]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/alpha/mm/numa.c
Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[karo-tx-linux.git] / arch / alpha / mm / numa.c
1 /*
2  *  linux/arch/alpha/mm/numa.c
3  *
4  *  DISCONTIGMEM NUMA alpha support.
5  *
6  *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/bootmem.h>
13 #include <linux/swap.h>
14 #include <linux/initrd.h>
15 #include <linux/pfn.h>
16 #include <linux/module.h>
17
18 #include <asm/hwrpb.h>
19 #include <asm/pgalloc.h>
20 #include <asm/sections.h>
21
22 pg_data_t node_data[MAX_NUMNODES];
23 EXPORT_SYMBOL(node_data);
24
25 #undef DEBUG_DISCONTIG
26 #ifdef DEBUG_DISCONTIG
27 #define DBGDCONT(args...) printk(args)
28 #else
29 #define DBGDCONT(args...)
30 #endif
31
32 #define for_each_mem_cluster(memdesc, _cluster, i)              \
33         for ((_cluster) = (memdesc)->cluster, (i) = 0;          \
34              (i) < (memdesc)->numclusters; (i)++, (_cluster)++)
35
36 static void __init show_mem_layout(void)
37 {
38         struct memclust_struct * cluster;
39         struct memdesc_struct * memdesc;
40         int i;
41
42         /* Find free clusters, and init and free the bootmem accordingly.  */
43         memdesc = (struct memdesc_struct *)
44           (hwrpb->mddt_offset + (unsigned long) hwrpb);
45
46         printk("Raw memory layout:\n");
47         for_each_mem_cluster(memdesc, cluster, i) {
48                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
49                        i, cluster->usage, cluster->start_pfn,
50                        cluster->start_pfn + cluster->numpages);
51         }
52 }
53
54 static void __init
55 setup_memory_node(int nid, void *kernel_end)
56 {
57         extern unsigned long mem_size_limit;
58         struct memclust_struct * cluster;
59         struct memdesc_struct * memdesc;
60         unsigned long start_kernel_pfn, end_kernel_pfn;
61         unsigned long bootmap_size, bootmap_pages, bootmap_start;
62         unsigned long start, end;
63         unsigned long node_pfn_start, node_pfn_end;
64         unsigned long node_min_pfn, node_max_pfn;
65         int i;
66         unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
67         int show_init = 0;
68
69         /* Find the bounds of current node */
70         node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
71         node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
72         
73         /* Find free clusters, and init and free the bootmem accordingly.  */
74         memdesc = (struct memdesc_struct *)
75           (hwrpb->mddt_offset + (unsigned long) hwrpb);
76
77         /* find the bounds of this node (node_min_pfn/node_max_pfn) */
78         node_min_pfn = ~0UL;
79         node_max_pfn = 0UL;
80         for_each_mem_cluster(memdesc, cluster, i) {
81                 /* Bit 0 is console/PALcode reserved.  Bit 1 is
82                    non-volatile memory -- we might want to mark
83                    this for later.  */
84                 if (cluster->usage & 3)
85                         continue;
86
87                 start = cluster->start_pfn;
88                 end = start + cluster->numpages;
89
90                 if (start >= node_pfn_end || end <= node_pfn_start)
91                         continue;
92
93                 if (!show_init) {
94                         show_init = 1;
95                         printk("Initializing bootmem allocator on Node ID %d\n", nid);
96                 }
97                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
98                        i, cluster->usage, cluster->start_pfn,
99                        cluster->start_pfn + cluster->numpages);
100
101                 if (start < node_pfn_start)
102                         start = node_pfn_start;
103                 if (end > node_pfn_end)
104                         end = node_pfn_end;
105
106                 if (start < node_min_pfn)
107                         node_min_pfn = start;
108                 if (end > node_max_pfn)
109                         node_max_pfn = end;
110         }
111
112         if (mem_size_limit && node_max_pfn > mem_size_limit) {
113                 static int msg_shown = 0;
114                 if (!msg_shown) {
115                         msg_shown = 1;
116                         printk("setup: forcing memory size to %ldK (from %ldK).\n",
117                                mem_size_limit << (PAGE_SHIFT - 10),
118                                node_max_pfn    << (PAGE_SHIFT - 10));
119                 }
120                 node_max_pfn = mem_size_limit;
121         }
122
123         if (node_min_pfn >= node_max_pfn)
124                 return;
125
126         /* Update global {min,max}_low_pfn from node information. */
127         if (node_min_pfn < min_low_pfn)
128                 min_low_pfn = node_min_pfn;
129         if (node_max_pfn > max_low_pfn)
130                 max_pfn = max_low_pfn = node_max_pfn;
131
132 #if 0 /* we'll try this one again in a little while */
133         /* Cute trick to make sure our local node data is on local memory */
134         node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
135 #endif
136         /* Quasi-mark the pg_data_t as in-use */
137         node_min_pfn += node_datasz;
138         if (node_min_pfn >= node_max_pfn) {
139                 printk(" not enough mem to reserve NODE_DATA");
140                 return;
141         }
142         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
143
144         printk(" Detected node memory:   start %8lu, end %8lu\n",
145                node_min_pfn, node_max_pfn);
146
147         DBGDCONT(" DISCONTIG: node_data[%d]   is at 0x%p\n", nid, NODE_DATA(nid));
148         DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
149
150         /* Find the bounds of kernel memory.  */
151         start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
152         end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
153         bootmap_start = -1;
154
155         if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
156                 panic("kernel loaded out of ram");
157
158         /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
159            Note that we round this down, not up - node memory
160            has much larger alignment than 8Mb, so it's safe. */
161         node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
162
163         /* We need to know how many physically contiguous pages
164            we'll need for the bootmap.  */
165         bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
166
167         /* Now find a good region where to allocate the bootmap.  */
168         for_each_mem_cluster(memdesc, cluster, i) {
169                 if (cluster->usage & 3)
170                         continue;
171
172                 start = cluster->start_pfn;
173                 end = start + cluster->numpages;
174
175                 if (start >= node_max_pfn || end <= node_min_pfn)
176                         continue;
177
178                 if (end > node_max_pfn)
179                         end = node_max_pfn;
180                 if (start < node_min_pfn)
181                         start = node_min_pfn;
182
183                 if (start < start_kernel_pfn) {
184                         if (end > end_kernel_pfn
185                             && end - end_kernel_pfn >= bootmap_pages) {
186                                 bootmap_start = end_kernel_pfn;
187                                 break;
188                         } else if (end > start_kernel_pfn)
189                                 end = start_kernel_pfn;
190                 } else if (start < end_kernel_pfn)
191                         start = end_kernel_pfn;
192                 if (end - start >= bootmap_pages) {
193                         bootmap_start = start;
194                         break;
195                 }
196         }
197
198         if (bootmap_start == -1)
199                 panic("couldn't find a contiguous place for the bootmap");
200
201         /* Allocate the bootmap and mark the whole MM as reserved.  */
202         bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
203                                          node_min_pfn, node_max_pfn);
204         DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
205                  bootmap_start, bootmap_size, bootmap_pages);
206
207         /* Mark the free regions.  */
208         for_each_mem_cluster(memdesc, cluster, i) {
209                 if (cluster->usage & 3)
210                         continue;
211
212                 start = cluster->start_pfn;
213                 end = cluster->start_pfn + cluster->numpages;
214
215                 if (start >= node_max_pfn || end <= node_min_pfn)
216                         continue;
217
218                 if (end > node_max_pfn)
219                         end = node_max_pfn;
220                 if (start < node_min_pfn)
221                         start = node_min_pfn;
222
223                 if (start < start_kernel_pfn) {
224                         if (end > end_kernel_pfn) {
225                                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
226                                              (PFN_PHYS(start_kernel_pfn)
227                                               - PFN_PHYS(start)));
228                                 printk(" freeing pages %ld:%ld\n",
229                                        start, start_kernel_pfn);
230                                 start = end_kernel_pfn;
231                         } else if (end > start_kernel_pfn)
232                                 end = start_kernel_pfn;
233                 } else if (start < end_kernel_pfn)
234                         start = end_kernel_pfn;
235                 if (start >= end)
236                         continue;
237
238                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
239                 printk(" freeing pages %ld:%ld\n", start, end);
240         }
241
242         /* Reserve the bootmap memory.  */
243         reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start),
244                         bootmap_size, BOOTMEM_DEFAULT);
245         printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
246
247         node_set_online(nid);
248 }
249
250 void __init
251 setup_memory(void *kernel_end)
252 {
253         int nid;
254
255         show_mem_layout();
256
257         nodes_clear(node_online_map);
258
259         min_low_pfn = ~0UL;
260         max_low_pfn = 0UL;
261         for (nid = 0; nid < MAX_NUMNODES; nid++)
262                 setup_memory_node(nid, kernel_end);
263
264 #ifdef CONFIG_BLK_DEV_INITRD
265         initrd_start = INITRD_START;
266         if (initrd_start) {
267                 extern void *move_initrd(unsigned long);
268
269                 initrd_end = initrd_start+INITRD_SIZE;
270                 printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
271                        (void *) initrd_start, INITRD_SIZE);
272
273                 if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
274                         if (!move_initrd(PFN_PHYS(max_low_pfn)))
275                                 printk("initrd extends beyond end of memory "
276                                        "(0x%08lx > 0x%p)\ndisabling initrd\n",
277                                        initrd_end,
278                                        phys_to_virt(PFN_PHYS(max_low_pfn)));
279                 } else {
280                         nid = kvaddr_to_nid(initrd_start);
281                         reserve_bootmem_node(NODE_DATA(nid),
282                                              virt_to_phys((void *)initrd_start),
283                                              INITRD_SIZE, BOOTMEM_DEFAULT);
284                 }
285         }
286 #endif /* CONFIG_BLK_DEV_INITRD */
287 }
288
289 void __init paging_init(void)
290 {
291         unsigned int    nid;
292         unsigned long   zones_size[MAX_NR_ZONES] = {0, };
293         unsigned long   dma_local_pfn;
294
295         /*
296          * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
297          * in the NUMA model, for now we convert it to a pfn and
298          * we interpret this pfn as a local per-node information.
299          * This issue isn't very important since none of these machines
300          * have legacy ISA slots anyways.
301          */
302         dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
303
304         for_each_online_node(nid) {
305                 bootmem_data_t *bdata = &bootmem_node_data[nid];
306                 unsigned long start_pfn = bdata->node_min_pfn;
307                 unsigned long end_pfn = bdata->node_low_pfn;
308
309                 if (dma_local_pfn >= end_pfn - start_pfn)
310                         zones_size[ZONE_DMA] = end_pfn - start_pfn;
311                 else {
312                         zones_size[ZONE_DMA] = dma_local_pfn;
313                         zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
314                 }
315                 node_set_state(nid, N_NORMAL_MEMORY);
316                 free_area_init_node(nid, zones_size, start_pfn, NULL);
317         }
318
319         /* Initialize the kernel's ZERO_PGE. */
320         memset((void *)ZERO_PGE, 0, PAGE_SIZE);
321 }