]> git.karo-electronics.de Git - linux-beck.git/blob - Documentation/kmemcheck.txt
Merge branch 'acpi-enumeration'
[linux-beck.git] / Documentation / kmemcheck.txt
1 GETTING STARTED WITH KMEMCHECK
2 ==============================
3
4 Vegard Nossum <vegardno@ifi.uio.no>
5
6
7 Contents
8 ========
9 0. Introduction
10 1. Downloading
11 2. Configuring and compiling
12 3. How to use
13 3.1. Booting
14 3.2. Run-time enable/disable
15 3.3. Debugging
16 3.4. Annotating false positives
17 4. Reporting errors
18 5. Technical description
19
20
21 0. Introduction
22 ===============
23
24 kmemcheck is a debugging feature for the Linux Kernel. More specifically, it
25 is a dynamic checker that detects and warns about some uses of uninitialized
26 memory.
27
28 Userspace programmers might be familiar with Valgrind's memcheck. The main
29 difference between memcheck and kmemcheck is that memcheck works for userspace
30 programs only, and kmemcheck works for the kernel only. The implementations
31 are of course vastly different. Because of this, kmemcheck is not as accurate
32 as memcheck, but it turns out to be good enough in practice to discover real
33 programmer errors that the compiler is not able to find through static
34 analysis.
35
36 Enabling kmemcheck on a kernel will probably slow it down to the extent that
37 the machine will not be usable for normal workloads such as e.g. an
38 interactive desktop. kmemcheck will also cause the kernel to use about twice
39 as much memory as normal. For this reason, kmemcheck is strictly a debugging
40 feature.
41
42
43 1. Downloading
44 ==============
45
46 As of version 2.6.31-rc1, kmemcheck is included in the mainline kernel.
47
48
49 2. Configuring and compiling
50 ============================
51
52 kmemcheck only works for the x86 (both 32- and 64-bit) platform. A number of
53 configuration variables must have specific settings in order for the kmemcheck
54 menu to even appear in "menuconfig". These are:
55
56   o CONFIG_CC_OPTIMIZE_FOR_SIZE=n
57
58         This option is located under "General setup" / "Optimize for size".
59
60         Without this, gcc will use certain optimizations that usually lead to
61         false positive warnings from kmemcheck. An example of this is a 16-bit
62         field in a struct, where gcc may load 32 bits, then discard the upper
63         16 bits. kmemcheck sees only the 32-bit load, and may trigger a
64         warning for the upper 16 bits (if they're uninitialized).
65
66   o CONFIG_SLAB=y or CONFIG_SLUB=y
67
68         This option is located under "General setup" / "Choose SLAB
69         allocator".
70
71   o CONFIG_FUNCTION_TRACER=n
72
73         This option is located under "Kernel hacking" / "Tracers" / "Kernel
74         Function Tracer"
75
76         When function tracing is compiled in, gcc emits a call to another
77         function at the beginning of every function. This means that when the
78         page fault handler is called, the ftrace framework will be called
79         before kmemcheck has had a chance to handle the fault. If ftrace then
80         modifies memory that was tracked by kmemcheck, the result is an
81         endless recursive page fault.
82
83   o CONFIG_DEBUG_PAGEALLOC=n
84
85         This option is located under "Kernel hacking" / "Debug page memory
86         allocations".
87
88 In addition, I highly recommend turning on CONFIG_DEBUG_INFO=y. This is also
89 located under "Kernel hacking". With this, you will be able to get line number
90 information from the kmemcheck warnings, which is extremely valuable in
91 debugging a problem. This option is not mandatory, however, because it slows
92 down the compilation process and produces a much bigger kernel image.
93
94 Now the kmemcheck menu should be visible (under "Kernel hacking" / "kmemcheck:
95 trap use of uninitialized memory"). Here follows a description of the
96 kmemcheck configuration variables:
97
98   o CONFIG_KMEMCHECK
99
100         This must be enabled in order to use kmemcheck at all...
101
102   o CONFIG_KMEMCHECK_[DISABLED | ENABLED | ONESHOT]_BY_DEFAULT
103
104         This option controls the status of kmemcheck at boot-time. "Enabled"
105         will enable kmemcheck right from the start, "disabled" will boot the
106         kernel as normal (but with the kmemcheck code compiled in, so it can
107         be enabled at run-time after the kernel has booted), and "one-shot" is
108         a special mode which will turn kmemcheck off automatically after
109         detecting the first use of uninitialized memory.
110
111         If you are using kmemcheck to actively debug a problem, then you
112         probably want to choose "enabled" here.
113
114         The one-shot mode is mostly useful in automated test setups because it
115         can prevent floods of warnings and increase the chances of the machine
116         surviving in case something is really wrong. In other cases, the one-
117         shot mode could actually be counter-productive because it would turn
118         itself off at the very first error -- in the case of a false positive
119         too -- and this would come in the way of debugging the specific
120         problem you were interested in.
121
122         If you would like to use your kernel as normal, but with a chance to
123         enable kmemcheck in case of some problem, it might be a good idea to
124         choose "disabled" here. When kmemcheck is disabled, most of the run-
125         time overhead is not incurred, and the kernel will be almost as fast
126         as normal.
127
128   o CONFIG_KMEMCHECK_QUEUE_SIZE
129
130         Select the maximum number of error reports to store in an internal
131         (fixed-size) buffer. Since errors can occur virtually anywhere and in
132         any context, we need a temporary storage area which is guaranteed not
133         to generate any other page faults when accessed. The queue will be
134         emptied as soon as a tasklet may be scheduled. If the queue is full,
135         new error reports will be lost.
136
137         The default value of 64 is probably fine. If some code produces more
138         than 64 errors within an irqs-off section, then the code is likely to
139         produce many, many more, too, and these additional reports seldom give
140         any more information (the first report is usually the most valuable
141         anyway).
142
143         This number might have to be adjusted if you are not using serial
144         console or similar to capture the kernel log. If you are using the
145         "dmesg" command to save the log, then getting a lot of kmemcheck
146         warnings might overflow the kernel log itself, and the earlier reports
147         will get lost in that way instead. Try setting this to 10 or so on
148         such a setup.
149
150   o CONFIG_KMEMCHECK_SHADOW_COPY_SHIFT
151
152         Select the number of shadow bytes to save along with each entry of the
153         error-report queue. These bytes indicate what parts of an allocation
154         are initialized, uninitialized, etc. and will be displayed when an
155         error is detected to help the debugging of a particular problem.
156
157         The number entered here is actually the logarithm of the number of
158         bytes that will be saved. So if you pick for example 5 here, kmemcheck
159         will save 2^5 = 32 bytes.
160
161         The default value should be fine for debugging most problems. It also
162         fits nicely within 80 columns.
163
164   o CONFIG_KMEMCHECK_PARTIAL_OK
165
166         This option (when enabled) works around certain GCC optimizations that
167         produce 32-bit reads from 16-bit variables where the upper 16 bits are
168         thrown away afterwards.
169
170         The default value (enabled) is recommended. This may of course hide
171         some real errors, but disabling it would probably produce a lot of
172         false positives.
173
174   o CONFIG_KMEMCHECK_BITOPS_OK
175
176         This option silences warnings that would be generated for bit-field
177         accesses where not all the bits are initialized at the same time. This
178         may also hide some real bugs.
179
180         This option is probably obsolete, or it should be replaced with
181         the kmemcheck-/bitfield-annotations for the code in question. The
182         default value is therefore fine.
183
184 Now compile the kernel as usual.
185
186
187 3. How to use
188 =============
189
190 3.1. Booting
191 ============
192
193 First some information about the command-line options. There is only one
194 option specific to kmemcheck, and this is called "kmemcheck". It can be used
195 to override the default mode as chosen by the CONFIG_KMEMCHECK_*_BY_DEFAULT
196 option. Its possible settings are:
197
198   o kmemcheck=0 (disabled)
199   o kmemcheck=1 (enabled)
200   o kmemcheck=2 (one-shot mode)
201
202 If SLUB debugging has been enabled in the kernel, it may take precedence over
203 kmemcheck in such a way that the slab caches which are under SLUB debugging
204 will not be tracked by kmemcheck. In order to ensure that this doesn't happen
205 (even though it shouldn't by default), use SLUB's boot option "slub_debug",
206 like this: slub_debug=-
207
208 In fact, this option may also be used for fine-grained control over SLUB vs.
209 kmemcheck. For example, if the command line includes "kmemcheck=1
210 slub_debug=,dentry", then SLUB debugging will be used only for the "dentry"
211 slab cache, and with kmemcheck tracking all the other caches. This is advanced
212 usage, however, and is not generally recommended.
213
214
215 3.2. Run-time enable/disable
216 ============================
217
218 When the kernel has booted, it is possible to enable or disable kmemcheck at
219 run-time. WARNING: This feature is still experimental and may cause false
220 positive warnings to appear. Therefore, try not to use this. If you find that
221 it doesn't work properly (e.g. you see an unreasonable amount of warnings), I
222 will be happy to take bug reports.
223
224 Use the file /proc/sys/kernel/kmemcheck for this purpose, e.g.:
225
226         $ echo 0 > /proc/sys/kernel/kmemcheck # disables kmemcheck
227
228 The numbers are the same as for the kmemcheck= command-line option.
229
230
231 3.3. Debugging
232 ==============
233
234 A typical report will look something like this:
235
236 WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
237 80000000000000000000000000000000000000000088ffff0000000000000000
238  i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
239          ^
240
241 Pid: 1856, comm: ntpdate Not tainted 2.6.29-rc5 #264 945P-A
242 RIP: 0010:[<ffffffff8104ede8>]  [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
243 RSP: 0018:ffff88003cdf7d98  EFLAGS: 00210002
244 RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
245 RDX: ffff88003e5d6018 RSI: ffff88003e5d6024 RDI: ffff88003cdf7e84
246 RBP: ffff88003cdf7db8 R08: ffff88003e5d6000 R09: 0000000000000000
247 R10: 0000000000000080 R11: 0000000000000000 R12: 000000000000000e
248 R13: ffff88003cdf7e78 R14: ffff88003d530710 R15: ffff88003d5a98c8
249 FS:  0000000000000000(0000) GS:ffff880001982000(0063) knlGS:00000
250 CS:  0010 DS: 002b ES: 002b CR0: 0000000080050033
251 CR2: ffff88003f806ea0 CR3: 000000003c036000 CR4: 00000000000006a0
252 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
253 DR3: 0000000000000000 DR6: 00000000ffff4ff0 DR7: 0000000000000400
254  [<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
255  [<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
256  [<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
257  [<ffffffff8100c7b5>] int_signal+0x12/0x17
258  [<ffffffffffffffff>] 0xffffffffffffffff
259
260 The single most valuable information in this report is the RIP (or EIP on 32-
261 bit) value. This will help us pinpoint exactly which instruction that caused
262 the warning.
263
264 If your kernel was compiled with CONFIG_DEBUG_INFO=y, then all we have to do
265 is give this address to the addr2line program, like this:
266
267         $ addr2line -e vmlinux -i ffffffff8104ede8
268         arch/x86/include/asm/string_64.h:12
269         include/asm-generic/siginfo.h:287
270         kernel/signal.c:380
271         kernel/signal.c:410
272
273 The "-e vmlinux" tells addr2line which file to look in. IMPORTANT: This must
274 be the vmlinux of the kernel that produced the warning in the first place! If
275 not, the line number information will almost certainly be wrong.
276
277 The "-i" tells addr2line to also print the line numbers of inlined functions.
278 In this case, the flag was very important, because otherwise, it would only
279 have printed the first line, which is just a call to memcpy(), which could be
280 called from a thousand places in the kernel, and is therefore not very useful.
281 These inlined functions would not show up in the stack trace above, simply
282 because the kernel doesn't load the extra debugging information. This
283 technique can of course be used with ordinary kernel oopses as well.
284
285 In this case, it's the caller of memcpy() that is interesting, and it can be
286 found in include/asm-generic/siginfo.h, line 287:
287
288 281 static inline void copy_siginfo(struct siginfo *to, struct siginfo *from)
289 282 {
290 283         if (from->si_code < 0)
291 284                 memcpy(to, from, sizeof(*to));
292 285         else
293 286                 /* _sigchld is currently the largest know union member */
294 287                 memcpy(to, from, __ARCH_SI_PREAMBLE_SIZE + sizeof(from->_sifields._sigchld));
295 288 }
296
297 Since this was a read (kmemcheck usually warns about reads only, though it can
298 warn about writes to unallocated or freed memory as well), it was probably the
299 "from" argument which contained some uninitialized bytes. Following the chain
300 of calls, we move upwards to see where "from" was allocated or initialized,
301 kernel/signal.c, line 380:
302
303 359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
304 360 {
305 ...
306 367         list_for_each_entry(q, &list->list, list) {
307 368                 if (q->info.si_signo == sig) {
308 369                         if (first)
309 370                                 goto still_pending;
310 371                         first = q;
311 ...
312 377         if (first) {
313 378 still_pending:
314 379                 list_del_init(&first->list);
315 380                 copy_siginfo(info, &first->info);
316 381                 __sigqueue_free(first);
317 ...
318 392         }
319 393 }
320
321 Here, it is &first->info that is being passed on to copy_siginfo(). The
322 variable "first" was found on a list -- passed in as the second argument to
323 collect_signal(). We  continue our journey through the stack, to figure out
324 where the item on "list" was allocated or initialized. We move to line 410:
325
326 395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
327 396                         siginfo_t *info)
328 397 {
329 ...
330 410                 collect_signal(sig, pending, info);
331 ...
332 414 }
333
334 Now we need to follow the "pending" pointer, since that is being passed on to
335 collect_signal() as "list". At this point, we've run out of lines from the
336 "addr2line" output. Not to worry, we just paste the next addresses from the
337 kmemcheck stack dump, i.e.:
338
339  [<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
340  [<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
341  [<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
342  [<ffffffff8100c7b5>] int_signal+0x12/0x17
343
344         $ addr2line -e vmlinux -i ffffffff8104f04e ffffffff81050bd8 \
345                 ffffffff8100b87d ffffffff8100c7b5
346         kernel/signal.c:446
347         kernel/signal.c:1806
348         arch/x86/kernel/signal.c:805
349         arch/x86/kernel/signal.c:871
350         arch/x86/kernel/entry_64.S:694
351
352 Remember that since these addresses were found on the stack and not as the
353 RIP value, they actually point to the _next_ instruction (they are return
354 addresses). This becomes obvious when we look at the code for line 446:
355
356 422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
357 423 {
358 ...
359 431                 signr = __dequeue_signal(&tsk->signal->shared_pending,
360 432                                          mask, info);
361 433                 /*
362 434                  * itimer signal ?
363 435                  *
364 436                  * itimers are process shared and we restart periodic
365 437                  * itimers in the signal delivery path to prevent DoS
366 438                  * attacks in the high resolution timer case. This is
367 439                  * compliant with the old way of self restarting
368 440                  * itimers, as the SIGALRM is a legacy signal and only
369 441                  * queued once. Changing the restart behaviour to
370 442                  * restart the timer in the signal dequeue path is
371 443                  * reducing the timer noise on heavy loaded !highres
372 444                  * systems too.
373 445                  */
374 446                 if (unlikely(signr == SIGALRM)) {
375 ...
376 489 }
377
378 So instead of looking at 446, we should be looking at 431, which is the line
379 that executes just before 446. Here we see that what we are looking for is
380 &tsk->signal->shared_pending.
381
382 Our next task is now to figure out which function that puts items on this
383 "shared_pending" list. A crude, but efficient tool, is git grep:
384
385         $ git grep -n 'shared_pending' kernel/
386         ...
387         kernel/signal.c:828:    pending = group ? &t->signal->shared_pending : &t->pending;
388         kernel/signal.c:1339:   pending = group ? &t->signal->shared_pending : &t->pending;
389         ...
390
391 There were more results, but none of them were related to list operations,
392 and these were the only assignments. We inspect the line numbers more closely
393 and find that this is indeed where items are being added to the list:
394
395 816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
396 817                         int group)
397 818 {
398 ...
399 828         pending = group ? &t->signal->shared_pending : &t->pending;
400 ...
401 851         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
402 852                                              (is_si_special(info) ||
403 853                                               info->si_code >= 0)));
404 854         if (q) {
405 855                 list_add_tail(&q->list, &pending->list);
406 ...
407 890 }
408
409 and:
410
411 1309 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
412 1310 {
413 ....
414 1339         pending = group ? &t->signal->shared_pending : &t->pending;
415 1340         list_add_tail(&q->list, &pending->list);
416 ....
417 1347 }
418
419 In the first case, the list element we are looking for, "q", is being returned
420 from the function __sigqueue_alloc(), which looks like an allocation function.
421 Let's take a look at it:
422
423 187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
424 188                                          int override_rlimit)
425 189 {
426 190         struct sigqueue *q = NULL;
427 191         struct user_struct *user;
428 192 
429 193         /*
430 194          * We won't get problems with the target's UID changing under us
431 195          * because changing it requires RCU be used, and if t != current, the
432 196          * caller must be holding the RCU readlock (by way of a spinlock) and
433 197          * we use RCU protection here
434 198          */
435 199         user = get_uid(__task_cred(t)->user);
436 200         atomic_inc(&user->sigpending);
437 201         if (override_rlimit ||
438 202             atomic_read(&user->sigpending) <=
439 203                         t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
440 204                 q = kmem_cache_alloc(sigqueue_cachep, flags);
441 205         if (unlikely(q == NULL)) {
442 206                 atomic_dec(&user->sigpending);
443 207                 free_uid(user);
444 208         } else {
445 209                 INIT_LIST_HEAD(&q->list);
446 210                 q->flags = 0;
447 211                 q->user = user;
448 212         }
449 213 
450 214         return q;
451 215 }
452
453 We see that this function initializes q->list, q->flags, and q->user. It seems
454 that now is the time to look at the definition of "struct sigqueue", e.g.:
455
456 14 struct sigqueue {
457 15         struct list_head list;
458 16         int flags;
459 17         siginfo_t info;
460 18         struct user_struct *user;
461 19 };
462
463 And, you might remember, it was a memcpy() on &first->info that caused the
464 warning, so this makes perfect sense. It also seems reasonable to assume that
465 it is the caller of __sigqueue_alloc() that has the responsibility of filling
466 out (initializing) this member.
467
468 But just which fields of the struct were uninitialized? Let's look at
469 kmemcheck's report again:
470
471 WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
472 80000000000000000000000000000000000000000088ffff0000000000000000
473  i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
474          ^
475
476 These first two lines are the memory dump of the memory object itself, and the
477 shadow bytemap, respectively. The memory object itself is in this case
478 &first->info. Just beware that the start of this dump is NOT the start of the
479 object itself! The position of the caret (^) corresponds with the address of
480 the read (ffff88003e4a2024).
481
482 The shadow bytemap dump legend is as follows:
483
484   i - initialized
485   u - uninitialized
486   a - unallocated (memory has been allocated by the slab layer, but has not
487       yet been handed off to anybody)
488   f - freed (memory has been allocated by the slab layer, but has been freed
489       by the previous owner)
490
491 In order to figure out where (relative to the start of the object) the
492 uninitialized memory was located, we have to look at the disassembly. For
493 that, we'll need the RIP address again:
494
495 RIP: 0010:[<ffffffff8104ede8>]  [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
496
497         $ objdump -d --no-show-raw-insn vmlinux | grep -C 8 ffffffff8104ede8:
498         ffffffff8104edc8:       mov    %r8,0x8(%r8)
499         ffffffff8104edcc:       test   %r10d,%r10d
500         ffffffff8104edcf:       js     ffffffff8104ee88 <__dequeue_signal+0x168>
501         ffffffff8104edd5:       mov    %rax,%rdx
502         ffffffff8104edd8:       mov    $0xc,%ecx
503         ffffffff8104eddd:       mov    %r13,%rdi
504         ffffffff8104ede0:       mov    $0x30,%eax
505         ffffffff8104ede5:       mov    %rdx,%rsi
506         ffffffff8104ede8:       rep movsl %ds:(%rsi),%es:(%rdi)
507         ffffffff8104edea:       test   $0x2,%al
508         ffffffff8104edec:       je     ffffffff8104edf0 <__dequeue_signal+0xd0>
509         ffffffff8104edee:       movsw  %ds:(%rsi),%es:(%rdi)
510         ffffffff8104edf0:       test   $0x1,%al
511         ffffffff8104edf2:       je     ffffffff8104edf5 <__dequeue_signal+0xd5>
512         ffffffff8104edf4:       movsb  %ds:(%rsi),%es:(%rdi)
513         ffffffff8104edf5:       mov    %r8,%rdi
514         ffffffff8104edf8:       callq  ffffffff8104de60 <__sigqueue_free>
515
516 As expected, it's the "rep movsl" instruction from the memcpy() that causes
517 the warning. We know about REP MOVSL that it uses the register RCX to count
518 the number of remaining iterations. By taking a look at the register dump
519 again (from the kmemcheck report), we can figure out how many bytes were left
520 to copy:
521
522 RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
523
524 By looking at the disassembly, we also see that %ecx is being loaded with the
525 value $0xc just before (ffffffff8104edd8), so we are very lucky. Keep in mind
526 that this is the number of iterations, not bytes. And since this is a "long"
527 operation, we need to multiply by 4 to get the number of bytes. So this means
528 that the uninitialized value was encountered at 4 * (0xc - 0x9) = 12 bytes
529 from the start of the object.
530
531 We can now try to figure out which field of the "struct siginfo" that was not
532 initialized. This is the beginning of the struct:
533
534 40 typedef struct siginfo {
535 41         int si_signo;
536 42         int si_errno;
537 43         int si_code;
538 44                 
539 45         union {
540 ..
541 92         } _sifields;
542 93 } siginfo_t;
543
544 On 64-bit, the int is 4 bytes long, so it must the the union member that has
545 not been initialized. We can verify this using gdb:
546
547         $ gdb vmlinux
548         ...
549         (gdb) p &((struct siginfo *) 0)->_sifields
550         $1 = (union {...} *) 0x10
551
552 Actually, it seems that the union member is located at offset 0x10 -- which
553 means that gcc has inserted 4 bytes of padding between the members si_code
554 and _sifields. We can now get a fuller picture of the memory dump:
555
556          _----------------------------=> si_code
557         /        _--------------------=> (padding)
558        |        /        _------------=> _sifields(._kill._pid)
559        |       |        /        _----=> _sifields(._kill._uid)
560        |       |       |        / 
561 -------|-------|-------|-------|
562 80000000000000000000000000000000000000000088ffff0000000000000000
563  i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
564
565 This allows us to realize another important fact: si_code contains the value
566 0x80. Remember that x86 is little endian, so the first 4 bytes "80000000" are
567 really the number 0x00000080. With a bit of research, we find that this is
568 actually the constant SI_KERNEL defined in include/asm-generic/siginfo.h:
569
570 144 #define SI_KERNEL       0x80            /* sent by the kernel from somewhere     */
571
572 This macro is used in exactly one place in the x86 kernel: In send_signal()
573 in kernel/signal.c:
574
575 816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
576 817                         int group)
577 818 {
578 ...
579 828         pending = group ? &t->signal->shared_pending : &t->pending;
580 ...
581 851         q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
582 852                                              (is_si_special(info) ||
583 853                                               info->si_code >= 0)));
584 854         if (q) {
585 855                 list_add_tail(&q->list, &pending->list);
586 856                 switch ((unsigned long) info) {
587 ...
588 865                 case (unsigned long) SEND_SIG_PRIV:
589 866                         q->info.si_signo = sig;
590 867                         q->info.si_errno = 0;
591 868                         q->info.si_code = SI_KERNEL;
592 869                         q->info.si_pid = 0;
593 870                         q->info.si_uid = 0;
594 871                         break;
595 ...
596 890 }
597
598 Not only does this match with the .si_code member, it also matches the place
599 we found earlier when looking for where siginfo_t objects are enqueued on the
600 "shared_pending" list.
601
602 So to sum up: It seems that it is the padding introduced by the compiler
603 between two struct fields that is uninitialized, and this gets reported when
604 we do a memcpy() on the struct. This means that we have identified a false
605 positive warning.
606
607 Normally, kmemcheck will not report uninitialized accesses in memcpy() calls
608 when both the source and destination addresses are tracked. (Instead, we copy
609 the shadow bytemap as well). In this case, the destination address clearly
610 was not tracked. We can dig a little deeper into the stack trace from above:
611
612         arch/x86/kernel/signal.c:805
613         arch/x86/kernel/signal.c:871
614         arch/x86/kernel/entry_64.S:694
615
616 And we clearly see that the destination siginfo object is located on the
617 stack:
618
619 782 static void do_signal(struct pt_regs *regs)
620 783 {
621 784         struct k_sigaction ka;
622 785         siginfo_t info;
623 ...
624 804         signr = get_signal_to_deliver(&info, &ka, regs, NULL);
625 ...
626 854 }
627
628 And this &info is what eventually gets passed to copy_siginfo() as the
629 destination argument.
630
631 Now, even though we didn't find an actual error here, the example is still a
632 good one, because it shows how one would go about to find out what the report
633 was all about.
634
635
636 3.4. Annotating false positives
637 ===============================
638
639 There are a few different ways to make annotations in the source code that
640 will keep kmemcheck from checking and reporting certain allocations. Here
641 they are:
642
643   o __GFP_NOTRACK_FALSE_POSITIVE
644
645         This flag can be passed to kmalloc() or kmem_cache_alloc() (therefore
646         also to other functions that end up calling one of these) to indicate
647         that the allocation should not be tracked because it would lead to
648         a false positive report. This is a "big hammer" way of silencing
649         kmemcheck; after all, even if the false positive pertains to 
650         particular field in a struct, for example, we will now lose the
651         ability to find (real) errors in other parts of the same struct.
652
653         Example:
654
655             /* No warnings will ever trigger on accessing any part of x */
656             x = kmalloc(sizeof *x, GFP_KERNEL | __GFP_NOTRACK_FALSE_POSITIVE);
657
658   o kmemcheck_bitfield_begin(name)/kmemcheck_bitfield_end(name) and
659         kmemcheck_annotate_bitfield(ptr, name)
660
661         The first two of these three macros can be used inside struct
662         definitions to signal, respectively, the beginning and end of a
663         bitfield. Additionally, this will assign the bitfield a name, which
664         is given as an argument to the macros.
665
666         Having used these markers, one can later use
667         kmemcheck_annotate_bitfield() at the point of allocation, to indicate
668         which parts of the allocation is part of a bitfield.
669
670         Example:
671
672             struct foo {
673                 int x;
674
675                 kmemcheck_bitfield_begin(flags);
676                 int flag_a:1;
677                 int flag_b:1;
678                 kmemcheck_bitfield_end(flags);
679
680                 int y;
681             };
682
683             struct foo *x = kmalloc(sizeof *x);
684
685             /* No warnings will trigger on accessing the bitfield of x */
686             kmemcheck_annotate_bitfield(x, flags);
687
688         Note that kmemcheck_annotate_bitfield() can be used even before the
689         return value of kmalloc() is checked -- in other words, passing NULL
690         as the first argument is legal (and will do nothing).
691
692
693 4. Reporting errors
694 ===================
695
696 As we have seen, kmemcheck will produce false positive reports. Therefore, it
697 is not very wise to blindly post kmemcheck warnings to mailing lists and
698 maintainers. Instead, I encourage maintainers and developers to find errors
699 in their own code. If you get a warning, you can try to work around it, try
700 to figure out if it's a real error or not, or simply ignore it. Most
701 developers know their own code and will quickly and efficiently determine the
702 root cause of a kmemcheck report. This is therefore also the most efficient
703 way to work with kmemcheck.
704
705 That said, we (the kmemcheck maintainers) will always be on the lookout for
706 false positives that we can annotate and silence. So whatever you find,
707 please drop us a note privately! Kernel configs and steps to reproduce (if
708 available) are of course a great help too.
709
710 Happy hacking!
711
712
713 5. Technical description
714 ========================
715
716 kmemcheck works by marking memory pages non-present. This means that whenever
717 somebody attempts to access the page, a page fault is generated. The page
718 fault handler notices that the page was in fact only hidden, and so it calls
719 on the kmemcheck code to make further investigations.
720
721 When the investigations are completed, kmemcheck "shows" the page by marking
722 it present (as it would be under normal circumstances). This way, the
723 interrupted code can continue as usual.
724
725 But after the instruction has been executed, we should hide the page again, so
726 that we can catch the next access too! Now kmemcheck makes use of a debugging
727 feature of the processor, namely single-stepping. When the processor has
728 finished the one instruction that generated the memory access, a debug
729 exception is raised. From here, we simply hide the page again and continue
730 execution, this time with the single-stepping feature turned off.
731
732 kmemcheck requires some assistance from the memory allocator in order to work.
733 The memory allocator needs to
734
735   1. Tell kmemcheck about newly allocated pages and pages that are about to
736      be freed. This allows kmemcheck to set up and tear down the shadow memory
737      for the pages in question. The shadow memory stores the status of each
738      byte in the allocation proper, e.g. whether it is initialized or
739      uninitialized.
740
741   2. Tell kmemcheck which parts of memory should be marked uninitialized.
742      There are actually a few more states, such as "not yet allocated" and
743      "recently freed".
744
745 If a slab cache is set up using the SLAB_NOTRACK flag, it will never return
746 memory that can take page faults because of kmemcheck.
747
748 If a slab cache is NOT set up using the SLAB_NOTRACK flag, callers can still
749 request memory with the __GFP_NOTRACK or __GFP_NOTRACK_FALSE_POSITIVE flags.
750 This does not prevent the page faults from occurring, however, but marks the
751 object in question as being initialized so that no warnings will ever be
752 produced for this object.
753
754 Currently, the SLAB and SLUB allocators are supported by kmemcheck.