]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kernel/ptrace.c
rt2x00: do not generate seqno in h/w if QOS is disabled
[karo-tx-linux.git] / arch / arm / kernel / ptrace.c
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27
28 #include <asm/pgtable.h>
29 #include <asm/system.h>
30 #include <asm/traps.h>
31
32 #define REG_PC  15
33 #define REG_PSR 16
34 /*
35  * does not yet catch signals sent when the child dies.
36  * in exit.c or in signal.c.
37  */
38
39 #if 0
40 /*
41  * Breakpoint SWI instruction: SWI &9F0001
42  */
43 #define BREAKINST_ARM   0xef9f0001
44 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
45 #else
46 /*
47  * New breakpoints - use an undefined instruction.  The ARM architecture
48  * reference manual guarantees that the following instruction space
49  * will produce an undefined instruction exception on all CPUs:
50  *
51  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52  *  Thumb: 1101 1110 xxxx xxxx
53  */
54 #define BREAKINST_ARM   0xe7f001f0
55 #define BREAKINST_THUMB 0xde01
56 #endif
57
58 struct pt_regs_offset {
59         const char *name;
60         int offset;
61 };
62
63 #define REG_OFFSET_NAME(r) \
64         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67 static const struct pt_regs_offset regoffset_table[] = {
68         REG_OFFSET_NAME(r0),
69         REG_OFFSET_NAME(r1),
70         REG_OFFSET_NAME(r2),
71         REG_OFFSET_NAME(r3),
72         REG_OFFSET_NAME(r4),
73         REG_OFFSET_NAME(r5),
74         REG_OFFSET_NAME(r6),
75         REG_OFFSET_NAME(r7),
76         REG_OFFSET_NAME(r8),
77         REG_OFFSET_NAME(r9),
78         REG_OFFSET_NAME(r10),
79         REG_OFFSET_NAME(fp),
80         REG_OFFSET_NAME(ip),
81         REG_OFFSET_NAME(sp),
82         REG_OFFSET_NAME(lr),
83         REG_OFFSET_NAME(pc),
84         REG_OFFSET_NAME(cpsr),
85         REG_OFFSET_NAME(ORIG_r0),
86         REG_OFFSET_END,
87 };
88
89 /**
90  * regs_query_register_offset() - query register offset from its name
91  * @name:       the name of a register
92  *
93  * regs_query_register_offset() returns the offset of a register in struct
94  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
95  */
96 int regs_query_register_offset(const char *name)
97 {
98         const struct pt_regs_offset *roff;
99         for (roff = regoffset_table; roff->name != NULL; roff++)
100                 if (!strcmp(roff->name, name))
101                         return roff->offset;
102         return -EINVAL;
103 }
104
105 /**
106  * regs_query_register_name() - query register name from its offset
107  * @offset:     the offset of a register in struct pt_regs.
108  *
109  * regs_query_register_name() returns the name of a register from its
110  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111  */
112 const char *regs_query_register_name(unsigned int offset)
113 {
114         const struct pt_regs_offset *roff;
115         for (roff = regoffset_table; roff->name != NULL; roff++)
116                 if (roff->offset == offset)
117                         return roff->name;
118         return NULL;
119 }
120
121 /**
122  * regs_within_kernel_stack() - check the address in the stack
123  * @regs:      pt_regs which contains kernel stack pointer.
124  * @addr:      address which is checked.
125  *
126  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127  * If @addr is within the kernel stack, it returns true. If not, returns false.
128  */
129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130 {
131         return ((addr & ~(THREAD_SIZE - 1))  ==
132                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133 }
134
135 /**
136  * regs_get_kernel_stack_nth() - get Nth entry of the stack
137  * @regs:       pt_regs which contains kernel stack pointer.
138  * @n:          stack entry number.
139  *
140  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142  * this returns 0.
143  */
144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145 {
146         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147         addr += n;
148         if (regs_within_kernel_stack(regs, (unsigned long)addr))
149                 return *addr;
150         else
151                 return 0;
152 }
153
154 /*
155  * this routine will get a word off of the processes privileged stack.
156  * the offset is how far from the base addr as stored in the THREAD.
157  * this routine assumes that all the privileged stacks are in our
158  * data space.
159  */
160 static inline long get_user_reg(struct task_struct *task, int offset)
161 {
162         return task_pt_regs(task)->uregs[offset];
163 }
164
165 /*
166  * this routine will put a word on the processes privileged stack.
167  * the offset is how far from the base addr as stored in the THREAD.
168  * this routine assumes that all the privileged stacks are in our
169  * data space.
170  */
171 static inline int
172 put_user_reg(struct task_struct *task, int offset, long data)
173 {
174         struct pt_regs newregs, *regs = task_pt_regs(task);
175         int ret = -EINVAL;
176
177         newregs = *regs;
178         newregs.uregs[offset] = data;
179
180         if (valid_user_regs(&newregs)) {
181                 regs->uregs[offset] = data;
182                 ret = 0;
183         }
184
185         return ret;
186 }
187
188 /*
189  * Called by kernel/ptrace.c when detaching..
190  */
191 void ptrace_disable(struct task_struct *child)
192 {
193         /* Nothing to do. */
194 }
195
196 /*
197  * Handle hitting a breakpoint.
198  */
199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200 {
201         siginfo_t info;
202
203         info.si_signo = SIGTRAP;
204         info.si_errno = 0;
205         info.si_code  = TRAP_BRKPT;
206         info.si_addr  = (void __user *)instruction_pointer(regs);
207
208         force_sig_info(SIGTRAP, &info, tsk);
209 }
210
211 static int break_trap(struct pt_regs *regs, unsigned int instr)
212 {
213         ptrace_break(current, regs);
214         return 0;
215 }
216
217 static struct undef_hook arm_break_hook = {
218         .instr_mask     = 0x0fffffff,
219         .instr_val      = 0x07f001f0,
220         .cpsr_mask      = PSR_T_BIT,
221         .cpsr_val       = 0,
222         .fn             = break_trap,
223 };
224
225 static struct undef_hook thumb_break_hook = {
226         .instr_mask     = 0xffff,
227         .instr_val      = 0xde01,
228         .cpsr_mask      = PSR_T_BIT,
229         .cpsr_val       = PSR_T_BIT,
230         .fn             = break_trap,
231 };
232
233 static struct undef_hook thumb2_break_hook = {
234         .instr_mask     = 0xffffffff,
235         .instr_val      = 0xf7f0a000,
236         .cpsr_mask      = PSR_T_BIT,
237         .cpsr_val       = PSR_T_BIT,
238         .fn             = break_trap,
239 };
240
241 static int __init ptrace_break_init(void)
242 {
243         register_undef_hook(&arm_break_hook);
244         register_undef_hook(&thumb_break_hook);
245         register_undef_hook(&thumb2_break_hook);
246         return 0;
247 }
248
249 core_initcall(ptrace_break_init);
250
251 /*
252  * Read the word at offset "off" into the "struct user".  We
253  * actually access the pt_regs stored on the kernel stack.
254  */
255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256                             unsigned long __user *ret)
257 {
258         unsigned long tmp;
259
260         if (off & 3 || off >= sizeof(struct user))
261                 return -EIO;
262
263         tmp = 0;
264         if (off == PT_TEXT_ADDR)
265                 tmp = tsk->mm->start_code;
266         else if (off == PT_DATA_ADDR)
267                 tmp = tsk->mm->start_data;
268         else if (off == PT_TEXT_END_ADDR)
269                 tmp = tsk->mm->end_code;
270         else if (off < sizeof(struct pt_regs))
271                 tmp = get_user_reg(tsk, off >> 2);
272
273         return put_user(tmp, ret);
274 }
275
276 /*
277  * Write the word at offset "off" into "struct user".  We
278  * actually access the pt_regs stored on the kernel stack.
279  */
280 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
281                              unsigned long val)
282 {
283         if (off & 3 || off >= sizeof(struct user))
284                 return -EIO;
285
286         if (off >= sizeof(struct pt_regs))
287                 return 0;
288
289         return put_user_reg(tsk, off >> 2, val);
290 }
291
292 #ifdef CONFIG_IWMMXT
293
294 /*
295  * Get the child iWMMXt state.
296  */
297 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
298 {
299         struct thread_info *thread = task_thread_info(tsk);
300
301         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
302                 return -ENODATA;
303         iwmmxt_task_disable(thread);  /* force it to ram */
304         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
305                 ? -EFAULT : 0;
306 }
307
308 /*
309  * Set the child iWMMXt state.
310  */
311 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
312 {
313         struct thread_info *thread = task_thread_info(tsk);
314
315         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
316                 return -EACCES;
317         iwmmxt_task_release(thread);  /* force a reload */
318         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
319                 ? -EFAULT : 0;
320 }
321
322 #endif
323
324 #ifdef CONFIG_CRUNCH
325 /*
326  * Get the child Crunch state.
327  */
328 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
329 {
330         struct thread_info *thread = task_thread_info(tsk);
331
332         crunch_task_disable(thread);  /* force it to ram */
333         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
334                 ? -EFAULT : 0;
335 }
336
337 /*
338  * Set the child Crunch state.
339  */
340 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
341 {
342         struct thread_info *thread = task_thread_info(tsk);
343
344         crunch_task_release(thread);  /* force a reload */
345         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
346                 ? -EFAULT : 0;
347 }
348 #endif
349
350 #ifdef CONFIG_HAVE_HW_BREAKPOINT
351 /*
352  * Convert a virtual register number into an index for a thread_info
353  * breakpoint array. Breakpoints are identified using positive numbers
354  * whilst watchpoints are negative. The registers are laid out as pairs
355  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
356  * Register 0 is reserved for describing resource information.
357  */
358 static int ptrace_hbp_num_to_idx(long num)
359 {
360         if (num < 0)
361                 num = (ARM_MAX_BRP << 1) - num;
362         return (num - 1) >> 1;
363 }
364
365 /*
366  * Returns the virtual register number for the address of the
367  * breakpoint at index idx.
368  */
369 static long ptrace_hbp_idx_to_num(int idx)
370 {
371         long mid = ARM_MAX_BRP << 1;
372         long num = (idx << 1) + 1;
373         return num > mid ? mid - num : num;
374 }
375
376 /*
377  * Handle hitting a HW-breakpoint.
378  */
379 static void ptrace_hbptriggered(struct perf_event *bp,
380                                      struct perf_sample_data *data,
381                                      struct pt_regs *regs)
382 {
383         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
384         long num;
385         int i;
386         siginfo_t info;
387
388         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
389                 if (current->thread.debug.hbp[i] == bp)
390                         break;
391
392         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
393
394         info.si_signo   = SIGTRAP;
395         info.si_errno   = (int)num;
396         info.si_code    = TRAP_HWBKPT;
397         info.si_addr    = (void __user *)(bkpt->trigger);
398
399         force_sig_info(SIGTRAP, &info, current);
400 }
401
402 /*
403  * Set ptrace breakpoint pointers to zero for this task.
404  * This is required in order to prevent child processes from unregistering
405  * breakpoints held by their parent.
406  */
407 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
408 {
409         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
410 }
411
412 /*
413  * Unregister breakpoints from this task and reset the pointers in
414  * the thread_struct.
415  */
416 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
417 {
418         int i;
419         struct thread_struct *t = &tsk->thread;
420
421         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
422                 if (t->debug.hbp[i]) {
423                         unregister_hw_breakpoint(t->debug.hbp[i]);
424                         t->debug.hbp[i] = NULL;
425                 }
426         }
427 }
428
429 static u32 ptrace_get_hbp_resource_info(void)
430 {
431         u8 num_brps, num_wrps, debug_arch, wp_len;
432         u32 reg = 0;
433
434         num_brps        = hw_breakpoint_slots(TYPE_INST);
435         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
436         debug_arch      = arch_get_debug_arch();
437         wp_len          = arch_get_max_wp_len();
438
439         reg             |= debug_arch;
440         reg             <<= 8;
441         reg             |= wp_len;
442         reg             <<= 8;
443         reg             |= num_wrps;
444         reg             <<= 8;
445         reg             |= num_brps;
446
447         return reg;
448 }
449
450 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
451 {
452         struct perf_event_attr attr;
453
454         ptrace_breakpoint_init(&attr);
455
456         /* Initialise fields to sane defaults. */
457         attr.bp_addr    = 0;
458         attr.bp_len     = HW_BREAKPOINT_LEN_4;
459         attr.bp_type    = type;
460         attr.disabled   = 1;
461
462         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
463                                            tsk);
464 }
465
466 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
467                              unsigned long  __user *data)
468 {
469         u32 reg;
470         int idx, ret = 0;
471         struct perf_event *bp;
472         struct arch_hw_breakpoint_ctrl arch_ctrl;
473
474         if (num == 0) {
475                 reg = ptrace_get_hbp_resource_info();
476         } else {
477                 idx = ptrace_hbp_num_to_idx(num);
478                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
479                         ret = -EINVAL;
480                         goto out;
481                 }
482
483                 bp = tsk->thread.debug.hbp[idx];
484                 if (!bp) {
485                         reg = 0;
486                         goto put;
487                 }
488
489                 arch_ctrl = counter_arch_bp(bp)->ctrl;
490
491                 /*
492                  * Fix up the len because we may have adjusted it
493                  * to compensate for an unaligned address.
494                  */
495                 while (!(arch_ctrl.len & 0x1))
496                         arch_ctrl.len >>= 1;
497
498                 if (num & 0x1)
499                         reg = bp->attr.bp_addr;
500                 else
501                         reg = encode_ctrl_reg(arch_ctrl);
502         }
503
504 put:
505         if (put_user(reg, data))
506                 ret = -EFAULT;
507
508 out:
509         return ret;
510 }
511
512 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
513                              unsigned long __user *data)
514 {
515         int idx, gen_len, gen_type, implied_type, ret = 0;
516         u32 user_val;
517         struct perf_event *bp;
518         struct arch_hw_breakpoint_ctrl ctrl;
519         struct perf_event_attr attr;
520
521         if (num == 0)
522                 goto out;
523         else if (num < 0)
524                 implied_type = HW_BREAKPOINT_RW;
525         else
526                 implied_type = HW_BREAKPOINT_X;
527
528         idx = ptrace_hbp_num_to_idx(num);
529         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
530                 ret = -EINVAL;
531                 goto out;
532         }
533
534         if (get_user(user_val, data)) {
535                 ret = -EFAULT;
536                 goto out;
537         }
538
539         bp = tsk->thread.debug.hbp[idx];
540         if (!bp) {
541                 bp = ptrace_hbp_create(tsk, implied_type);
542                 if (IS_ERR(bp)) {
543                         ret = PTR_ERR(bp);
544                         goto out;
545                 }
546                 tsk->thread.debug.hbp[idx] = bp;
547         }
548
549         attr = bp->attr;
550
551         if (num & 0x1) {
552                 /* Address */
553                 attr.bp_addr    = user_val;
554         } else {
555                 /* Control */
556                 decode_ctrl_reg(user_val, &ctrl);
557                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
558                 if (ret)
559                         goto out;
560
561                 if ((gen_type & implied_type) != gen_type) {
562                         ret = -EINVAL;
563                         goto out;
564                 }
565
566                 attr.bp_len     = gen_len;
567                 attr.bp_type    = gen_type;
568                 attr.disabled   = !ctrl.enabled;
569         }
570
571         ret = modify_user_hw_breakpoint(bp, &attr);
572 out:
573         return ret;
574 }
575 #endif
576
577 /* regset get/set implementations */
578
579 static int gpr_get(struct task_struct *target,
580                    const struct user_regset *regset,
581                    unsigned int pos, unsigned int count,
582                    void *kbuf, void __user *ubuf)
583 {
584         struct pt_regs *regs = task_pt_regs(target);
585
586         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
587                                    regs,
588                                    0, sizeof(*regs));
589 }
590
591 static int gpr_set(struct task_struct *target,
592                    const struct user_regset *regset,
593                    unsigned int pos, unsigned int count,
594                    const void *kbuf, const void __user *ubuf)
595 {
596         int ret;
597         struct pt_regs newregs;
598
599         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
600                                  &newregs,
601                                  0, sizeof(newregs));
602         if (ret)
603                 return ret;
604
605         if (!valid_user_regs(&newregs))
606                 return -EINVAL;
607
608         *task_pt_regs(target) = newregs;
609         return 0;
610 }
611
612 static int fpa_get(struct task_struct *target,
613                    const struct user_regset *regset,
614                    unsigned int pos, unsigned int count,
615                    void *kbuf, void __user *ubuf)
616 {
617         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
618                                    &task_thread_info(target)->fpstate,
619                                    0, sizeof(struct user_fp));
620 }
621
622 static int fpa_set(struct task_struct *target,
623                    const struct user_regset *regset,
624                    unsigned int pos, unsigned int count,
625                    const void *kbuf, const void __user *ubuf)
626 {
627         struct thread_info *thread = task_thread_info(target);
628
629         thread->used_cp[1] = thread->used_cp[2] = 1;
630
631         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
632                 &thread->fpstate,
633                 0, sizeof(struct user_fp));
634 }
635
636 #ifdef CONFIG_VFP
637 /*
638  * VFP register get/set implementations.
639  *
640  * With respect to the kernel, struct user_fp is divided into three chunks:
641  * 16 or 32 real VFP registers (d0-d15 or d0-31)
642  *      These are transferred to/from the real registers in the task's
643  *      vfp_hard_struct.  The number of registers depends on the kernel
644  *      configuration.
645  *
646  * 16 or 0 fake VFP registers (d16-d31 or empty)
647  *      i.e., the user_vfp structure has space for 32 registers even if
648  *      the kernel doesn't have them all.
649  *
650  *      vfp_get() reads this chunk as zero where applicable
651  *      vfp_set() ignores this chunk
652  *
653  * 1 word for the FPSCR
654  *
655  * The bounds-checking logic built into user_regset_copyout and friends
656  * means that we can make a simple sequence of calls to map the relevant data
657  * to/from the specified slice of the user regset structure.
658  */
659 static int vfp_get(struct task_struct *target,
660                    const struct user_regset *regset,
661                    unsigned int pos, unsigned int count,
662                    void *kbuf, void __user *ubuf)
663 {
664         int ret;
665         struct thread_info *thread = task_thread_info(target);
666         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
667         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669
670         vfp_sync_hwstate(thread);
671
672         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
673                                   &vfp->fpregs,
674                                   user_fpregs_offset,
675                                   user_fpregs_offset + sizeof(vfp->fpregs));
676         if (ret)
677                 return ret;
678
679         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
680                                        user_fpregs_offset + sizeof(vfp->fpregs),
681                                        user_fpscr_offset);
682         if (ret)
683                 return ret;
684
685         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
686                                    &vfp->fpscr,
687                                    user_fpscr_offset,
688                                    user_fpscr_offset + sizeof(vfp->fpscr));
689 }
690
691 /*
692  * For vfp_set() a read-modify-write is done on the VFP registers,
693  * in order to avoid writing back a half-modified set of registers on
694  * failure.
695  */
696 static int vfp_set(struct task_struct *target,
697                           const struct user_regset *regset,
698                           unsigned int pos, unsigned int count,
699                           const void *kbuf, const void __user *ubuf)
700 {
701         int ret;
702         struct thread_info *thread = task_thread_info(target);
703         struct vfp_hard_struct new_vfp;
704         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
705         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
706
707         vfp_sync_hwstate(thread);
708         new_vfp = thread->vfpstate.hard;
709
710         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
711                                   &new_vfp.fpregs,
712                                   user_fpregs_offset,
713                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
714         if (ret)
715                 return ret;
716
717         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
718                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
719                                 user_fpscr_offset);
720         if (ret)
721                 return ret;
722
723         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
724                                  &new_vfp.fpscr,
725                                  user_fpscr_offset,
726                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
727         if (ret)
728                 return ret;
729
730         vfp_flush_hwstate(thread);
731         thread->vfpstate.hard = new_vfp;
732
733         return 0;
734 }
735 #endif /* CONFIG_VFP */
736
737 enum arm_regset {
738         REGSET_GPR,
739         REGSET_FPR,
740 #ifdef CONFIG_VFP
741         REGSET_VFP,
742 #endif
743 };
744
745 static const struct user_regset arm_regsets[] = {
746         [REGSET_GPR] = {
747                 .core_note_type = NT_PRSTATUS,
748                 .n = ELF_NGREG,
749                 .size = sizeof(u32),
750                 .align = sizeof(u32),
751                 .get = gpr_get,
752                 .set = gpr_set
753         },
754         [REGSET_FPR] = {
755                 /*
756                  * For the FPA regs in fpstate, the real fields are a mixture
757                  * of sizes, so pretend that the registers are word-sized:
758                  */
759                 .core_note_type = NT_PRFPREG,
760                 .n = sizeof(struct user_fp) / sizeof(u32),
761                 .size = sizeof(u32),
762                 .align = sizeof(u32),
763                 .get = fpa_get,
764                 .set = fpa_set
765         },
766 #ifdef CONFIG_VFP
767         [REGSET_VFP] = {
768                 /*
769                  * Pretend that the VFP regs are word-sized, since the FPSCR is
770                  * a single word dangling at the end of struct user_vfp:
771                  */
772                 .core_note_type = NT_ARM_VFP,
773                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
774                 .size = sizeof(u32),
775                 .align = sizeof(u32),
776                 .get = vfp_get,
777                 .set = vfp_set
778         },
779 #endif /* CONFIG_VFP */
780 };
781
782 static const struct user_regset_view user_arm_view = {
783         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
784         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
785 };
786
787 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
788 {
789         return &user_arm_view;
790 }
791
792 long arch_ptrace(struct task_struct *child, long request,
793                  unsigned long addr, unsigned long data)
794 {
795         int ret;
796         unsigned long __user *datap = (unsigned long __user *) data;
797
798         switch (request) {
799                 case PTRACE_PEEKUSR:
800                         ret = ptrace_read_user(child, addr, datap);
801                         break;
802
803                 case PTRACE_POKEUSR:
804                         ret = ptrace_write_user(child, addr, data);
805                         break;
806
807                 case PTRACE_GETREGS:
808                         ret = copy_regset_to_user(child,
809                                                   &user_arm_view, REGSET_GPR,
810                                                   0, sizeof(struct pt_regs),
811                                                   datap);
812                         break;
813
814                 case PTRACE_SETREGS:
815                         ret = copy_regset_from_user(child,
816                                                     &user_arm_view, REGSET_GPR,
817                                                     0, sizeof(struct pt_regs),
818                                                     datap);
819                         break;
820
821                 case PTRACE_GETFPREGS:
822                         ret = copy_regset_to_user(child,
823                                                   &user_arm_view, REGSET_FPR,
824                                                   0, sizeof(union fp_state),
825                                                   datap);
826                         break;
827
828                 case PTRACE_SETFPREGS:
829                         ret = copy_regset_from_user(child,
830                                                     &user_arm_view, REGSET_FPR,
831                                                     0, sizeof(union fp_state),
832                                                     datap);
833                         break;
834
835 #ifdef CONFIG_IWMMXT
836                 case PTRACE_GETWMMXREGS:
837                         ret = ptrace_getwmmxregs(child, datap);
838                         break;
839
840                 case PTRACE_SETWMMXREGS:
841                         ret = ptrace_setwmmxregs(child, datap);
842                         break;
843 #endif
844
845                 case PTRACE_GET_THREAD_AREA:
846                         ret = put_user(task_thread_info(child)->tp_value,
847                                        datap);
848                         break;
849
850                 case PTRACE_SET_SYSCALL:
851                         task_thread_info(child)->syscall = data;
852                         ret = 0;
853                         break;
854
855 #ifdef CONFIG_CRUNCH
856                 case PTRACE_GETCRUNCHREGS:
857                         ret = ptrace_getcrunchregs(child, datap);
858                         break;
859
860                 case PTRACE_SETCRUNCHREGS:
861                         ret = ptrace_setcrunchregs(child, datap);
862                         break;
863 #endif
864
865 #ifdef CONFIG_VFP
866                 case PTRACE_GETVFPREGS:
867                         ret = copy_regset_to_user(child,
868                                                   &user_arm_view, REGSET_VFP,
869                                                   0, ARM_VFPREGS_SIZE,
870                                                   datap);
871                         break;
872
873                 case PTRACE_SETVFPREGS:
874                         ret = copy_regset_from_user(child,
875                                                     &user_arm_view, REGSET_VFP,
876                                                     0, ARM_VFPREGS_SIZE,
877                                                     datap);
878                         break;
879 #endif
880
881 #ifdef CONFIG_HAVE_HW_BREAKPOINT
882                 case PTRACE_GETHBPREGS:
883                         if (ptrace_get_breakpoints(child) < 0)
884                                 return -ESRCH;
885
886                         ret = ptrace_gethbpregs(child, addr,
887                                                 (unsigned long __user *)data);
888                         ptrace_put_breakpoints(child);
889                         break;
890                 case PTRACE_SETHBPREGS:
891                         if (ptrace_get_breakpoints(child) < 0)
892                                 return -ESRCH;
893
894                         ret = ptrace_sethbpregs(child, addr,
895                                                 (unsigned long __user *)data);
896                         ptrace_put_breakpoints(child);
897                         break;
898 #endif
899
900                 default:
901                         ret = ptrace_request(child, request, addr, data);
902                         break;
903         }
904
905         return ret;
906 }
907
908 #ifdef __ARMEB__
909 #define AUDIT_ARCH_NR AUDIT_ARCH_ARMEB
910 #else
911 #define AUDIT_ARCH_NR AUDIT_ARCH_ARM
912 #endif
913
914 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
915 {
916         unsigned long ip;
917
918         /*
919          * Save IP.  IP is used to denote syscall entry/exit:
920          *  IP = 0 -> entry, = 1 -> exit
921          */
922         ip = regs->ARM_ip;
923         regs->ARM_ip = why;
924
925         if (!ip)
926                 audit_syscall_exit(regs);
927         else
928                 audit_syscall_entry(AUDIT_ARCH_NR, scno, regs->ARM_r0,
929                                     regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
930
931         if (!test_thread_flag(TIF_SYSCALL_TRACE))
932                 return scno;
933         if (!(current->ptrace & PT_PTRACED))
934                 return scno;
935
936         current_thread_info()->syscall = scno;
937
938         /* the 0x80 provides a way for the tracing parent to distinguish
939            between a syscall stop and SIGTRAP delivery */
940         ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
941                                  ? 0x80 : 0));
942         /*
943          * this isn't the same as continuing with a signal, but it will do
944          * for normal use.  strace only continues with a signal if the
945          * stopping signal is not SIGTRAP.  -brl
946          */
947         if (current->exit_code) {
948                 send_sig(current->exit_code, current, 1);
949                 current->exit_code = 0;
950         }
951         regs->ARM_ip = ip;
952
953         return current_thread_info()->syscall;
954 }