]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/alpha/mm/numa.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[karo-tx-linux.git] / arch / alpha / mm / numa.c
1 /*
2  *  linux/arch/alpha/mm/numa.c
3  *
4  *  DISCONTIGMEM NUMA alpha support.
5  *
6  *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/bootmem.h>
13 #include <linux/swap.h>
14 #include <linux/initrd.h>
15 #include <linux/pfn.h>
16 #include <linux/module.h>
17
18 #include <asm/hwrpb.h>
19 #include <asm/pgalloc.h>
20
21 pg_data_t node_data[MAX_NUMNODES];
22 EXPORT_SYMBOL(node_data);
23
24 #undef DEBUG_DISCONTIG
25 #ifdef DEBUG_DISCONTIG
26 #define DBGDCONT(args...) printk(args)
27 #else
28 #define DBGDCONT(args...)
29 #endif
30
31 #define for_each_mem_cluster(memdesc, _cluster, i)              \
32         for ((_cluster) = (memdesc)->cluster, (i) = 0;          \
33              (i) < (memdesc)->numclusters; (i)++, (_cluster)++)
34
35 static void __init show_mem_layout(void)
36 {
37         struct memclust_struct * cluster;
38         struct memdesc_struct * memdesc;
39         int i;
40
41         /* Find free clusters, and init and free the bootmem accordingly.  */
42         memdesc = (struct memdesc_struct *)
43           (hwrpb->mddt_offset + (unsigned long) hwrpb);
44
45         printk("Raw memory layout:\n");
46         for_each_mem_cluster(memdesc, cluster, i) {
47                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
48                        i, cluster->usage, cluster->start_pfn,
49                        cluster->start_pfn + cluster->numpages);
50         }
51 }
52
53 static void __init
54 setup_memory_node(int nid, void *kernel_end)
55 {
56         extern unsigned long mem_size_limit;
57         struct memclust_struct * cluster;
58         struct memdesc_struct * memdesc;
59         unsigned long start_kernel_pfn, end_kernel_pfn;
60         unsigned long bootmap_size, bootmap_pages, bootmap_start;
61         unsigned long start, end;
62         unsigned long node_pfn_start, node_pfn_end;
63         unsigned long node_min_pfn, node_max_pfn;
64         int i;
65         unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
66         int show_init = 0;
67
68         /* Find the bounds of current node */
69         node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
70         node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
71         
72         /* Find free clusters, and init and free the bootmem accordingly.  */
73         memdesc = (struct memdesc_struct *)
74           (hwrpb->mddt_offset + (unsigned long) hwrpb);
75
76         /* find the bounds of this node (node_min_pfn/node_max_pfn) */
77         node_min_pfn = ~0UL;
78         node_max_pfn = 0UL;
79         for_each_mem_cluster(memdesc, cluster, i) {
80                 /* Bit 0 is console/PALcode reserved.  Bit 1 is
81                    non-volatile memory -- we might want to mark
82                    this for later.  */
83                 if (cluster->usage & 3)
84                         continue;
85
86                 start = cluster->start_pfn;
87                 end = start + cluster->numpages;
88
89                 if (start >= node_pfn_end || end <= node_pfn_start)
90                         continue;
91
92                 if (!show_init) {
93                         show_init = 1;
94                         printk("Initializing bootmem allocator on Node ID %d\n", nid);
95                 }
96                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
97                        i, cluster->usage, cluster->start_pfn,
98                        cluster->start_pfn + cluster->numpages);
99
100                 if (start < node_pfn_start)
101                         start = node_pfn_start;
102                 if (end > node_pfn_end)
103                         end = node_pfn_end;
104
105                 if (start < node_min_pfn)
106                         node_min_pfn = start;
107                 if (end > node_max_pfn)
108                         node_max_pfn = end;
109         }
110
111         if (mem_size_limit && node_max_pfn > mem_size_limit) {
112                 static int msg_shown = 0;
113                 if (!msg_shown) {
114                         msg_shown = 1;
115                         printk("setup: forcing memory size to %ldK (from %ldK).\n",
116                                mem_size_limit << (PAGE_SHIFT - 10),
117                                node_max_pfn    << (PAGE_SHIFT - 10));
118                 }
119                 node_max_pfn = mem_size_limit;
120         }
121
122         if (node_min_pfn >= node_max_pfn)
123                 return;
124
125         /* Update global {min,max}_low_pfn from node information. */
126         if (node_min_pfn < min_low_pfn)
127                 min_low_pfn = node_min_pfn;
128         if (node_max_pfn > max_low_pfn)
129                 max_pfn = max_low_pfn = node_max_pfn;
130
131         num_physpages += node_max_pfn - node_min_pfn;
132
133 #if 0 /* we'll try this one again in a little while */
134         /* Cute trick to make sure our local node data is on local memory */
135         node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
136 #endif
137         /* Quasi-mark the pg_data_t as in-use */
138         node_min_pfn += node_datasz;
139         if (node_min_pfn >= node_max_pfn) {
140                 printk(" not enough mem to reserve NODE_DATA");
141                 return;
142         }
143         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
144
145         printk(" Detected node memory:   start %8lu, end %8lu\n",
146                node_min_pfn, node_max_pfn);
147
148         DBGDCONT(" DISCONTIG: node_data[%d]   is at 0x%p\n", nid, NODE_DATA(nid));
149         DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
150
151         /* Find the bounds of kernel memory.  */
152         start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
153         end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
154         bootmap_start = -1;
155
156         if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
157                 panic("kernel loaded out of ram");
158
159         /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
160            Note that we round this down, not up - node memory
161            has much larger alignment than 8Mb, so it's safe. */
162         node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
163
164         /* We need to know how many physically contiguous pages
165            we'll need for the bootmap.  */
166         bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
167
168         /* Now find a good region where to allocate the bootmap.  */
169         for_each_mem_cluster(memdesc, cluster, i) {
170                 if (cluster->usage & 3)
171                         continue;
172
173                 start = cluster->start_pfn;
174                 end = start + cluster->numpages;
175
176                 if (start >= node_max_pfn || end <= node_min_pfn)
177                         continue;
178
179                 if (end > node_max_pfn)
180                         end = node_max_pfn;
181                 if (start < node_min_pfn)
182                         start = node_min_pfn;
183
184                 if (start < start_kernel_pfn) {
185                         if (end > end_kernel_pfn
186                             && end - end_kernel_pfn >= bootmap_pages) {
187                                 bootmap_start = end_kernel_pfn;
188                                 break;
189                         } else if (end > start_kernel_pfn)
190                                 end = start_kernel_pfn;
191                 } else if (start < end_kernel_pfn)
192                         start = end_kernel_pfn;
193                 if (end - start >= bootmap_pages) {
194                         bootmap_start = start;
195                         break;
196                 }
197         }
198
199         if (bootmap_start == -1)
200                 panic("couldn't find a contiguous place for the bootmap");
201
202         /* Allocate the bootmap and mark the whole MM as reserved.  */
203         bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
204                                          node_min_pfn, node_max_pfn);
205         DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
206                  bootmap_start, bootmap_size, bootmap_pages);
207
208         /* Mark the free regions.  */
209         for_each_mem_cluster(memdesc, cluster, i) {
210                 if (cluster->usage & 3)
211                         continue;
212
213                 start = cluster->start_pfn;
214                 end = cluster->start_pfn + cluster->numpages;
215
216                 if (start >= node_max_pfn || end <= node_min_pfn)
217                         continue;
218
219                 if (end > node_max_pfn)
220                         end = node_max_pfn;
221                 if (start < node_min_pfn)
222                         start = node_min_pfn;
223
224                 if (start < start_kernel_pfn) {
225                         if (end > end_kernel_pfn) {
226                                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
227                                              (PFN_PHYS(start_kernel_pfn)
228                                               - PFN_PHYS(start)));
229                                 printk(" freeing pages %ld:%ld\n",
230                                        start, start_kernel_pfn);
231                                 start = end_kernel_pfn;
232                         } else if (end > start_kernel_pfn)
233                                 end = start_kernel_pfn;
234                 } else if (start < end_kernel_pfn)
235                         start = end_kernel_pfn;
236                 if (start >= end)
237                         continue;
238
239                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
240                 printk(" freeing pages %ld:%ld\n", start, end);
241         }
242
243         /* Reserve the bootmap memory.  */
244         reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start),
245                         bootmap_size, BOOTMEM_DEFAULT);
246         printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
247
248         node_set_online(nid);
249 }
250
251 void __init
252 setup_memory(void *kernel_end)
253 {
254         int nid;
255
256         show_mem_layout();
257
258         nodes_clear(node_online_map);
259
260         min_low_pfn = ~0UL;
261         max_low_pfn = 0UL;
262         for (nid = 0; nid < MAX_NUMNODES; nid++)
263                 setup_memory_node(nid, kernel_end);
264
265 #ifdef CONFIG_BLK_DEV_INITRD
266         initrd_start = INITRD_START;
267         if (initrd_start) {
268                 extern void *move_initrd(unsigned long);
269
270                 initrd_end = initrd_start+INITRD_SIZE;
271                 printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
272                        (void *) initrd_start, INITRD_SIZE);
273
274                 if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
275                         if (!move_initrd(PFN_PHYS(max_low_pfn)))
276                                 printk("initrd extends beyond end of memory "
277                                        "(0x%08lx > 0x%p)\ndisabling initrd\n",
278                                        initrd_end,
279                                        phys_to_virt(PFN_PHYS(max_low_pfn)));
280                 } else {
281                         nid = kvaddr_to_nid(initrd_start);
282                         reserve_bootmem_node(NODE_DATA(nid),
283                                              virt_to_phys((void *)initrd_start),
284                                              INITRD_SIZE, BOOTMEM_DEFAULT);
285                 }
286         }
287 #endif /* CONFIG_BLK_DEV_INITRD */
288 }
289
290 void __init paging_init(void)
291 {
292         unsigned int    nid;
293         unsigned long   zones_size[MAX_NR_ZONES] = {0, };
294         unsigned long   dma_local_pfn;
295
296         /*
297          * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
298          * in the NUMA model, for now we convert it to a pfn and
299          * we interpret this pfn as a local per-node information.
300          * This issue isn't very important since none of these machines
301          * have legacy ISA slots anyways.
302          */
303         dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
304
305         for_each_online_node(nid) {
306                 bootmem_data_t *bdata = &bootmem_node_data[nid];
307                 unsigned long start_pfn = bdata->node_min_pfn;
308                 unsigned long end_pfn = bdata->node_low_pfn;
309
310                 if (dma_local_pfn >= end_pfn - start_pfn)
311                         zones_size[ZONE_DMA] = end_pfn - start_pfn;
312                 else {
313                         zones_size[ZONE_DMA] = dma_local_pfn;
314                         zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
315                 }
316                 free_area_init_node(nid, zones_size, start_pfn, NULL);
317         }
318
319         /* Initialize the kernel's ZERO_PGE. */
320         memset((void *)ZERO_PGE, 0, PAGE_SIZE);
321 }
322
323 void __init mem_init(void)
324 {
325         unsigned long codesize, reservedpages, datasize, initsize, pfn;
326         extern int page_is_ram(unsigned long) __init;
327         extern char _text, _etext, _data, _edata;
328         extern char __init_begin, __init_end;
329         unsigned long nid, i;
330         high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
331
332         reservedpages = 0;
333         for_each_online_node(nid) {
334                 /*
335                  * This will free up the bootmem, ie, slot 0 memory
336                  */
337                 totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
338
339                 pfn = NODE_DATA(nid)->node_start_pfn;
340                 for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
341                         if (page_is_ram(pfn) &&
342                             PageReserved(nid_page_nr(nid, i)))
343                                 reservedpages++;
344         }
345
346         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
347         datasize =  (unsigned long) &_edata - (unsigned long) &_data;
348         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
349
350         printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
351                "%luk data, %luk init)\n",
352                nr_free_pages() << (PAGE_SHIFT-10),
353                num_physpages << (PAGE_SHIFT-10),
354                codesize >> 10,
355                reservedpages << (PAGE_SHIFT-10),
356                datasize >> 10,
357                initsize >> 10);
358 #if 0
359         mem_stress();
360 #endif
361 }