]> git.karo-electronics.de Git - karo-tx-linux.git/blob - Documentation/video4linux/v4l2-framework.txt
Merge commit 'v2.6.31-rc4' into next
[karo-tx-linux.git] / Documentation / video4linux / v4l2-framework.txt
1 Overview of the V4L2 driver framework
2 =====================================
3
4 This text documents the various structures provided by the V4L2 framework and
5 their relationships.
6
7
8 Introduction
9 ------------
10
11 The V4L2 drivers tend to be very complex due to the complexity of the
12 hardware: most devices have multiple ICs, export multiple device nodes in
13 /dev, and create also non-V4L2 devices such as DVB, ALSA, FB, I2C and input
14 (IR) devices.
15
16 Especially the fact that V4L2 drivers have to setup supporting ICs to
17 do audio/video muxing/encoding/decoding makes it more complex than most.
18 Usually these ICs are connected to the main bridge driver through one or
19 more I2C busses, but other busses can also be used. Such devices are
20 called 'sub-devices'.
21
22 For a long time the framework was limited to the video_device struct for
23 creating V4L device nodes and video_buf for handling the video buffers
24 (note that this document does not discuss the video_buf framework).
25
26 This meant that all drivers had to do the setup of device instances and
27 connecting to sub-devices themselves. Some of this is quite complicated
28 to do right and many drivers never did do it correctly.
29
30 There is also a lot of common code that could never be refactored due to
31 the lack of a framework.
32
33 So this framework sets up the basic building blocks that all drivers
34 need and this same framework should make it much easier to refactor
35 common code into utility functions shared by all drivers.
36
37
38 Structure of a driver
39 ---------------------
40
41 All drivers have the following structure:
42
43 1) A struct for each device instance containing the device state.
44
45 2) A way of initializing and commanding sub-devices (if any).
46
47 3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX, /dev/radioX and
48    /dev/vtxX) and keeping track of device-node specific data.
49
50 4) Filehandle-specific structs containing per-filehandle data;
51
52 5) video buffer handling.
53
54 This is a rough schematic of how it all relates:
55
56     device instances
57       |
58       +-sub-device instances
59       |
60       \-V4L2 device nodes
61           |
62           \-filehandle instances
63
64
65 Structure of the framework
66 --------------------------
67
68 The framework closely resembles the driver structure: it has a v4l2_device
69 struct for the device instance data, a v4l2_subdev struct to refer to
70 sub-device instances, the video_device struct stores V4L2 device node data
71 and in the future a v4l2_fh struct will keep track of filehandle instances
72 (this is not yet implemented).
73
74
75 struct v4l2_device
76 ------------------
77
78 Each device instance is represented by a struct v4l2_device (v4l2-device.h).
79 Very simple devices can just allocate this struct, but most of the time you
80 would embed this struct inside a larger struct.
81
82 You must register the device instance:
83
84         v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev);
85
86 Registration will initialize the v4l2_device struct and link dev->driver_data
87 to v4l2_dev. If v4l2_dev->name is empty then it will be set to a value derived
88 from dev (driver name followed by the bus_id, to be precise). If you set it
89 up before calling v4l2_device_register then it will be untouched. If dev is
90 NULL, then you *must* setup v4l2_dev->name before calling v4l2_device_register.
91
92 You can use v4l2_device_set_name() to set the name based on a driver name and
93 a driver-global atomic_t instance. This will generate names like ivtv0, ivtv1,
94 etc. If the name ends with a digit, then it will insert a dash: cx18-0,
95 cx18-1, etc. This function returns the instance number.
96
97 The first 'dev' argument is normally the struct device pointer of a pci_dev,
98 usb_interface or platform_device. It is rare for dev to be NULL, but it happens
99 with ISA devices or when one device creates multiple PCI devices, thus making
100 it impossible to associate v4l2_dev with a particular parent.
101
102 You can also supply a notify() callback that can be called by sub-devices to
103 notify you of events. Whether you need to set this depends on the sub-device.
104 Any notifications a sub-device supports must be defined in a header in
105 include/media/<subdevice>.h.
106
107 You unregister with:
108
109         v4l2_device_unregister(struct v4l2_device *v4l2_dev);
110
111 Unregistering will also automatically unregister all subdevs from the device.
112
113 If you have a hotpluggable device (e.g. a USB device), then when a disconnect
114 happens the parent device becomes invalid. Since v4l2_device has a pointer to
115 that parent device it has to be cleared as well to mark that the parent is
116 gone. To do this call:
117
118         v4l2_device_disconnect(struct v4l2_device *v4l2_dev);
119
120 This does *not* unregister the subdevs, so you still need to call the
121 v4l2_device_unregister() function for that. If your driver is not hotpluggable,
122 then there is no need to call v4l2_device_disconnect().
123
124 Sometimes you need to iterate over all devices registered by a specific
125 driver. This is usually the case if multiple device drivers use the same
126 hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv
127 hardware. The same is true for alsa drivers for example.
128
129 You can iterate over all registered devices as follows:
130
131 static int callback(struct device *dev, void *p)
132 {
133         struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);
134
135         /* test if this device was inited */
136         if (v4l2_dev == NULL)
137                 return 0;
138         ...
139         return 0;
140 }
141
142 int iterate(void *p)
143 {
144         struct device_driver *drv;
145         int err;
146
147         /* Find driver 'ivtv' on the PCI bus.
148            pci_bus_type is a global. For USB busses use usb_bus_type. */
149         drv = driver_find("ivtv", &pci_bus_type);
150         /* iterate over all ivtv device instances */
151         err = driver_for_each_device(drv, NULL, p, callback);
152         put_driver(drv);
153         return err;
154 }
155
156 Sometimes you need to keep a running counter of the device instance. This is
157 commonly used to map a device instance to an index of a module option array.
158
159 The recommended approach is as follows:
160
161 static atomic_t drv_instance = ATOMIC_INIT(0);
162
163 static int __devinit drv_probe(struct pci_dev *pdev,
164                                 const struct pci_device_id *pci_id)
165 {
166         ...
167         state->instance = atomic_inc_return(&drv_instance) - 1;
168 }
169
170
171 struct v4l2_subdev
172 ------------------
173
174 Many drivers need to communicate with sub-devices. These devices can do all
175 sort of tasks, but most commonly they handle audio and/or video muxing,
176 encoding or decoding. For webcams common sub-devices are sensors and camera
177 controllers.
178
179 Usually these are I2C devices, but not necessarily. In order to provide the
180 driver with a consistent interface to these sub-devices the v4l2_subdev struct
181 (v4l2-subdev.h) was created.
182
183 Each sub-device driver must have a v4l2_subdev struct. This struct can be
184 stand-alone for simple sub-devices or it might be embedded in a larger struct
185 if more state information needs to be stored. Usually there is a low-level
186 device struct (e.g. i2c_client) that contains the device data as setup
187 by the kernel. It is recommended to store that pointer in the private
188 data of v4l2_subdev using v4l2_set_subdevdata(). That makes it easy to go
189 from a v4l2_subdev to the actual low-level bus-specific device data.
190
191 You also need a way to go from the low-level struct to v4l2_subdev. For the
192 common i2c_client struct the i2c_set_clientdata() call is used to store a
193 v4l2_subdev pointer, for other busses you may have to use other methods.
194
195 From the bridge driver perspective you load the sub-device module and somehow
196 obtain the v4l2_subdev pointer. For i2c devices this is easy: you call
197 i2c_get_clientdata(). For other busses something similar needs to be done.
198 Helper functions exists for sub-devices on an I2C bus that do most of this
199 tricky work for you.
200
201 Each v4l2_subdev contains function pointers that sub-device drivers can
202 implement (or leave NULL if it is not applicable). Since sub-devices can do
203 so many different things and you do not want to end up with a huge ops struct
204 of which only a handful of ops are commonly implemented, the function pointers
205 are sorted according to category and each category has its own ops struct.
206
207 The top-level ops struct contains pointers to the category ops structs, which
208 may be NULL if the subdev driver does not support anything from that category.
209
210 It looks like this:
211
212 struct v4l2_subdev_core_ops {
213         int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip);
214         int (*log_status)(struct v4l2_subdev *sd);
215         int (*init)(struct v4l2_subdev *sd, u32 val);
216         ...
217 };
218
219 struct v4l2_subdev_tuner_ops {
220         ...
221 };
222
223 struct v4l2_subdev_audio_ops {
224         ...
225 };
226
227 struct v4l2_subdev_video_ops {
228         ...
229 };
230
231 struct v4l2_subdev_ops {
232         const struct v4l2_subdev_core_ops  *core;
233         const struct v4l2_subdev_tuner_ops *tuner;
234         const struct v4l2_subdev_audio_ops *audio;
235         const struct v4l2_subdev_video_ops *video;
236 };
237
238 The core ops are common to all subdevs, the other categories are implemented
239 depending on the sub-device. E.g. a video device is unlikely to support the
240 audio ops and vice versa.
241
242 This setup limits the number of function pointers while still making it easy
243 to add new ops and categories.
244
245 A sub-device driver initializes the v4l2_subdev struct using:
246
247         v4l2_subdev_init(sd, &ops);
248
249 Afterwards you need to initialize subdev->name with a unique name and set the
250 module owner. This is done for you if you use the i2c helper functions.
251
252 A device (bridge) driver needs to register the v4l2_subdev with the
253 v4l2_device:
254
255         int err = v4l2_device_register_subdev(v4l2_dev, sd);
256
257 This can fail if the subdev module disappeared before it could be registered.
258 After this function was called successfully the subdev->dev field points to
259 the v4l2_device.
260
261 You can unregister a sub-device using:
262
263         v4l2_device_unregister_subdev(sd);
264
265 Afterwards the subdev module can be unloaded and sd->dev == NULL.
266
267 You can call an ops function either directly:
268
269         err = sd->ops->core->g_chip_ident(sd, &chip);
270
271 but it is better and easier to use this macro:
272
273         err = v4l2_subdev_call(sd, core, g_chip_ident, &chip);
274
275 The macro will to the right NULL pointer checks and returns -ENODEV if subdev
276 is NULL, -ENOIOCTLCMD if either subdev->core or subdev->core->g_chip_ident is
277 NULL, or the actual result of the subdev->ops->core->g_chip_ident ops.
278
279 It is also possible to call all or a subset of the sub-devices:
280
281         v4l2_device_call_all(v4l2_dev, 0, core, g_chip_ident, &chip);
282
283 Any subdev that does not support this ops is skipped and error results are
284 ignored. If you want to check for errors use this:
285
286         err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_chip_ident, &chip);
287
288 Any error except -ENOIOCTLCMD will exit the loop with that error. If no
289 errors (except -ENOIOCTLCMD) occured, then 0 is returned.
290
291 The second argument to both calls is a group ID. If 0, then all subdevs are
292 called. If non-zero, then only those whose group ID match that value will
293 be called. Before a bridge driver registers a subdev it can set sd->grp_id
294 to whatever value it wants (it's 0 by default). This value is owned by the
295 bridge driver and the sub-device driver will never modify or use it.
296
297 The group ID gives the bridge driver more control how callbacks are called.
298 For example, there may be multiple audio chips on a board, each capable of
299 changing the volume. But usually only one will actually be used when the
300 user want to change the volume. You can set the group ID for that subdev to
301 e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling
302 v4l2_device_call_all(). That ensures that it will only go to the subdev
303 that needs it.
304
305 If the sub-device needs to notify its v4l2_device parent of an event, then
306 it can call v4l2_subdev_notify(sd, notification, arg). This macro checks
307 whether there is a notify() callback defined and returns -ENODEV if not.
308 Otherwise the result of the notify() call is returned.
309
310 The advantage of using v4l2_subdev is that it is a generic struct and does
311 not contain any knowledge about the underlying hardware. So a driver might
312 contain several subdevs that use an I2C bus, but also a subdev that is
313 controlled through GPIO pins. This distinction is only relevant when setting
314 up the device, but once the subdev is registered it is completely transparent.
315
316
317 I2C sub-device drivers
318 ----------------------
319
320 Since these drivers are so common, special helper functions are available to
321 ease the use of these drivers (v4l2-common.h).
322
323 The recommended method of adding v4l2_subdev support to an I2C driver is to
324 embed the v4l2_subdev struct into the state struct that is created for each
325 I2C device instance. Very simple devices have no state struct and in that case
326 you can just create a v4l2_subdev directly.
327
328 A typical state struct would look like this (where 'chipname' is replaced by
329 the name of the chip):
330
331 struct chipname_state {
332         struct v4l2_subdev sd;
333         ...  /* additional state fields */
334 };
335
336 Initialize the v4l2_subdev struct as follows:
337
338         v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);
339
340 This function will fill in all the fields of v4l2_subdev and ensure that the
341 v4l2_subdev and i2c_client both point to one another.
342
343 You should also add a helper inline function to go from a v4l2_subdev pointer
344 to a chipname_state struct:
345
346 static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
347 {
348         return container_of(sd, struct chipname_state, sd);
349 }
350
351 Use this to go from the v4l2_subdev struct to the i2c_client struct:
352
353         struct i2c_client *client = v4l2_get_subdevdata(sd);
354
355 And this to go from an i2c_client to a v4l2_subdev struct:
356
357         struct v4l2_subdev *sd = i2c_get_clientdata(client);
358
359 Make sure to call v4l2_device_unregister_subdev(sd) when the remove() callback
360 is called. This will unregister the sub-device from the bridge driver. It is
361 safe to call this even if the sub-device was never registered.
362
363 You need to do this because when the bridge driver destroys the i2c adapter
364 the remove() callbacks are called of the i2c devices on that adapter.
365 After that the corresponding v4l2_subdev structures are invalid, so they
366 have to be unregistered first. Calling v4l2_device_unregister_subdev(sd)
367 from the remove() callback ensures that this is always done correctly.
368
369
370 The bridge driver also has some helper functions it can use:
371
372 struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter,
373                "module_foo", "chipid", 0x36);
374
375 This loads the given module (can be NULL if no module needs to be loaded) and
376 calls i2c_new_device() with the given i2c_adapter and chip/address arguments.
377 If all goes well, then it registers the subdev with the v4l2_device.
378
379 You can also use v4l2_i2c_new_probed_subdev() which is very similar to
380 v4l2_i2c_new_subdev(), except that it has an array of possible I2C addresses
381 that it should probe. Internally it calls i2c_new_probed_device().
382
383 Both functions return NULL if something went wrong.
384
385 Note that the chipid you pass to v4l2_i2c_new_(probed_)subdev() is usually
386 the same as the module name. It allows you to specify a chip variant, e.g.
387 "saa7114" or "saa7115". In general though the i2c driver autodetects this.
388 The use of chipid is something that needs to be looked at more closely at a
389 later date. It differs between i2c drivers and as such can be confusing.
390 To see which chip variants are supported you can look in the i2c driver code
391 for the i2c_device_id table. This lists all the possibilities.
392
393 There are two more helper functions:
394
395 v4l2_i2c_new_subdev_cfg: this function adds new irq and platform_data
396 arguments and has both 'addr' and 'probed_addrs' arguments: if addr is not
397 0 then that will be used (non-probing variant), otherwise the probed_addrs
398 are probed.
399
400 For example: this will probe for address 0x10:
401
402 struct v4l2_subdev *sd = v4l2_i2c_new_subdev_cfg(v4l2_dev, adapter,
403                "module_foo", "chipid", 0, NULL, 0, I2C_ADDRS(0x10));
404
405 v4l2_i2c_new_subdev_board uses an i2c_board_info struct which is passed
406 to the i2c driver and replaces the irq, platform_data and addr arguments.
407
408 If the subdev supports the s_config core ops, then that op is called with
409 the irq and platform_data arguments after the subdev was setup. The older
410 v4l2_i2c_new_(probed_)subdev functions will call s_config as well, but with
411 irq set to 0 and platform_data set to NULL.
412
413 Note that in the next kernel release the functions v4l2_i2c_new_subdev,
414 v4l2_i2c_new_probed_subdev and v4l2_i2c_new_probed_subdev_addr will all be
415 replaced by a single v4l2_i2c_new_subdev that is identical to
416 v4l2_i2c_new_subdev_cfg but without the irq and platform_data arguments.
417
418 struct video_device
419 -------------------
420
421 The actual device nodes in the /dev directory are created using the
422 video_device struct (v4l2-dev.h). This struct can either be allocated
423 dynamically or embedded in a larger struct.
424
425 To allocate it dynamically use:
426
427         struct video_device *vdev = video_device_alloc();
428
429         if (vdev == NULL)
430                 return -ENOMEM;
431
432         vdev->release = video_device_release;
433
434 If you embed it in a larger struct, then you must set the release()
435 callback to your own function:
436
437         struct video_device *vdev = &my_vdev->vdev;
438
439         vdev->release = my_vdev_release;
440
441 The release callback must be set and it is called when the last user
442 of the video device exits.
443
444 The default video_device_release() callback just calls kfree to free the
445 allocated memory.
446
447 You should also set these fields:
448
449 - v4l2_dev: set to the v4l2_device parent device.
450 - name: set to something descriptive and unique.
451 - fops: set to the v4l2_file_operations struct.
452 - ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
453   (highly recommended to use this and it might become compulsory in the
454   future!), then set this to your v4l2_ioctl_ops struct.
455 - parent: you only set this if v4l2_device was registered with NULL as
456   the parent device struct. This only happens in cases where one hardware
457   device has multiple PCI devices that all share the same v4l2_device core.
458
459   The cx88 driver is an example of this: one core v4l2_device struct, but
460   it is used by both an raw video PCI device (cx8800) and a MPEG PCI device
461   (cx8802). Since the v4l2_device cannot be associated with a particular
462   PCI device it is setup without a parent device. But when the struct
463   video_device is setup you do know which parent PCI device to use.
464
465 If you use v4l2_ioctl_ops, then you should set either .unlocked_ioctl or
466 .ioctl to video_ioctl2 in your v4l2_file_operations struct.
467
468 The v4l2_file_operations struct is a subset of file_operations. The main
469 difference is that the inode argument is omitted since it is never used.
470
471
472 video_device registration
473 -------------------------
474
475 Next you register the video device: this will create the character device
476 for you.
477
478         err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
479         if (err) {
480                 video_device_release(vdev); /* or kfree(my_vdev); */
481                 return err;
482         }
483
484 Which device is registered depends on the type argument. The following
485 types exist:
486
487 VFL_TYPE_GRABBER: videoX for video input/output devices
488 VFL_TYPE_VBI: vbiX for vertical blank data (i.e. closed captions, teletext)
489 VFL_TYPE_RADIO: radioX for radio tuners
490 VFL_TYPE_VTX: vtxX for teletext devices (deprecated, don't use)
491
492 The last argument gives you a certain amount of control over the device
493 kernel number used (i.e. the X in videoX). Normally you will pass -1 to
494 let the v4l2 framework pick the first free number. But if a driver creates
495 many devices, then it can be useful to have different video devices in
496 separate ranges. For example, video capture devices start at 0, video
497 output devices start at 16.
498
499 So you can use the last argument to specify a minimum kernel number and
500 the v4l2 framework will try to pick the first free number that is equal
501 or higher to what you passed. If that fails, then it will just pick the
502 first free number.
503
504 Whenever a device node is created some attributes are also created for you.
505 If you look in /sys/class/video4linux you see the devices. Go into e.g.
506 video0 and you will see 'name' and 'index' attributes. The 'name' attribute
507 is the 'name' field of the video_device struct. The 'index' attribute is
508 a device node index that can be assigned by the driver, or that is calculated
509 for you.
510
511 If you call video_register_device(), then the index is just increased by
512 1 for each device node you register. The first video device node you register
513 always starts off with 0.
514
515 Alternatively you can call video_register_device_index() which is identical
516 to video_register_device(), but with an extra index argument. Here you can
517 pass a specific index value (between 0 and 31) that should be used.
518
519 Users can setup udev rules that utilize the index attribute to make fancy
520 device names (e.g. 'mpegX' for MPEG video capture device nodes).
521
522 After the device was successfully registered, then you can use these fields:
523
524 - vfl_type: the device type passed to video_register_device.
525 - minor: the assigned device minor number.
526 - num: the device kernel number (i.e. the X in videoX).
527 - index: the device index number (calculated or set explicitly using
528   video_register_device_index).
529
530 If the registration failed, then you need to call video_device_release()
531 to free the allocated video_device struct, or free your own struct if the
532 video_device was embedded in it. The vdev->release() callback will never
533 be called if the registration failed, nor should you ever attempt to
534 unregister the device if the registration failed.
535
536
537 video_device cleanup
538 --------------------
539
540 When the video device nodes have to be removed, either during the unload
541 of the driver or because the USB device was disconnected, then you should
542 unregister them:
543
544         video_unregister_device(vdev);
545
546 This will remove the device nodes from sysfs (causing udev to remove them
547 from /dev).
548
549 After video_unregister_device() returns no new opens can be done.
550
551 However, in the case of USB devices some application might still have one
552 of these device nodes open. You should block all new accesses to read,
553 write, poll, etc. except possibly for certain ioctl operations like
554 queueing buffers.
555
556 When the last user of the video device node exits, then the vdev->release()
557 callback is called and you can do the final cleanup there.
558
559
560 video_device helper functions
561 -----------------------------
562
563 There are a few useful helper functions:
564
565 You can set/get driver private data in the video_device struct using:
566
567 void *video_get_drvdata(struct video_device *vdev);
568 void video_set_drvdata(struct video_device *vdev, void *data);
569
570 Note that you can safely call video_set_drvdata() before calling
571 video_register_device().
572
573 And this function:
574
575 struct video_device *video_devdata(struct file *file);
576
577 returns the video_device belonging to the file struct.
578
579 The final helper function combines video_get_drvdata with
580 video_devdata:
581
582 void *video_drvdata(struct file *file);
583
584 You can go from a video_device struct to the v4l2_device struct using:
585
586 struct v4l2_device *v4l2_dev = vdev->v4l2_dev;
587
588 video buffer helper functions
589 -----------------------------
590
591 The v4l2 core API provides a standard method for dealing with video
592 buffers. Those methods allow a driver to implement read(), mmap() and
593 overlay() on a consistent way.
594
595 There are currently methods for using video buffers on devices that
596 supports DMA with scatter/gather method (videobuf-dma-sg), DMA with
597 linear access (videobuf-dma-contig), and vmalloced buffers, mostly
598 used on USB drivers (videobuf-vmalloc).
599
600 Any driver using videobuf should provide operations (callbacks) for
601 four handlers:
602
603 ops->buf_setup   - calculates the size of the video buffers and avoid they
604                    to waste more than some maximum limit of RAM;
605 ops->buf_prepare - fills the video buffer structs and calls
606                    videobuf_iolock() to alloc and prepare mmaped memory;
607 ops->buf_queue   - advices the driver that another buffer were
608                    requested (by read() or by QBUF);
609 ops->buf_release - frees any buffer that were allocated.
610
611 In order to use it, the driver need to have a code (generally called at
612 interrupt context) that will properly handle the buffer request lists,
613 announcing that a new buffer were filled.
614
615 The irq handling code should handle the videobuf task lists, in order
616 to advice videobuf that a new frame were filled, in order to honor to a
617 request. The code is generally like this one:
618         if (list_empty(&dma_q->active))
619                 return;
620
621         buf = list_entry(dma_q->active.next, struct vbuffer, vb.queue);
622
623         if (!waitqueue_active(&buf->vb.done))
624                 return;
625
626         /* Some logic to handle the buf may be needed here */
627
628         list_del(&buf->vb.queue);
629         do_gettimeofday(&buf->vb.ts);
630         wake_up(&buf->vb.done);
631
632 Those are the videobuffer functions used on drivers, implemented on
633 videobuf-core:
634
635 - Videobuf init functions
636   videobuf_queue_sg_init()
637       Initializes the videobuf infrastructure. This function should be
638       called before any other videobuf function on drivers that uses DMA
639       Scatter/Gather buffers.
640
641   videobuf_queue_dma_contig_init
642       Initializes the videobuf infrastructure. This function should be
643       called before any other videobuf function on drivers that need DMA
644       contiguous buffers.
645
646   videobuf_queue_vmalloc_init()
647       Initializes the videobuf infrastructure. This function should be
648       called before any other videobuf function on USB (and other drivers)
649       that need a vmalloced type of videobuf.
650
651 - videobuf_iolock()
652   Prepares the videobuf memory for the proper method (read, mmap, overlay).
653
654 - videobuf_queue_is_busy()
655   Checks if a videobuf is streaming.
656
657 - videobuf_queue_cancel()
658   Stops video handling.
659
660 - videobuf_mmap_free()
661   frees mmap buffers.
662
663 - videobuf_stop()
664   Stops video handling, ends mmap and frees mmap and other buffers.
665
666 - V4L2 api functions. Those functions correspond to VIDIOC_foo ioctls:
667    videobuf_reqbufs(), videobuf_querybuf(), videobuf_qbuf(),
668    videobuf_dqbuf(), videobuf_streamon(), videobuf_streamoff().
669
670 - V4L1 api function (corresponds to VIDIOCMBUF ioctl):
671    videobuf_cgmbuf()
672       This function is used to provide backward compatibility with V4L1
673       API.
674
675 - Some help functions for read()/poll() operations:
676    videobuf_read_stream()
677       For continuous stream read()
678    videobuf_read_one()
679       For snapshot read()
680    videobuf_poll_stream()
681       polling help function
682
683 The better way to understand it is to take a look at vivi driver. One
684 of the main reasons for vivi is to be a videobuf usage example. the
685 vivi_thread_tick() does the task that the IRQ callback would do on PCI
686 drivers (or the irq callback on USB).