1 Virtual Routing and Forwarding (VRF)
2 ====================================
3 The VRF device combined with ip rules provides the ability to create virtual
4 routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
5 Linux network stack. One use case is the multi-tenancy problem where each
6 tenant has their own unique routing tables and in the very least need
7 different default gateways.
9 Processes can be "VRF aware" by binding a socket to the VRF device. Packets
10 through the socket then use the routing table associated with the VRF
11 device. An important feature of the VRF device implementation is that it
12 impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
13 (ie., they do not need to be run in each VRF). The design also allows
14 the use of higher priority ip rules (Policy Based Routing, PBR) to take
15 precedence over the VRF device rules directing specific traffic as desired.
17 In addition, VRF devices allow VRFs to be nested within namespaces. For
18 example network namespaces provide separation of network interfaces at the
19 device layer, VLANs on the interfaces within a namespace provide L2 separation
20 and then VRF devices provide L3 separation.
24 A VRF device is created with an associated route table. Network interfaces
25 are then enslaved to a VRF device:
27 +-----------------------------+
28 | vrf-blue | ===> route table 10
29 +-----------------------------+
31 +------+ +------+ +-------------+
32 | eth1 | | eth2 | ... | bond1 |
33 +------+ +------+ +-------------+
39 Packets received on an enslaved device and are switched to the VRF device
40 in the IPv4 and IPv6 processing stacks giving the impression that packets
41 flow through the VRF device. Similarly on egress routing rules are used to
42 send packets to the VRF device driver before getting sent out the actual
43 interface. This allows tcpdump on a VRF device to capture all packets into
44 and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
45 applied using the VRF device to specify rules that apply to the VRF domain
48 [1] Packets in the forwarded state do not flow through the device, so those
49 packets are not seen by tcpdump. Will revisit this limitation in a
52 [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
53 ingress device and both INPUT and PREROUTING rules with skb->dev set to
54 the VRF device. For egress POSTROUTING and OUTPUT rules can be written
55 using either the VRF device or real egress device.
59 1. VRF device is created with an association to a FIB table.
60 e.g, ip link add vrf-blue type vrf table 10
61 ip link set dev vrf-blue up
63 2. An l3mdev FIB rule directs lookups to the table associated with the device.
64 A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
65 l3mdev rule for IPv4 and IPv6 when the first device is created with a
66 default preference of 1000. Users may delete the rule if desired and add
67 with a different priority or install per-VRF rules.
69 Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
70 ip ru add oif vrf-blue table 10
71 ip ru add iif vrf-blue table 10
73 3. Set the default route for the table (and hence default route for the VRF).
74 ip route add table 10 unreachable default
76 4. Enslave L3 interfaces to a VRF device.
77 ip link set dev eth1 master vrf-blue
79 Local and connected routes for enslaved devices are automatically moved to
80 the table associated with VRF device. Any additional routes depending on
81 the enslaved device are dropped and will need to be reinserted to the VRF
82 FIB table following the enslavement.
84 The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
85 addresses as VRF enslavement changes.
86 sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
88 5. Additional VRF routes are added to associated table.
89 ip route add table 10 ...
94 Applications that are to work within a VRF need to bind their socket to the
97 setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
99 or to specify the output device using cmsg and IP_PKTINFO.
101 TCP & UDP services running in the default VRF context (ie., not bound
102 to any VRF device) can work across all VRF domains by enabling the
103 tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
104 sysctl -w net.ipv4.tcp_l3mdev_accept=1
105 sysctl -w net.ipv4.udp_l3mdev_accept=1
107 netfilter rules on the VRF device can be used to limit access to services
108 running in the default VRF context as well.
110 The default VRF does not have limited scope with respect to port bindings.
111 That is, if a process does a wildcard bind to a port in the default VRF it
112 owns the port across all VRF domains within the network namespace.
114 ################################################################################
116 Using iproute2 for VRFs
117 =======================
118 iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
119 section lists both commands where appropriate -- with the vrf keyword and the
120 older form without it.
124 To instantiate a VRF device and associate it with a table:
125 $ ip link add dev NAME type vrf table ID
127 As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
128 covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
133 To list VRFs that have been created:
134 $ ip [-d] link show type vrf
135 NOTE: The -d option is needed to show the table id
138 $ ip -d link show type vrf
139 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
140 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
141 vrf table 1 addrgenmode eui64
142 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
143 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
144 vrf table 10 addrgenmode eui64
145 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
146 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
147 vrf table 66 addrgenmode eui64
148 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
149 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
150 vrf table 81 addrgenmode eui64
155 $ ip -br link show type vrf
156 mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
157 red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
158 blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
159 green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
162 3. Assign a Network Interface to a VRF
164 Network interfaces are assigned to a VRF by enslaving the netdevice to a
166 $ ip link set dev NAME master NAME
168 On enslavement connected and local routes are automatically moved to the
169 table associated with the VRF device.
172 $ ip link set dev eth0 master mgmt
175 4. Show Devices Assigned to a VRF
177 To show devices that have been assigned to a specific VRF add the master
178 option to the ip command:
179 $ ip link show vrf NAME
180 $ ip link show master NAME
183 $ ip link show vrf red
184 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
185 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
186 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
187 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
188 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
189 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
192 Or using the brief output:
193 $ ip -br link show vrf red
194 eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
195 eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
196 eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
199 5. Show Neighbor Entries for a VRF
201 To list neighbor entries associated with devices enslaved to a VRF device
202 add the master option to the ip command:
203 $ ip [-6] neigh show vrf NAME
204 $ ip [-6] neigh show master NAME
207 $ ip neigh show vrf red
208 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
209 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
211 $ ip -6 neigh show vrf red
212 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
215 6. Show Addresses for a VRF
217 To show addresses for interfaces associated with a VRF add the master
218 option to the ip command:
219 $ ip addr show vrf NAME
220 $ ip addr show master NAME
223 $ ip addr show vrf red
224 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
225 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
226 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
227 valid_lft forever preferred_lft forever
228 inet6 2002:1::2/120 scope global
229 valid_lft forever preferred_lft forever
230 inet6 fe80::ff:fe00:202/64 scope link
231 valid_lft forever preferred_lft forever
232 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
233 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
234 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
235 valid_lft forever preferred_lft forever
236 inet6 2002:2::2/120 scope global
237 valid_lft forever preferred_lft forever
238 inet6 fe80::ff:fe00:203/64 scope link
239 valid_lft forever preferred_lft forever
240 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
241 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
244 $ ip -br addr show vrf red
245 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
246 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
250 7. Show Routes for a VRF
252 To show routes for a VRF use the ip command to display the table associated
254 $ ip [-6] route show vrf NAME
255 $ ip [-6] route show table ID
258 $ ip route show vrf red
260 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
261 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
262 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
263 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
264 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
265 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
266 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
267 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
269 $ ip -6 route show vrf red
270 local 2002:1:: dev lo proto none metric 0 pref medium
271 local 2002:1::2 dev lo proto none metric 0 pref medium
272 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
273 local 2002:2:: dev lo proto none metric 0 pref medium
274 local 2002:2::2 dev lo proto none metric 0 pref medium
275 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
276 local fe80:: dev lo proto none metric 0 pref medium
277 local fe80:: dev lo proto none metric 0 pref medium
278 local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
279 local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
280 fe80::/64 dev eth1 proto kernel metric 256 pref medium
281 fe80::/64 dev eth2 proto kernel metric 256 pref medium
282 ff00::/8 dev red metric 256 pref medium
283 ff00::/8 dev eth1 metric 256 pref medium
284 ff00::/8 dev eth2 metric 256 pref medium
287 8. Route Lookup for a VRF
289 A test route lookup can be done for a VRF:
290 $ ip [-6] route get vrf NAME ADDRESS
291 $ ip [-6] route get oif NAME ADDRESS
294 $ ip route get 10.2.1.40 vrf red
295 10.2.1.40 dev eth1 table red src 10.2.1.2
298 $ ip -6 route get 2002:1::32 vrf red
299 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
302 9. Removing Network Interface from a VRF
304 Network interfaces are removed from a VRF by breaking the enslavement to
306 $ ip link set dev NAME nomaster
308 Connected routes are moved back to the default table and local entries are
309 moved to the local table.
312 $ ip link set dev eth0 nomaster
314 --------------------------------------------------------------------------------
316 Commands used in this example:
318 cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
331 ip link add ${VRF} type vrf table ${TBID}
333 if [ "${VRF}" != "mgmt" ]; then
334 ip route add table ${TBID} unreachable default
336 ip link set dev ${VRF} up
340 ip link set dev eth0 master mgmt
343 ip link set dev eth1 master red
344 ip link set dev eth2 master red
345 ip link set dev eth5 master red
348 ip link set dev eth3 master blue
351 ip link set dev eth4 master green
354 Interface addresses from /etc/network/interfaces:
356 iface eth0 inet static
358 netmask 255.255.255.0
361 iface eth0 inet6 static
366 iface eth1 inet static
368 netmask 255.255.255.0
370 iface eth1 inet6 static
375 iface eth2 inet static
377 netmask 255.255.255.0
379 iface eth2 inet6 static
384 iface eth3 inet static
386 netmask 255.255.255.0
388 iface eth3 inet6 static
393 iface eth4 inet static
395 netmask 255.255.255.0
397 iface eth4 inet6 static