>
8                 Copyright 2003, 2008 Intel Corporation
9
10 1. About this guide
11
12 This guide describes the basics of Message Signaled Interrupts (MSIs),
13 the advantages of using MSI over traditional interrupt mechanisms, how
14 to change your driver to use MSI or MSI-X and some basic diagnostics to
15 try if a device doesn't support MSIs.
16
17
18 2. What are MSIs?
19
20 A Message Signaled Interrupt is a write from the device to a special
21 address which causes an interrupt to be received by the CPU.
22
23 The MSI capability was first specified in PCI 2.2 and was later enhanced
24 in PCI 3.0 to allow each interrupt to be masked individually.  The MSI-X
25 capability was also introduced with PCI 3.0.  It supports more interrupts
26 per device than MSI and allows interrupts to be independently configured.
27
28 Devices may support both MSI and MSI-X, but only one can be enabled at
29 a time.
30
31
32 3. Why use MSIs?
33
34 There are three reasons why using MSIs can give an advantage over
35 traditional pin-based interrupts.
36
37 Pin-based PCI interrupts are often shared amongst several devices.
38 To support this, the kernel must call each interrupt handler associated
39 with an interrupt, which leads to reduced performance for the system as
40 a whole.  MSIs are never shared, so this problem cannot arise.
41
42 When a device writes data to memory, then raises a pin-based interrupt,
43 it is possible that the interrupt may arrive before all the data has
44 arrived in memory (this becomes more likely with devices behind PCI-PCI
45 bridges).  In order to ensure that all the data has arrived in memory,
46 the interrupt handler must read a register on the device which raised
47 the interrupt.  PCI transaction ordering rules require that all the data
48 arrives in memory before the value can be returned from the register.
49 Using MSIs avoids this problem as the interrupt-generating write cannot
50 pass the data writes, so by the time the interrupt is raised, the driver
51 knows that all the data has arrived in memory.
52
53 PCI devices can only support a single pin-based interrupt per function.
54 Often drivers have to query the device to find out what event has
55 occurred, slowing down interrupt handling for the common case.  With
56 MSIs, a device can support more interrupts, allowing each interrupt
57 to be specialised to a different purpose.  One possible design gives
58 infrequent conditions (such as errors) their own interrupt which allows
59 the driver to handle the normal interrupt handling path more efficiently.
60 Other possible designs include giving one interrupt to each packet queue
61 in a network card or each port in a storage controller.
62
63
64 4. How to use MSIs
65
66 PCI devices are initialised to use pin-based interrupts.  The device
67 driver has to set up the device to use MSI or MSI-X.  Not all machines
68 support MSIs correctly, and for those machines, the APIs described below
69 will simply fail and the device will continue to use pin-based interrupts.
70
71 4.1 Include kernel support for MSIs
72
73 To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI
74 option enabled.  This option is only available on some architectures,
75 and it may depend on some other options also being set.  For example,
76 on x86, you must also enable X86_UP_APIC or SMP in order to see the
77 CONFIG_PCI_MSI option.
78
79 4.2 Using MSI
80
81 Most of the hard work is done for the driver in the PCI layer.  It simply
82 has to request that the PCI layer set up the MSI capability for this
83 device.
84
85 4.2.1 pci_enable_msi
86
87 int pci_enable_msi(struct pci_dev *dev)
88
89 A successful call will allocate ONE interrupt to the device, regardless
90 of how many MSIs the device supports.  The device will be switched from
91 pin-based interrupt mode to MSI mode.  The dev->irq number is changed
92 to a new number which represents the message signaled interrupt.
93 This function should be called before the driver calls request_irq()
94 since enabling MSIs disables the pin-based IRQ and the driver will not
95 receive interrupts on the old interrupt.
96
97 4.2.2 pci_enable_msi_block
98
99 int pci_enable_msi_block(struct pci_dev *dev, int count)
100
101 This variation on the above call allows a device driver to request multiple
102 MSIs.  The MSI specification only allows interrupts to be allocated in
103 powers of two, up to a maximum of 2^5 (32).
104
105 If this function returns 0, it has succeeded in allocating at least as many
106 interrupts as the driver requested (it may have allocated more in order
107 to satisfy the power-of-two requirement).  In this case, the function
108 enables MSI on this device and updates dev->irq to be the lowest of
109 the new interrupts assigned to it.  The other interrupts assigned to
110 the device are in the range dev->irq to dev->irq + count - 1.
111
112 If this function returns a negative number, it indicates an error and
113 the driver should not attempt to request any more MSI interrupts for
114 this device.  If this function returns a positive number, it will be
115 less than 'count' and indicate the number of interrupts that could have
116 been allocated.  In neither case will the irq value have been
117 updated, nor will the device have been switched into MSI mode.
118
119 The device driver must decide what action to take if
120 pci_enable_msi_block() returns a value less than the number asked for.
121 Some devices can make use of fewer interrupts than the maximum they
122 request; in this case the driver should call pci_enable_msi_block()
123 again.  Note that it is not guaranteed to succeed, even when the
124 'count' has been reduced to the value returned from a previous call to
125 pci_enable_msi_block().  This is because there are multiple constraints
126 on the number of vectors that can be allocated; pci_enable_msi_block()
127 will return as soon as it finds any constraint that doesn't allow the
128 call to succeed.
129
130 4.2.3 pci_disable_msi
131
132 void pci_disable_msi(struct pci_dev *dev)
133
134 This function should be used to undo the effect of pci_enable_msi() or
135 pci_enable_msi_block().  Calling it restores dev->irq to the pin-based
136 interrupt number and frees the previously allocated message signaled
137 interrupt(s).  The interrupt may subsequently be assigned to another
138 device, so drivers should not cache the value of dev->irq.
139
140 A device driver must always call free_irq() on the interrupt(s)
141 for which it has called request_irq() before calling this function.
142 Failure to do so will result in a BUG_ON(), the device will be left with
143 MSI enabled and will leak its vector.
144
145 4.3 Using MSI-X
146
147 The MSI-X capability is much more flexible than the MSI capability.
148 It supports up to 2048 interrupts, each of which can be controlled
149 independently.  To support this flexibility, drivers must use an array of
150 `struct msix_entry':
151
152 struct msix_entry {
153         u16     vector; /* kernel uses to write alloc vector */
154         u16     entry; /* driver uses to specify entry */
155 };
156
157 This allows for the device to use these interrupts in a sparse fashion;
158 for example it could use interrupts 3 and 1027 and allocate only a
159 two-element array.  The driver is expected to fill in the 'entry' value
160 in each element of the array to indicate which entries it wants the kernel
161 to assign interrupts for.  It is invalid to fill in two entries with the
162 same number.
163
164 4.3.1 pci_enable_msix
165
166 int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
167
168 Calling this function asks the PCI subsystem to allocate 'nvec' MSIs.
169 The 'entries' argument is a pointer to an array of msix_entry structs
170 which should be at least 'nvec' entries in size.  On success, the
171 function will return 0 and the device will have been switched into
172 MSI-X interrupt mode.  The 'vector' elements in each entry will have
173 been filled in with the interrupt number.  The driver should then call
174 request_irq() for each 'vector' that it decides to use.
175
176 If this function returns a negative number, it indicates an error and
177 the driver should not attempt to allocate any more MSI-X interrupts for
178 this device.  If it returns a positive number, it indicates the maximum
179 number of interrupt vectors that could have been allocated.
180
181 This function, in contrast with pci_enable_msi(), does not adjust
182 dev->irq.  The device will not generate interrupts for this interrupt
183 number once MSI-X is enabled.  The device driver is responsible for
184 keeping track of the interrupts assigned to the MSI-X vectors so it can
185 free them again later.
186
187 Device drivers should normally call this function once per device
188 during the initialization phase.
189
190 4.3.2 pci_disable_msix
191
192 void pci_disable_msix(struct pci_dev *dev)
193
194 This API should be used to undo the effect of pci_enable_msix().  It frees
195 the previously allocated message signaled interrupts.  The interrupts may
196 subsequently be assigned to another device, so drivers should not cache
197 the value of the 'vector' elements over a call to pci_disable_msix().
198
199 A device driver must always call free_irq() on the interrupt(s)
200 for which it has called request_irq() before calling this function.
201 Failure to do so will result in a BUG_ON(), the device will be left with
202 MSI enabled and will leak its vector.
203
204 4.3.3 The MSI-X Table
205
206 The MSI-X capability specifies a BAR and offset within that BAR for the
207 MSI-X Table.  This address is mapped by the PCI subsystem, and should not
208 be accessed directly by the device driver.  If the driver wishes to
209 mask or unmask an interrupt, it should call disable_irq() / enable_irq().
210
211 4.4 Handling devices implementing both MSI and MSI-X capabilities
212
213 If a device implements both MSI and MSI-X capabilities, it can
214 run in either MSI mode or MSI-X mode but not both simultaneously.
215 This is a requirement of the PCI spec, and it is enforced by the
216 PCI layer.  Calling pci_enable_msi() when MSI-X is already enabled or
217 pci_enable_msix() when MSI is already enabled will result in an error.
218 If a device driver wishes to switch between MSI and MSI-X at runtime,
219 it must first quiesce the device, then switch it back to pin-interrupt
220 mode, before calling pci_enable_msi() or pci_enable_msix() and resuming
221 operation.  This is not expected to be a common operation but may be
222 useful for debugging or testing during development.
223
224 4.5 Considerations when using MSIs
225
226 4.5.1 Choosing between MSI-X and MSI
227
228 If your device supports both MSI-X and MSI capabilities, you should use
229 the MSI-X facilities in preference to the MSI facilities.  As mentioned
230 above, MSI-X supports any number of interrupts between 1 and 2048.
231 In constrast, MSI is restricted to a maximum of 32 interrupts (and
232 must be a power of two).  In addition, the MSI interrupt vectors must
233 be allocated consecutively, so the system may not be able to allocate
234 as many vectors for MSI as it could for MSI-X.  On some platforms, MSI
235 interrupts must all be targetted at the same set of CPUs whereas MSI-X
236 interrupts can all be targetted at different CPUs.
237
238 4.5.2 Spinlocks
239
240 Most device drivers have a per-device spinlock which is taken in the
241 interrupt handler.  With pin-based interrupts or a single MSI, it is not
242 necessary to disable interrupts (Linux guarantees the same interrupt will
243 not be re-entered).  If a device uses multiple interrupts, the driver
244 must disable interrupts while the lock is held.  If the device sends
245 a different interrupt, the driver will deadlock trying to recursively
246 acquire the spinlock.
247
248 There are two solutions.  The first is to take the lock with
249 spin_lock_irqsave() or spin_lock_irq() (see
250 Documentation/DocBook/kernel-locking).  The second is to specify
251 IRQF_DISABLED to request_irq() so that the kernel runs the entire
252 interrupt routine with interrupts disabled.
253
254 If your MSI interrupt routine does not hold the lock for the whole time
255 it is running, the first solution may be best.  The second solution is
256 normally preferred as it avoids making two transitions from interrupt
257 disabled to enabled and back again.
258
259 4.6 How to tell whether MSI/MSI-X is enabled on a device
260
261 Using 'lspci -v' (as root) may show some devices with "MSI", "Message
262 Signalled Interrupts" or "MSI-X" capabilities.  Each of these capabilities
263 has an 'Enable' flag which will be followed with either "+" (enabled)
264 or "-" (disabled).
265
266
267 5. MSI quirks
268
269 Several PCI chipsets or devices are known not to support MSIs.
270 The PCI stack provides three ways to disable MSIs:
271
272 1. globally
273 2. on all devices behind a specific bridge
274 3. on a single device
275
276 5.1. Disabling MSIs globally
277
278 Some host chipsets simply don't support MSIs properly.  If we're
279 lucky, the manufacturer knows this and has indicated it in the ACPI
280 FADT table.  In this case, Linux will automatically disable MSIs.
281 Some boards don't include this information in the table and so we have
282 to detect them ourselves.  The complete list of these is found near the
283 quirk_disable_all_msi() function in drivers/pci/quirks.c.
284
285 If you have a board which has problems with MSIs, you can pass pci=nomsi
286 on the kernel command line to disable MSIs on all devices.  It would be
287 in your best interests to report the problem to linux-pci@vger.kernel.org
288 including a full 'lspci -v' so we can add the quirks to the kernel.
289
290 5.2. Disabling MSIs below a bridge
291
292 Some PCI bridges are not able to route MSIs between busses properly.
293 In this case, MSIs must be disabled on all devices behind the bridge.
294
295 Some bridges allow you to enable MSIs by changing some bits in their
296 PCI configuration space (especially the Hypertransport chipsets such
297 as the nVidia nForce and Serverworks HT2000).  As with host chipsets,
298 Linux mostly knows about them and automatically enables MSIs if it can.
299 If you have a bridge which Linux doesn't yet know about, you can enable
300 MSIs in configuration space using whatever method you know works, then
301 enable MSIs on that bridge by doing:
302
303        echo 1 > /sys/bus/pci/devices/$bridge/msi_bus
304
305 where $bridge is the PCI address of the bridge you've enabled (eg
306 0000:00:0e.0).
307
308 To disable MSIs, echo 0 instead of 1.  Changing this value should be
309 done with caution as it can break interrupt handling for all devices
310 below this bridge.
311
312 Again, please notify linux-pci@vger.kernel.org of any bridges that need
313 special handling.
314
315 5.3. Disabling MSIs on a single device
316
317 Some devices are known to have faulty MSI implementations.  Usually this
318 is handled in the individual device driver but occasionally it's necessary
319 to handle this with a quirk.  Some drivers have an option to disable use
320 of MSI.  While this is a convenient workaround for the driver author,
321 it is not good practise, and should not be emulated.
322
323 5.4. Finding why MSIs are disabled on a device
324
325 From the above three sections, you can see that there are many reasons
326 why MSIs may not be enabled for a given device.  Your first step should
327 be to examine your dmesg carefully to determine whether MSIs are enabled
328 for your machine.  You should also check your .config to be sure you
329 have enabled CONFIG_PCI_MSI.
330
331 Then, 'lspci -t' gives the list of bridges above a device.  Reading
332 /sys/bus/pci/devices/*/msi_bus will tell you whether MSI are enabled (1)
333 or disabled (0).  If 0 is found in any of the msi_bus files belonging
334 to bridges between the PCI root and the device, MSIs are disabled.
335
336 It is also worth checking the device driver to see whether it supports MSIs.
337 For example, it may contain calls to pci_enable_msi(), pci_enable_msix() or
338 pci_enable_msi_block().