1 =============================
2 No-MMU memory mapping support
3 =============================
5 The kernel has limited support for memory mapping under no-MMU conditions, such
6 as are used in uClinux environments. From the userspace point of view, memory
7 mapping is made use of in conjunction with the mmap() system call, the shmat()
8 call and the execve() system call. From the kernel's point of view, execve()
9 mapping is actually performed by the binfmt drivers, which call back into the
10 mmap() routines to do the actual work.
12 Memory mapping behaviour also involves the way fork(), vfork(), clone() and
13 ptrace() work. Under uClinux there is no fork(), and clone() must be supplied
16 The behaviour is similar between the MMU and no-MMU cases, but not identical;
17 and it's also much more restricted in the latter case:
19 (#) Anonymous mapping, MAP_PRIVATE
21 In the MMU case: VM regions backed by arbitrary pages; copy-on-write
24 In the no-MMU case: VM regions backed by arbitrary contiguous runs of
27 (#) Anonymous mapping, MAP_SHARED
29 These behave very much like private mappings, except that they're
30 shared across fork() or clone() without CLONE_VM in the MMU case. Since
31 the no-MMU case doesn't support these, behaviour is identical to
34 (#) File, MAP_PRIVATE, PROT_READ / PROT_EXEC, !PROT_WRITE
36 In the MMU case: VM regions backed by pages read from file; changes to
37 the underlying file are reflected in the mapping; copied across fork.
41 - If one exists, the kernel will re-use an existing mapping to the
42 same segment of the same file if that has compatible permissions,
43 even if this was created by another process.
45 - If possible, the file mapping will be directly on the backing device
46 if the backing device has the NOMMU_MAP_DIRECT capability and
47 appropriate mapping protection capabilities. Ramfs, romfs, cramfs
48 and mtd might all permit this.
50 - If the backing device device can't or won't permit direct sharing,
51 but does have the NOMMU_MAP_COPY capability, then a copy of the
52 appropriate bit of the file will be read into a contiguous bit of
53 memory and any extraneous space beyond the EOF will be cleared
55 - Writes to the file do not affect the mapping; writes to the mapping
56 are visible in other processes (no MMU protection), but should not
59 (#) File, MAP_PRIVATE, PROT_READ / PROT_EXEC, PROT_WRITE
61 In the MMU case: like the non-PROT_WRITE case, except that the pages in
62 question get copied before the write actually happens. From that point
63 on writes to the file underneath that page no longer get reflected into
64 the mapping's backing pages. The page is then backed by swap instead.
66 In the no-MMU case: works much like the non-PROT_WRITE case, except
67 that a copy is always taken and never shared.
69 (#) Regular file / blockdev, MAP_SHARED, PROT_READ / PROT_EXEC / PROT_WRITE
71 In the MMU case: VM regions backed by pages read from file; changes to
72 pages written back to file; writes to file reflected into pages backing
73 mapping; shared across fork.
75 In the no-MMU case: not supported.
77 (#) Memory backed regular file, MAP_SHARED, PROT_READ / PROT_EXEC / PROT_WRITE
79 In the MMU case: As for ordinary regular files.
81 In the no-MMU case: The filesystem providing the memory-backed file
82 (such as ramfs or tmpfs) may choose to honour an open, truncate, mmap
83 sequence by providing a contiguous sequence of pages to map. In that
84 case, a shared-writable memory mapping will be possible. It will work
85 as for the MMU case. If the filesystem does not provide any such
86 support, then the mapping request will be denied.
88 (#) Memory backed blockdev, MAP_SHARED, PROT_READ / PROT_EXEC / PROT_WRITE
90 In the MMU case: As for ordinary regular files.
92 In the no-MMU case: As for memory backed regular files, but the
93 blockdev must be able to provide a contiguous run of pages without
94 truncate being called. The ramdisk driver could do this if it allocated
95 all its memory as a contiguous array upfront.
97 (#) Memory backed chardev, MAP_SHARED, PROT_READ / PROT_EXEC / PROT_WRITE
99 In the MMU case: As for ordinary regular files.
101 In the no-MMU case: The character device driver may choose to honour
102 the mmap() by providing direct access to the underlying device if it
103 provides memory or quasi-memory that can be accessed directly. Examples
104 of such are frame buffers and flash devices. If the driver does not
105 provide any such support, then the mapping request will be denied.
108 Further notes on no-MMU MMAP
109 ============================
111 (#) A request for a private mapping of a file may return a buffer that is not
112 page-aligned. This is because XIP may take place, and the data may not be
113 paged aligned in the backing store.
115 (#) A request for an anonymous mapping will always be page aligned. If
116 possible the size of the request should be a power of two otherwise some
117 of the space may be wasted as the kernel must allocate a power-of-2
118 granule but will only discard the excess if appropriately configured as
119 this has an effect on fragmentation.
121 (#) The memory allocated by a request for an anonymous mapping will normally
122 be cleared by the kernel before being returned in accordance with the
123 Linux man pages (ver 2.22 or later).
125 In the MMU case this can be achieved with reasonable performance as
126 regions are backed by virtual pages, with the contents only being mapped
127 to cleared physical pages when a write happens on that specific page
128 (prior to which, the pages are effectively mapped to the global zero page
129 from which reads can take place). This spreads out the time it takes to
130 initialize the contents of a page - depending on the write-usage of the
133 In the no-MMU case, however, anonymous mappings are backed by physical
134 pages, and the entire map is cleared at allocation time. This can cause
135 significant delays during a userspace malloc() as the C library does an
136 anonymous mapping and the kernel then does a memset for the entire map.
138 However, for memory that isn't required to be precleared - such as that
139 returned by malloc() - mmap() can take a MAP_UNINITIALIZED flag to
140 indicate to the kernel that it shouldn't bother clearing the memory before
141 returning it. Note that CONFIG_MMAP_ALLOW_UNINITIALIZED must be enabled
142 to permit this, otherwise the flag will be ignored.
144 uClibc uses this to speed up malloc(), and the ELF-FDPIC binfmt uses this
145 to allocate the brk and stack region.
147 (#) A list of all the private copy and anonymous mappings on the system is
148 visible through /proc/maps in no-MMU mode.
150 (#) A list of all the mappings in use by a process is visible through
151 /proc/<pid>/maps in no-MMU mode.
153 (#) Supplying MAP_FIXED or a requesting a particular mapping address will
156 (#) Files mapped privately usually have to have a read method provided by the
157 driver or filesystem so that the contents can be read into the memory
158 allocated if mmap() chooses not to map the backing device directly. An
159 error will result if they don't. This is most likely to be encountered
160 with character device files, pipes, fifos and sockets.
163 Interprocess shared memory
164 ==========================
166 Both SYSV IPC SHM shared memory and POSIX shared memory is supported in NOMMU
167 mode. The former through the usual mechanism, the latter through files created
168 on ramfs or tmpfs mounts.
174 Futexes are supported in NOMMU mode if the arch supports them. An error will
175 be given if an address passed to the futex system call lies outside the
176 mappings made by a process or if the mapping in which the address lies does not
177 support futexes (such as an I/O chardev mapping).
183 The mremap() function is partially supported. It may change the size of a
184 mapping, and may move it [#]_ if MREMAP_MAYMOVE is specified and if the new size
185 of the mapping exceeds the size of the slab object currently occupied by the
186 memory to which the mapping refers, or if a smaller slab object could be used.
188 MREMAP_FIXED is not supported, though it is ignored if there's no change of
189 address and the object does not need to be moved.
191 Shared mappings may not be moved. Shareable mappings may not be moved either,
192 even if they are not currently shared.
194 The mremap() function must be given an exact match for base address and size of
195 a previously mapped object. It may not be used to create holes in existing
196 mappings, move parts of existing mappings or resize parts of mappings. It must
197 act on a complete mapping.
199 .. [#] Not currently supported.
202 Providing shareable character device support
203 ============================================
205 To provide shareable character device support, a driver must provide a
206 file->f_op->get_unmapped_area() operation. The mmap() routines will call this
207 to get a proposed address for the mapping. This may return an error if it
208 doesn't wish to honour the mapping because it's too long, at a weird offset,
209 under some unsupported combination of flags or whatever.
211 The driver should also provide backing device information with capabilities set
212 to indicate the permitted types of mapping on such devices. The default is
213 assumed to be readable and writable, not executable, and only shareable
214 directly (can't be copied).
216 The file->f_op->mmap() operation will be called to actually inaugurate the
217 mapping. It can be rejected at that point. Returning the ENOSYS error will
218 cause the mapping to be copied instead if NOMMU_MAP_COPY is specified.
220 The vm_ops->close() routine will be invoked when the last mapping on a chardev
221 is removed. An existing mapping will be shared, partially or not, if possible
222 without notifying the driver.
224 It is permitted also for the file->f_op->get_unmapped_area() operation to
225 return -ENOSYS. This will be taken to mean that this operation just doesn't
226 want to handle it, despite the fact it's got an operation. For instance, it
227 might try directing the call to a secondary driver which turns out not to
228 implement it. Such is the case for the framebuffer driver which attempts to
229 direct the call to the device-specific driver. Under such circumstances, the
230 mapping request will be rejected if NOMMU_MAP_COPY is not specified, and a
231 copy mapped otherwise.
235 Some types of device may present a different appearance to anyone
236 looking at them in certain modes. Flash chips can be like this; for
237 instance if they're in programming or erase mode, you might see the
238 status reflected in the mapping, instead of the data.
240 In such a case, care must be taken lest userspace see a shared or a
241 private mapping showing such information when the driver is busy
242 controlling the device. Remember especially: private executable
243 mappings may still be mapped directly off the device under some
247 Providing shareable memory-backed file support
248 ==============================================
250 Provision of shared mappings on memory backed files is similar to the provision
251 of support for shared mapped character devices. The main difference is that the
252 filesystem providing the service will probably allocate a contiguous collection
253 of pages and permit mappings to be made on that.
255 It is recommended that a truncate operation applied to such a file that
256 increases the file size, if that file is empty, be taken as a request to gather
257 enough pages to honour a mapping. This is required to support POSIX shared
260 Memory backed devices are indicated by the mapping's backing device info having
261 the memory_backed flag set.
264 Providing shareable block device support
265 ========================================
267 Provision of shared mappings on block device files is exactly the same as for
268 character devices. If there isn't a real device underneath, then the driver
269 should allocate sufficient contiguous memory to honour any supported mapping.
272 Adjusting page trimming behaviour
273 =================================
275 NOMMU mmap automatically rounds up to the nearest power-of-2 number of pages
276 when performing an allocation. This can have adverse effects on memory
277 fragmentation, and as such, is left configurable. The default behaviour is to
278 aggressively trim allocations and discard any excess pages back in to the page
279 allocator. In order to retain finer-grained control over fragmentation, this
280 behaviour can either be disabled completely, or bumped up to a higher page
281 watermark where trimming begins.
283 Page trimming behaviour is configurable via the sysctl ``vm.nr_trim_pages``.