]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kernel/ptrace.c
Merge branch 'for-linus' of git://github.com/dtor/input
[karo-tx-linux.git] / arch / arm / kernel / ptrace.c
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 #include <linux/perf_event.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/regset.h>
25
26 #include <asm/pgtable.h>
27 #include <asm/system.h>
28 #include <asm/traps.h>
29
30 #define REG_PC  15
31 #define REG_PSR 16
32 /*
33  * does not yet catch signals sent when the child dies.
34  * in exit.c or in signal.c.
35  */
36
37 #if 0
38 /*
39  * Breakpoint SWI instruction: SWI &9F0001
40  */
41 #define BREAKINST_ARM   0xef9f0001
42 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
43 #else
44 /*
45  * New breakpoints - use an undefined instruction.  The ARM architecture
46  * reference manual guarantees that the following instruction space
47  * will produce an undefined instruction exception on all CPUs:
48  *
49  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
50  *  Thumb: 1101 1110 xxxx xxxx
51  */
52 #define BREAKINST_ARM   0xe7f001f0
53 #define BREAKINST_THUMB 0xde01
54 #endif
55
56 struct pt_regs_offset {
57         const char *name;
58         int offset;
59 };
60
61 #define REG_OFFSET_NAME(r) \
62         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
63 #define REG_OFFSET_END {.name = NULL, .offset = 0}
64
65 static const struct pt_regs_offset regoffset_table[] = {
66         REG_OFFSET_NAME(r0),
67         REG_OFFSET_NAME(r1),
68         REG_OFFSET_NAME(r2),
69         REG_OFFSET_NAME(r3),
70         REG_OFFSET_NAME(r4),
71         REG_OFFSET_NAME(r5),
72         REG_OFFSET_NAME(r6),
73         REG_OFFSET_NAME(r7),
74         REG_OFFSET_NAME(r8),
75         REG_OFFSET_NAME(r9),
76         REG_OFFSET_NAME(r10),
77         REG_OFFSET_NAME(fp),
78         REG_OFFSET_NAME(ip),
79         REG_OFFSET_NAME(sp),
80         REG_OFFSET_NAME(lr),
81         REG_OFFSET_NAME(pc),
82         REG_OFFSET_NAME(cpsr),
83         REG_OFFSET_NAME(ORIG_r0),
84         REG_OFFSET_END,
85 };
86
87 /**
88  * regs_query_register_offset() - query register offset from its name
89  * @name:       the name of a register
90  *
91  * regs_query_register_offset() returns the offset of a register in struct
92  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
93  */
94 int regs_query_register_offset(const char *name)
95 {
96         const struct pt_regs_offset *roff;
97         for (roff = regoffset_table; roff->name != NULL; roff++)
98                 if (!strcmp(roff->name, name))
99                         return roff->offset;
100         return -EINVAL;
101 }
102
103 /**
104  * regs_query_register_name() - query register name from its offset
105  * @offset:     the offset of a register in struct pt_regs.
106  *
107  * regs_query_register_name() returns the name of a register from its
108  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109  */
110 const char *regs_query_register_name(unsigned int offset)
111 {
112         const struct pt_regs_offset *roff;
113         for (roff = regoffset_table; roff->name != NULL; roff++)
114                 if (roff->offset == offset)
115                         return roff->name;
116         return NULL;
117 }
118
119 /**
120  * regs_within_kernel_stack() - check the address in the stack
121  * @regs:      pt_regs which contains kernel stack pointer.
122  * @addr:      address which is checked.
123  *
124  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125  * If @addr is within the kernel stack, it returns true. If not, returns false.
126  */
127 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128 {
129         return ((addr & ~(THREAD_SIZE - 1))  ==
130                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131 }
132
133 /**
134  * regs_get_kernel_stack_nth() - get Nth entry of the stack
135  * @regs:       pt_regs which contains kernel stack pointer.
136  * @n:          stack entry number.
137  *
138  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140  * this returns 0.
141  */
142 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143 {
144         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145         addr += n;
146         if (regs_within_kernel_stack(regs, (unsigned long)addr))
147                 return *addr;
148         else
149                 return 0;
150 }
151
152 /*
153  * this routine will get a word off of the processes privileged stack.
154  * the offset is how far from the base addr as stored in the THREAD.
155  * this routine assumes that all the privileged stacks are in our
156  * data space.
157  */
158 static inline long get_user_reg(struct task_struct *task, int offset)
159 {
160         return task_pt_regs(task)->uregs[offset];
161 }
162
163 /*
164  * this routine will put a word on the processes privileged stack.
165  * the offset is how far from the base addr as stored in the THREAD.
166  * this routine assumes that all the privileged stacks are in our
167  * data space.
168  */
169 static inline int
170 put_user_reg(struct task_struct *task, int offset, long data)
171 {
172         struct pt_regs newregs, *regs = task_pt_regs(task);
173         int ret = -EINVAL;
174
175         newregs = *regs;
176         newregs.uregs[offset] = data;
177
178         if (valid_user_regs(&newregs)) {
179                 regs->uregs[offset] = data;
180                 ret = 0;
181         }
182
183         return ret;
184 }
185
186 /*
187  * Called by kernel/ptrace.c when detaching..
188  */
189 void ptrace_disable(struct task_struct *child)
190 {
191         /* Nothing to do. */
192 }
193
194 /*
195  * Handle hitting a breakpoint.
196  */
197 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198 {
199         siginfo_t info;
200
201         info.si_signo = SIGTRAP;
202         info.si_errno = 0;
203         info.si_code  = TRAP_BRKPT;
204         info.si_addr  = (void __user *)instruction_pointer(regs);
205
206         force_sig_info(SIGTRAP, &info, tsk);
207 }
208
209 static int break_trap(struct pt_regs *regs, unsigned int instr)
210 {
211         ptrace_break(current, regs);
212         return 0;
213 }
214
215 static struct undef_hook arm_break_hook = {
216         .instr_mask     = 0x0fffffff,
217         .instr_val      = 0x07f001f0,
218         .cpsr_mask      = PSR_T_BIT,
219         .cpsr_val       = 0,
220         .fn             = break_trap,
221 };
222
223 static struct undef_hook thumb_break_hook = {
224         .instr_mask     = 0xffff,
225         .instr_val      = 0xde01,
226         .cpsr_mask      = PSR_T_BIT,
227         .cpsr_val       = PSR_T_BIT,
228         .fn             = break_trap,
229 };
230
231 static struct undef_hook thumb2_break_hook = {
232         .instr_mask     = 0xffffffff,
233         .instr_val      = 0xf7f0a000,
234         .cpsr_mask      = PSR_T_BIT,
235         .cpsr_val       = PSR_T_BIT,
236         .fn             = break_trap,
237 };
238
239 static int __init ptrace_break_init(void)
240 {
241         register_undef_hook(&arm_break_hook);
242         register_undef_hook(&thumb_break_hook);
243         register_undef_hook(&thumb2_break_hook);
244         return 0;
245 }
246
247 core_initcall(ptrace_break_init);
248
249 /*
250  * Read the word at offset "off" into the "struct user".  We
251  * actually access the pt_regs stored on the kernel stack.
252  */
253 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
254                             unsigned long __user *ret)
255 {
256         unsigned long tmp;
257
258         if (off & 3 || off >= sizeof(struct user))
259                 return -EIO;
260
261         tmp = 0;
262         if (off == PT_TEXT_ADDR)
263                 tmp = tsk->mm->start_code;
264         else if (off == PT_DATA_ADDR)
265                 tmp = tsk->mm->start_data;
266         else if (off == PT_TEXT_END_ADDR)
267                 tmp = tsk->mm->end_code;
268         else if (off < sizeof(struct pt_regs))
269                 tmp = get_user_reg(tsk, off >> 2);
270
271         return put_user(tmp, ret);
272 }
273
274 /*
275  * Write the word at offset "off" into "struct user".  We
276  * actually access the pt_regs stored on the kernel stack.
277  */
278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279                              unsigned long val)
280 {
281         if (off & 3 || off >= sizeof(struct user))
282                 return -EIO;
283
284         if (off >= sizeof(struct pt_regs))
285                 return 0;
286
287         return put_user_reg(tsk, off >> 2, val);
288 }
289
290 #ifdef CONFIG_IWMMXT
291
292 /*
293  * Get the child iWMMXt state.
294  */
295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296 {
297         struct thread_info *thread = task_thread_info(tsk);
298
299         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300                 return -ENODATA;
301         iwmmxt_task_disable(thread);  /* force it to ram */
302         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303                 ? -EFAULT : 0;
304 }
305
306 /*
307  * Set the child iWMMXt state.
308  */
309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310 {
311         struct thread_info *thread = task_thread_info(tsk);
312
313         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314                 return -EACCES;
315         iwmmxt_task_release(thread);  /* force a reload */
316         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317                 ? -EFAULT : 0;
318 }
319
320 #endif
321
322 #ifdef CONFIG_CRUNCH
323 /*
324  * Get the child Crunch state.
325  */
326 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
327 {
328         struct thread_info *thread = task_thread_info(tsk);
329
330         crunch_task_disable(thread);  /* force it to ram */
331         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
332                 ? -EFAULT : 0;
333 }
334
335 /*
336  * Set the child Crunch state.
337  */
338 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
339 {
340         struct thread_info *thread = task_thread_info(tsk);
341
342         crunch_task_release(thread);  /* force a reload */
343         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
344                 ? -EFAULT : 0;
345 }
346 #endif
347
348 #ifdef CONFIG_HAVE_HW_BREAKPOINT
349 /*
350  * Convert a virtual register number into an index for a thread_info
351  * breakpoint array. Breakpoints are identified using positive numbers
352  * whilst watchpoints are negative. The registers are laid out as pairs
353  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354  * Register 0 is reserved for describing resource information.
355  */
356 static int ptrace_hbp_num_to_idx(long num)
357 {
358         if (num < 0)
359                 num = (ARM_MAX_BRP << 1) - num;
360         return (num - 1) >> 1;
361 }
362
363 /*
364  * Returns the virtual register number for the address of the
365  * breakpoint at index idx.
366  */
367 static long ptrace_hbp_idx_to_num(int idx)
368 {
369         long mid = ARM_MAX_BRP << 1;
370         long num = (idx << 1) + 1;
371         return num > mid ? mid - num : num;
372 }
373
374 /*
375  * Handle hitting a HW-breakpoint.
376  */
377 static void ptrace_hbptriggered(struct perf_event *bp,
378                                      struct perf_sample_data *data,
379                                      struct pt_regs *regs)
380 {
381         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
382         long num;
383         int i;
384         siginfo_t info;
385
386         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
387                 if (current->thread.debug.hbp[i] == bp)
388                         break;
389
390         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
391
392         info.si_signo   = SIGTRAP;
393         info.si_errno   = (int)num;
394         info.si_code    = TRAP_HWBKPT;
395         info.si_addr    = (void __user *)(bkpt->trigger);
396
397         force_sig_info(SIGTRAP, &info, current);
398 }
399
400 /*
401  * Set ptrace breakpoint pointers to zero for this task.
402  * This is required in order to prevent child processes from unregistering
403  * breakpoints held by their parent.
404  */
405 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
406 {
407         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
408 }
409
410 /*
411  * Unregister breakpoints from this task and reset the pointers in
412  * the thread_struct.
413  */
414 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
415 {
416         int i;
417         struct thread_struct *t = &tsk->thread;
418
419         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
420                 if (t->debug.hbp[i]) {
421                         unregister_hw_breakpoint(t->debug.hbp[i]);
422                         t->debug.hbp[i] = NULL;
423                 }
424         }
425 }
426
427 static u32 ptrace_get_hbp_resource_info(void)
428 {
429         u8 num_brps, num_wrps, debug_arch, wp_len;
430         u32 reg = 0;
431
432         num_brps        = hw_breakpoint_slots(TYPE_INST);
433         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
434         debug_arch      = arch_get_debug_arch();
435         wp_len          = arch_get_max_wp_len();
436
437         reg             |= debug_arch;
438         reg             <<= 8;
439         reg             |= wp_len;
440         reg             <<= 8;
441         reg             |= num_wrps;
442         reg             <<= 8;
443         reg             |= num_brps;
444
445         return reg;
446 }
447
448 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
449 {
450         struct perf_event_attr attr;
451
452         ptrace_breakpoint_init(&attr);
453
454         /* Initialise fields to sane defaults. */
455         attr.bp_addr    = 0;
456         attr.bp_len     = HW_BREAKPOINT_LEN_4;
457         attr.bp_type    = type;
458         attr.disabled   = 1;
459
460         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
461                                            tsk);
462 }
463
464 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
465                              unsigned long  __user *data)
466 {
467         u32 reg;
468         int idx, ret = 0;
469         struct perf_event *bp;
470         struct arch_hw_breakpoint_ctrl arch_ctrl;
471
472         if (num == 0) {
473                 reg = ptrace_get_hbp_resource_info();
474         } else {
475                 idx = ptrace_hbp_num_to_idx(num);
476                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
477                         ret = -EINVAL;
478                         goto out;
479                 }
480
481                 bp = tsk->thread.debug.hbp[idx];
482                 if (!bp) {
483                         reg = 0;
484                         goto put;
485                 }
486
487                 arch_ctrl = counter_arch_bp(bp)->ctrl;
488
489                 /*
490                  * Fix up the len because we may have adjusted it
491                  * to compensate for an unaligned address.
492                  */
493                 while (!(arch_ctrl.len & 0x1))
494                         arch_ctrl.len >>= 1;
495
496                 if (num & 0x1)
497                         reg = bp->attr.bp_addr;
498                 else
499                         reg = encode_ctrl_reg(arch_ctrl);
500         }
501
502 put:
503         if (put_user(reg, data))
504                 ret = -EFAULT;
505
506 out:
507         return ret;
508 }
509
510 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
511                              unsigned long __user *data)
512 {
513         int idx, gen_len, gen_type, implied_type, ret = 0;
514         u32 user_val;
515         struct perf_event *bp;
516         struct arch_hw_breakpoint_ctrl ctrl;
517         struct perf_event_attr attr;
518
519         if (num == 0)
520                 goto out;
521         else if (num < 0)
522                 implied_type = HW_BREAKPOINT_RW;
523         else
524                 implied_type = HW_BREAKPOINT_X;
525
526         idx = ptrace_hbp_num_to_idx(num);
527         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
528                 ret = -EINVAL;
529                 goto out;
530         }
531
532         if (get_user(user_val, data)) {
533                 ret = -EFAULT;
534                 goto out;
535         }
536
537         bp = tsk->thread.debug.hbp[idx];
538         if (!bp) {
539                 bp = ptrace_hbp_create(tsk, implied_type);
540                 if (IS_ERR(bp)) {
541                         ret = PTR_ERR(bp);
542                         goto out;
543                 }
544                 tsk->thread.debug.hbp[idx] = bp;
545         }
546
547         attr = bp->attr;
548
549         if (num & 0x1) {
550                 /* Address */
551                 attr.bp_addr    = user_val;
552         } else {
553                 /* Control */
554                 decode_ctrl_reg(user_val, &ctrl);
555                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
556                 if (ret)
557                         goto out;
558
559                 if ((gen_type & implied_type) != gen_type) {
560                         ret = -EINVAL;
561                         goto out;
562                 }
563
564                 attr.bp_len     = gen_len;
565                 attr.bp_type    = gen_type;
566                 attr.disabled   = !ctrl.enabled;
567         }
568
569         ret = modify_user_hw_breakpoint(bp, &attr);
570 out:
571         return ret;
572 }
573 #endif
574
575 /* regset get/set implementations */
576
577 static int gpr_get(struct task_struct *target,
578                    const struct user_regset *regset,
579                    unsigned int pos, unsigned int count,
580                    void *kbuf, void __user *ubuf)
581 {
582         struct pt_regs *regs = task_pt_regs(target);
583
584         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
585                                    regs,
586                                    0, sizeof(*regs));
587 }
588
589 static int gpr_set(struct task_struct *target,
590                    const struct user_regset *regset,
591                    unsigned int pos, unsigned int count,
592                    const void *kbuf, const void __user *ubuf)
593 {
594         int ret;
595         struct pt_regs newregs;
596
597         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
598                                  &newregs,
599                                  0, sizeof(newregs));
600         if (ret)
601                 return ret;
602
603         if (!valid_user_regs(&newregs))
604                 return -EINVAL;
605
606         *task_pt_regs(target) = newregs;
607         return 0;
608 }
609
610 static int fpa_get(struct task_struct *target,
611                    const struct user_regset *regset,
612                    unsigned int pos, unsigned int count,
613                    void *kbuf, void __user *ubuf)
614 {
615         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
616                                    &task_thread_info(target)->fpstate,
617                                    0, sizeof(struct user_fp));
618 }
619
620 static int fpa_set(struct task_struct *target,
621                    const struct user_regset *regset,
622                    unsigned int pos, unsigned int count,
623                    const void *kbuf, const void __user *ubuf)
624 {
625         struct thread_info *thread = task_thread_info(target);
626
627         thread->used_cp[1] = thread->used_cp[2] = 1;
628
629         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
630                 &thread->fpstate,
631                 0, sizeof(struct user_fp));
632 }
633
634 #ifdef CONFIG_VFP
635 /*
636  * VFP register get/set implementations.
637  *
638  * With respect to the kernel, struct user_fp is divided into three chunks:
639  * 16 or 32 real VFP registers (d0-d15 or d0-31)
640  *      These are transferred to/from the real registers in the task's
641  *      vfp_hard_struct.  The number of registers depends on the kernel
642  *      configuration.
643  *
644  * 16 or 0 fake VFP registers (d16-d31 or empty)
645  *      i.e., the user_vfp structure has space for 32 registers even if
646  *      the kernel doesn't have them all.
647  *
648  *      vfp_get() reads this chunk as zero where applicable
649  *      vfp_set() ignores this chunk
650  *
651  * 1 word for the FPSCR
652  *
653  * The bounds-checking logic built into user_regset_copyout and friends
654  * means that we can make a simple sequence of calls to map the relevant data
655  * to/from the specified slice of the user regset structure.
656  */
657 static int vfp_get(struct task_struct *target,
658                    const struct user_regset *regset,
659                    unsigned int pos, unsigned int count,
660                    void *kbuf, void __user *ubuf)
661 {
662         int ret;
663         struct thread_info *thread = task_thread_info(target);
664         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
665         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
666         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
667
668         vfp_sync_hwstate(thread);
669
670         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
671                                   &vfp->fpregs,
672                                   user_fpregs_offset,
673                                   user_fpregs_offset + sizeof(vfp->fpregs));
674         if (ret)
675                 return ret;
676
677         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
678                                        user_fpregs_offset + sizeof(vfp->fpregs),
679                                        user_fpscr_offset);
680         if (ret)
681                 return ret;
682
683         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
684                                    &vfp->fpscr,
685                                    user_fpscr_offset,
686                                    user_fpscr_offset + sizeof(vfp->fpscr));
687 }
688
689 /*
690  * For vfp_set() a read-modify-write is done on the VFP registers,
691  * in order to avoid writing back a half-modified set of registers on
692  * failure.
693  */
694 static int vfp_set(struct task_struct *target,
695                           const struct user_regset *regset,
696                           unsigned int pos, unsigned int count,
697                           const void *kbuf, const void __user *ubuf)
698 {
699         int ret;
700         struct thread_info *thread = task_thread_info(target);
701         struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
702         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
703         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
704
705         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
706                                   &new_vfp.fpregs,
707                                   user_fpregs_offset,
708                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
709         if (ret)
710                 return ret;
711
712         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
713                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
714                                 user_fpscr_offset);
715         if (ret)
716                 return ret;
717
718         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
719                                  &new_vfp.fpscr,
720                                  user_fpscr_offset,
721                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
722         if (ret)
723                 return ret;
724
725         vfp_sync_hwstate(thread);
726         thread->vfpstate.hard = new_vfp;
727         vfp_flush_hwstate(thread);
728
729         return 0;
730 }
731 #endif /* CONFIG_VFP */
732
733 enum arm_regset {
734         REGSET_GPR,
735         REGSET_FPR,
736 #ifdef CONFIG_VFP
737         REGSET_VFP,
738 #endif
739 };
740
741 static const struct user_regset arm_regsets[] = {
742         [REGSET_GPR] = {
743                 .core_note_type = NT_PRSTATUS,
744                 .n = ELF_NGREG,
745                 .size = sizeof(u32),
746                 .align = sizeof(u32),
747                 .get = gpr_get,
748                 .set = gpr_set
749         },
750         [REGSET_FPR] = {
751                 /*
752                  * For the FPA regs in fpstate, the real fields are a mixture
753                  * of sizes, so pretend that the registers are word-sized:
754                  */
755                 .core_note_type = NT_PRFPREG,
756                 .n = sizeof(struct user_fp) / sizeof(u32),
757                 .size = sizeof(u32),
758                 .align = sizeof(u32),
759                 .get = fpa_get,
760                 .set = fpa_set
761         },
762 #ifdef CONFIG_VFP
763         [REGSET_VFP] = {
764                 /*
765                  * Pretend that the VFP regs are word-sized, since the FPSCR is
766                  * a single word dangling at the end of struct user_vfp:
767                  */
768                 .core_note_type = NT_ARM_VFP,
769                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
770                 .size = sizeof(u32),
771                 .align = sizeof(u32),
772                 .get = vfp_get,
773                 .set = vfp_set
774         },
775 #endif /* CONFIG_VFP */
776 };
777
778 static const struct user_regset_view user_arm_view = {
779         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
780         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
781 };
782
783 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
784 {
785         return &user_arm_view;
786 }
787
788 long arch_ptrace(struct task_struct *child, long request,
789                  unsigned long addr, unsigned long data)
790 {
791         int ret;
792         unsigned long __user *datap = (unsigned long __user *) data;
793
794         switch (request) {
795                 case PTRACE_PEEKUSR:
796                         ret = ptrace_read_user(child, addr, datap);
797                         break;
798
799                 case PTRACE_POKEUSR:
800                         ret = ptrace_write_user(child, addr, data);
801                         break;
802
803                 case PTRACE_GETREGS:
804                         ret = copy_regset_to_user(child,
805                                                   &user_arm_view, REGSET_GPR,
806                                                   0, sizeof(struct pt_regs),
807                                                   datap);
808                         break;
809
810                 case PTRACE_SETREGS:
811                         ret = copy_regset_from_user(child,
812                                                     &user_arm_view, REGSET_GPR,
813                                                     0, sizeof(struct pt_regs),
814                                                     datap);
815                         break;
816
817                 case PTRACE_GETFPREGS:
818                         ret = copy_regset_to_user(child,
819                                                   &user_arm_view, REGSET_FPR,
820                                                   0, sizeof(union fp_state),
821                                                   datap);
822                         break;
823
824                 case PTRACE_SETFPREGS:
825                         ret = copy_regset_from_user(child,
826                                                     &user_arm_view, REGSET_FPR,
827                                                     0, sizeof(union fp_state),
828                                                     datap);
829                         break;
830
831 #ifdef CONFIG_IWMMXT
832                 case PTRACE_GETWMMXREGS:
833                         ret = ptrace_getwmmxregs(child, datap);
834                         break;
835
836                 case PTRACE_SETWMMXREGS:
837                         ret = ptrace_setwmmxregs(child, datap);
838                         break;
839 #endif
840
841                 case PTRACE_GET_THREAD_AREA:
842                         ret = put_user(task_thread_info(child)->tp_value,
843                                        datap);
844                         break;
845
846                 case PTRACE_SET_SYSCALL:
847                         task_thread_info(child)->syscall = data;
848                         ret = 0;
849                         break;
850
851 #ifdef CONFIG_CRUNCH
852                 case PTRACE_GETCRUNCHREGS:
853                         ret = ptrace_getcrunchregs(child, datap);
854                         break;
855
856                 case PTRACE_SETCRUNCHREGS:
857                         ret = ptrace_setcrunchregs(child, datap);
858                         break;
859 #endif
860
861 #ifdef CONFIG_VFP
862                 case PTRACE_GETVFPREGS:
863                         ret = copy_regset_to_user(child,
864                                                   &user_arm_view, REGSET_VFP,
865                                                   0, ARM_VFPREGS_SIZE,
866                                                   datap);
867                         break;
868
869                 case PTRACE_SETVFPREGS:
870                         ret = copy_regset_from_user(child,
871                                                     &user_arm_view, REGSET_VFP,
872                                                     0, ARM_VFPREGS_SIZE,
873                                                     datap);
874                         break;
875 #endif
876
877 #ifdef CONFIG_HAVE_HW_BREAKPOINT
878                 case PTRACE_GETHBPREGS:
879                         if (ptrace_get_breakpoints(child) < 0)
880                                 return -ESRCH;
881
882                         ret = ptrace_gethbpregs(child, addr,
883                                                 (unsigned long __user *)data);
884                         ptrace_put_breakpoints(child);
885                         break;
886                 case PTRACE_SETHBPREGS:
887                         if (ptrace_get_breakpoints(child) < 0)
888                                 return -ESRCH;
889
890                         ret = ptrace_sethbpregs(child, addr,
891                                                 (unsigned long __user *)data);
892                         ptrace_put_breakpoints(child);
893                         break;
894 #endif
895
896                 default:
897                         ret = ptrace_request(child, request, addr, data);
898                         break;
899         }
900
901         return ret;
902 }
903
904 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
905 {
906         unsigned long ip;
907
908         if (!test_thread_flag(TIF_SYSCALL_TRACE))
909                 return scno;
910         if (!(current->ptrace & PT_PTRACED))
911                 return scno;
912
913         /*
914          * Save IP.  IP is used to denote syscall entry/exit:
915          *  IP = 0 -> entry, = 1 -> exit
916          */
917         ip = regs->ARM_ip;
918         regs->ARM_ip = why;
919
920         current_thread_info()->syscall = scno;
921
922         /* the 0x80 provides a way for the tracing parent to distinguish
923            between a syscall stop and SIGTRAP delivery */
924         ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
925                                  ? 0x80 : 0));
926         /*
927          * this isn't the same as continuing with a signal, but it will do
928          * for normal use.  strace only continues with a signal if the
929          * stopping signal is not SIGTRAP.  -brl
930          */
931         if (current->exit_code) {
932                 send_sig(current->exit_code, current, 1);
933                 current->exit_code = 0;
934         }
935         regs->ARM_ip = ip;
936
937         return current_thread_info()->syscall;
938 }