2 * linux/arch/arm/kernel/setup.c
4 * Copyright (C) 1995-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/kexec.h>
23 #include <linux/crash_dump.h>
24 #include <linux/root_dev.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
32 #include <asm/unified.h>
34 #include <asm/cputype.h>
36 #include <asm/procinfo.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/smp_plat.h>
40 #include <asm/mach-types.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cachetype.h>
43 #include <asm/tlbflush.h>
45 #include <asm/mach/arch.h>
46 #include <asm/mach/irq.h>
47 #include <asm/mach/time.h>
48 #include <asm/traps.h>
49 #include <asm/unwind.h>
51 #if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
58 #define MEM_SIZE (16*1024*1024)
61 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64 static int __init fpe_setup(char *line)
66 memcpy(fpe_type, line, 8);
70 __setup("fpe=", fpe_setup);
73 extern void paging_init(struct machine_desc *desc);
74 extern void reboot_setup(char *str);
76 unsigned int processor_id;
77 EXPORT_SYMBOL(processor_id);
78 unsigned int __machine_arch_type __read_mostly;
79 EXPORT_SYMBOL(__machine_arch_type);
80 unsigned int cacheid __read_mostly;
81 EXPORT_SYMBOL(cacheid);
83 unsigned int __atags_pointer __initdata;
85 unsigned int system_rev;
86 EXPORT_SYMBOL(system_rev);
88 unsigned int system_serial_low;
89 EXPORT_SYMBOL(system_serial_low);
91 unsigned int system_serial_high;
92 EXPORT_SYMBOL(system_serial_high);
94 unsigned int elf_hwcap __read_mostly;
95 EXPORT_SYMBOL(elf_hwcap);
99 struct processor processor __read_mostly;
102 struct cpu_tlb_fns cpu_tlb __read_mostly;
105 struct cpu_user_fns cpu_user __read_mostly;
108 struct cpu_cache_fns cpu_cache __read_mostly;
110 #ifdef CONFIG_OUTER_CACHE
111 struct outer_cache_fns outer_cache __read_mostly;
112 EXPORT_SYMBOL(outer_cache);
119 } ____cacheline_aligned;
121 static struct stack stacks[NR_CPUS];
123 char elf_platform[ELF_PLATFORM_SIZE];
124 EXPORT_SYMBOL(elf_platform);
126 static const char *cpu_name;
127 static const char *machine_name;
128 static char __initdata cmd_line[COMMAND_LINE_SIZE];
129 struct machine_desc *machine_desc __initdata;
131 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
132 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
133 #define ENDIANNESS ((char)endian_test.l)
135 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
138 * Standard memory resources
140 static struct resource mem_res[] = {
145 .flags = IORESOURCE_MEM
148 .name = "Kernel text",
151 .flags = IORESOURCE_MEM
154 .name = "Kernel data",
157 .flags = IORESOURCE_MEM
161 #define video_ram mem_res[0]
162 #define kernel_code mem_res[1]
163 #define kernel_data mem_res[2]
165 static struct resource io_res[] = {
170 .flags = IORESOURCE_IO | IORESOURCE_BUSY
176 .flags = IORESOURCE_IO | IORESOURCE_BUSY
182 .flags = IORESOURCE_IO | IORESOURCE_BUSY
186 #define lp0 io_res[0]
187 #define lp1 io_res[1]
188 #define lp2 io_res[2]
190 static const char *proc_arch[] = {
210 int cpu_architecture(void)
214 if ((read_cpuid_id() & 0x0008f000) == 0) {
215 cpu_arch = CPU_ARCH_UNKNOWN;
216 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
217 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
218 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
219 cpu_arch = (read_cpuid_id() >> 16) & 7;
221 cpu_arch += CPU_ARCH_ARMv3;
222 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
225 /* Revised CPUID format. Read the Memory Model Feature
226 * Register 0 and check for VMSAv7 or PMSAv7 */
227 asm("mrc p15, 0, %0, c0, c1, 4"
229 if ((mmfr0 & 0x0000000f) == 0x00000003 ||
230 (mmfr0 & 0x000000f0) == 0x00000030)
231 cpu_arch = CPU_ARCH_ARMv7;
232 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
233 (mmfr0 & 0x000000f0) == 0x00000020)
234 cpu_arch = CPU_ARCH_ARMv6;
236 cpu_arch = CPU_ARCH_UNKNOWN;
238 cpu_arch = CPU_ARCH_UNKNOWN;
243 static int cpu_has_aliasing_icache(unsigned int arch)
246 unsigned int id_reg, num_sets, line_size;
248 /* arch specifies the register format */
251 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
252 : /* No output operands */
255 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
257 line_size = 4 << ((id_reg & 0x7) + 2);
258 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
259 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
262 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
265 /* I-cache aliases will be handled by D-cache aliasing code */
269 return aliasing_icache;
272 static void __init cacheid_init(void)
274 unsigned int cachetype = read_cpuid_cachetype();
275 unsigned int arch = cpu_architecture();
277 if (arch >= CPU_ARCH_ARMv6) {
278 if ((cachetype & (7 << 29)) == 4 << 29) {
279 /* ARMv7 register format */
280 cacheid = CACHEID_VIPT_NONALIASING;
281 if ((cachetype & (3 << 14)) == 1 << 14)
282 cacheid |= CACHEID_ASID_TAGGED;
283 else if (cpu_has_aliasing_icache(CPU_ARCH_ARMv7))
284 cacheid |= CACHEID_VIPT_I_ALIASING;
285 } else if (cachetype & (1 << 23)) {
286 cacheid = CACHEID_VIPT_ALIASING;
288 cacheid = CACHEID_VIPT_NONALIASING;
289 if (cpu_has_aliasing_icache(CPU_ARCH_ARMv6))
290 cacheid |= CACHEID_VIPT_I_ALIASING;
293 cacheid = CACHEID_VIVT;
296 printk("CPU: %s data cache, %s instruction cache\n",
297 cache_is_vivt() ? "VIVT" :
298 cache_is_vipt_aliasing() ? "VIPT aliasing" :
299 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
300 cache_is_vivt() ? "VIVT" :
301 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
302 icache_is_vipt_aliasing() ? "VIPT aliasing" :
303 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
307 * These functions re-use the assembly code in head.S, which
308 * already provide the required functionality.
310 extern struct proc_info_list *lookup_processor_type(unsigned int);
311 extern struct machine_desc *lookup_machine_type(unsigned int);
313 static void __init feat_v6_fixup(void)
315 int id = read_cpuid_id();
317 if ((id & 0xff0f0000) != 0x41070000)
321 * HWCAP_TLS is available only on 1136 r1p0 and later,
322 * see also kuser_get_tls_init.
324 if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
325 elf_hwcap &= ~HWCAP_TLS;
328 static void __init setup_processor(void)
330 struct proc_info_list *list;
333 * locate processor in the list of supported processor
334 * types. The linker builds this table for us from the
335 * entries in arch/arm/mm/proc-*.S
337 list = lookup_processor_type(read_cpuid_id());
339 printk("CPU configuration botched (ID %08x), unable "
340 "to continue.\n", read_cpuid_id());
344 cpu_name = list->cpu_name;
347 processor = *list->proc;
350 cpu_tlb = *list->tlb;
353 cpu_user = *list->user;
356 cpu_cache = *list->cache;
359 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
360 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
361 proc_arch[cpu_architecture()], cr_alignment);
363 sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
364 sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
365 elf_hwcap = list->elf_hwcap;
366 #ifndef CONFIG_ARM_THUMB
367 elf_hwcap &= ~HWCAP_THUMB;
377 * cpu_init - initialise one CPU.
379 * cpu_init sets up the per-CPU stacks.
383 unsigned int cpu = smp_processor_id();
384 struct stack *stk = &stacks[cpu];
386 if (cpu >= NR_CPUS) {
387 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
392 * Define the placement constraint for the inline asm directive below.
393 * In Thumb-2, msr with an immediate value is not allowed.
395 #ifdef CONFIG_THUMB2_KERNEL
402 * setup stacks for re-entrant exception handlers
406 "add r14, %0, %2\n\t"
409 "add r14, %0, %4\n\t"
412 "add r14, %0, %6\n\t"
417 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
418 "I" (offsetof(struct stack, irq[0])),
419 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
420 "I" (offsetof(struct stack, abt[0])),
421 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
422 "I" (offsetof(struct stack, und[0])),
423 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
427 static struct machine_desc * __init setup_machine(unsigned int nr)
429 struct machine_desc *list;
432 * locate machine in the list of supported machines.
434 list = lookup_machine_type(nr);
436 printk("Machine configuration botched (nr %d), unable "
437 "to continue.\n", nr);
441 printk("Machine: %s\n", list->name);
446 static int __init arm_add_memory(unsigned long start, unsigned long size)
448 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
450 if (meminfo.nr_banks >= NR_BANKS) {
451 printk(KERN_CRIT "NR_BANKS too low, "
452 "ignoring memory at %#lx\n", start);
457 * Ensure that start/size are aligned to a page boundary.
458 * Size is appropriately rounded down, start is rounded up.
460 size -= start & ~PAGE_MASK;
461 bank->start = PAGE_ALIGN(start);
462 bank->size = size & PAGE_MASK;
465 * Check whether this memory region has non-zero size or
466 * invalid node number.
476 * Pick out the memory size. We look for mem=size@start,
477 * where start and size are "size[KkMm]"
479 static int __init early_mem(char *p)
481 static int usermem __initdata = 0;
482 unsigned long size, start;
486 * If the user specifies memory size, we
487 * blow away any automatically generated
492 meminfo.nr_banks = 0;
496 size = memparse(p, &endp);
498 start = memparse(endp + 1, NULL);
500 arm_add_memory(start, size);
504 early_param("mem", early_mem);
507 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
509 #ifdef CONFIG_BLK_DEV_RAM
510 extern int rd_size, rd_image_start, rd_prompt, rd_doload;
512 rd_image_start = image_start;
522 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
524 struct resource *res;
527 kernel_code.start = virt_to_phys(_text);
528 kernel_code.end = virt_to_phys(_etext - 1);
529 kernel_data.start = virt_to_phys(_sdata);
530 kernel_data.end = virt_to_phys(_end - 1);
532 for (i = 0; i < mi->nr_banks; i++) {
533 if (mi->bank[i].size == 0)
536 res = alloc_bootmem_low(sizeof(*res));
537 res->name = "System RAM";
538 res->start = mi->bank[i].start;
539 res->end = mi->bank[i].start + mi->bank[i].size - 1;
540 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
542 request_resource(&iomem_resource, res);
544 if (kernel_code.start >= res->start &&
545 kernel_code.end <= res->end)
546 request_resource(res, &kernel_code);
547 if (kernel_data.start >= res->start &&
548 kernel_data.end <= res->end)
549 request_resource(res, &kernel_data);
552 if (mdesc->video_start) {
553 video_ram.start = mdesc->video_start;
554 video_ram.end = mdesc->video_end;
555 request_resource(&iomem_resource, &video_ram);
559 * Some machines don't have the possibility of ever
560 * possessing lp0, lp1 or lp2
562 if (mdesc->reserve_lp0)
563 request_resource(&ioport_resource, &lp0);
564 if (mdesc->reserve_lp1)
565 request_resource(&ioport_resource, &lp1);
566 if (mdesc->reserve_lp2)
567 request_resource(&ioport_resource, &lp2);
573 * This is the new way of passing data to the kernel at boot time. Rather
574 * than passing a fixed inflexible structure to the kernel, we pass a list
575 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
576 * tag for the list to be recognised (to distinguish the tagged list from
577 * a param_struct). The list is terminated with a zero-length tag (this tag
578 * is not parsed in any way).
580 static int __init parse_tag_core(const struct tag *tag)
582 if (tag->hdr.size > 2) {
583 if ((tag->u.core.flags & 1) == 0)
584 root_mountflags &= ~MS_RDONLY;
585 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
590 __tagtable(ATAG_CORE, parse_tag_core);
592 static int __init parse_tag_mem32(const struct tag *tag)
594 return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
597 __tagtable(ATAG_MEM, parse_tag_mem32);
599 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
600 struct screen_info screen_info = {
601 .orig_video_lines = 30,
602 .orig_video_cols = 80,
603 .orig_video_mode = 0,
604 .orig_video_ega_bx = 0,
605 .orig_video_isVGA = 1,
606 .orig_video_points = 8
609 static int __init parse_tag_videotext(const struct tag *tag)
611 screen_info.orig_x = tag->u.videotext.x;
612 screen_info.orig_y = tag->u.videotext.y;
613 screen_info.orig_video_page = tag->u.videotext.video_page;
614 screen_info.orig_video_mode = tag->u.videotext.video_mode;
615 screen_info.orig_video_cols = tag->u.videotext.video_cols;
616 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
617 screen_info.orig_video_lines = tag->u.videotext.video_lines;
618 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
619 screen_info.orig_video_points = tag->u.videotext.video_points;
623 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
626 static int __init parse_tag_ramdisk(const struct tag *tag)
628 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
629 (tag->u.ramdisk.flags & 2) == 0,
630 tag->u.ramdisk.start, tag->u.ramdisk.size);
634 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
636 static int __init parse_tag_serialnr(const struct tag *tag)
638 system_serial_low = tag->u.serialnr.low;
639 system_serial_high = tag->u.serialnr.high;
643 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
645 static int __init parse_tag_revision(const struct tag *tag)
647 system_rev = tag->u.revision.rev;
651 __tagtable(ATAG_REVISION, parse_tag_revision);
653 #ifndef CONFIG_CMDLINE_FORCE
654 static int __init parse_tag_cmdline(const struct tag *tag)
656 strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
660 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
661 #endif /* CONFIG_CMDLINE_FORCE */
664 * Scan the tag table for this tag, and call its parse function.
665 * The tag table is built by the linker from all the __tagtable
668 static int __init parse_tag(const struct tag *tag)
670 extern struct tagtable __tagtable_begin, __tagtable_end;
673 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
674 if (tag->hdr.tag == t->tag) {
679 return t < &__tagtable_end;
683 * Parse all tags in the list, checking both the global and architecture
684 * specific tag tables.
686 static void __init parse_tags(const struct tag *t)
688 for (; t->hdr.size; t = tag_next(t))
691 "Ignoring unrecognised tag 0x%08x\n",
696 * This holds our defaults.
698 static struct init_tags {
699 struct tag_header hdr1;
700 struct tag_core core;
701 struct tag_header hdr2;
702 struct tag_mem32 mem;
703 struct tag_header hdr3;
704 } init_tags __initdata = {
705 { tag_size(tag_core), ATAG_CORE },
706 { 1, PAGE_SIZE, 0xff },
707 { tag_size(tag_mem32), ATAG_MEM },
708 { MEM_SIZE, PHYS_OFFSET },
712 static int __init customize_machine(void)
714 /* customizes platform devices, or adds new ones */
715 if (machine_desc->init_machine)
716 machine_desc->init_machine();
719 arch_initcall(customize_machine);
722 static inline unsigned long long get_total_mem(void)
726 total = max_low_pfn - min_low_pfn;
727 return total << PAGE_SHIFT;
731 * reserve_crashkernel() - reserves memory are for crash kernel
733 * This function reserves memory area given in "crashkernel=" kernel command
734 * line parameter. The memory reserved is used by a dump capture kernel when
735 * primary kernel is crashing.
737 static void __init reserve_crashkernel(void)
739 unsigned long long crash_size, crash_base;
740 unsigned long long total_mem;
743 total_mem = get_total_mem();
744 ret = parse_crashkernel(boot_command_line, total_mem,
745 &crash_size, &crash_base);
749 ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
751 printk(KERN_WARNING "crashkernel reservation failed - "
752 "memory is in use (0x%lx)\n", (unsigned long)crash_base);
756 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
757 "for crashkernel (System RAM: %ldMB)\n",
758 (unsigned long)(crash_size >> 20),
759 (unsigned long)(crash_base >> 20),
760 (unsigned long)(total_mem >> 20));
762 crashk_res.start = crash_base;
763 crashk_res.end = crash_base + crash_size - 1;
764 insert_resource(&iomem_resource, &crashk_res);
767 static inline void reserve_crashkernel(void) {}
768 #endif /* CONFIG_KEXEC */
771 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
772 * is_kdump_kernel() to determine if we are booting after a panic. Hence
773 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
776 #ifdef CONFIG_CRASH_DUMP
778 * elfcorehdr= specifies the location of elf core header stored by the crashed
779 * kernel. This option will be passed by kexec loader to the capture kernel.
781 static int __init setup_elfcorehdr(char *arg)
788 elfcorehdr_addr = memparse(arg, &end);
789 return end > arg ? 0 : -EINVAL;
791 early_param("elfcorehdr", setup_elfcorehdr);
792 #endif /* CONFIG_CRASH_DUMP */
794 static void __init squash_mem_tags(struct tag *tag)
796 for (; tag->hdr.size; tag = tag_next(tag))
797 if (tag->hdr.tag == ATAG_MEM)
798 tag->hdr.tag = ATAG_NONE;
801 void __init setup_arch(char **cmdline_p)
803 struct tag *tags = (struct tag *)&init_tags;
804 struct machine_desc *mdesc;
805 char *from = default_command_line;
810 mdesc = setup_machine(machine_arch_type);
811 machine_desc = mdesc;
812 machine_name = mdesc->name;
814 if (mdesc->soft_reboot)
818 tags = phys_to_virt(__atags_pointer);
819 else if (mdesc->boot_params)
820 tags = phys_to_virt(mdesc->boot_params);
822 #if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
824 * If we have the old style parameters, convert them to
827 if (tags->hdr.tag != ATAG_CORE)
828 convert_to_tag_list(tags);
830 if (tags->hdr.tag != ATAG_CORE)
831 tags = (struct tag *)&init_tags;
834 mdesc->fixup(mdesc, tags, &from, &meminfo);
836 if (tags->hdr.tag == ATAG_CORE) {
837 if (meminfo.nr_banks != 0)
838 squash_mem_tags(tags);
843 init_mm.start_code = (unsigned long) _text;
844 init_mm.end_code = (unsigned long) _etext;
845 init_mm.end_data = (unsigned long) _edata;
846 init_mm.brk = (unsigned long) _end;
848 /* parse_early_param needs a boot_command_line */
849 strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
851 /* populate cmd_line too for later use, preserving boot_command_line */
852 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
853 *cmdline_p = cmd_line;
857 arm_memblock_init(&meminfo, mdesc);
860 request_standard_resources(&meminfo, mdesc);
866 reserve_crashkernel();
871 #ifdef CONFIG_MULTI_IRQ_HANDLER
872 handle_arch_irq = mdesc->handle_irq;
876 #if defined(CONFIG_VGA_CONSOLE)
877 conswitchp = &vga_con;
878 #elif defined(CONFIG_DUMMY_CONSOLE)
879 conswitchp = &dummy_con;
884 if (mdesc->init_early)
889 static int __init topology_init(void)
893 for_each_possible_cpu(cpu) {
894 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
895 cpuinfo->cpu.hotpluggable = 1;
896 register_cpu(&cpuinfo->cpu, cpu);
901 subsys_initcall(topology_init);
903 #ifdef CONFIG_HAVE_PROC_CPU
904 static int __init proc_cpu_init(void)
906 struct proc_dir_entry *res;
908 res = proc_mkdir("cpu", NULL);
913 fs_initcall(proc_cpu_init);
916 static const char *hwcap_str[] = {
935 static int c_show(struct seq_file *m, void *v)
939 seq_printf(m, "Processor\t: %s rev %d (%s)\n",
940 cpu_name, read_cpuid_id() & 15, elf_platform);
942 #if defined(CONFIG_SMP)
943 for_each_online_cpu(i) {
945 * glibc reads /proc/cpuinfo to determine the number of
946 * online processors, looking for lines beginning with
947 * "processor". Give glibc what it expects.
949 seq_printf(m, "processor\t: %d\n", i);
950 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
951 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
952 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
954 #else /* CONFIG_SMP */
955 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
956 loops_per_jiffy / (500000/HZ),
957 (loops_per_jiffy / (5000/HZ)) % 100);
960 /* dump out the processor features */
961 seq_puts(m, "Features\t: ");
963 for (i = 0; hwcap_str[i]; i++)
964 if (elf_hwcap & (1 << i))
965 seq_printf(m, "%s ", hwcap_str[i]);
967 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
968 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
970 if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
972 seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
974 if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
976 seq_printf(m, "CPU variant\t: 0x%02x\n",
977 (read_cpuid_id() >> 16) & 127);
980 seq_printf(m, "CPU variant\t: 0x%x\n",
981 (read_cpuid_id() >> 20) & 15);
983 seq_printf(m, "CPU part\t: 0x%03x\n",
984 (read_cpuid_id() >> 4) & 0xfff);
986 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
990 seq_printf(m, "Hardware\t: %s\n", machine_name);
991 seq_printf(m, "Revision\t: %04x\n", system_rev);
992 seq_printf(m, "Serial\t\t: %08x%08x\n",
993 system_serial_high, system_serial_low);
998 static void *c_start(struct seq_file *m, loff_t *pos)
1000 return *pos < 1 ? (void *)1 : NULL;
1003 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1009 static void c_stop(struct seq_file *m, void *v)
1013 const struct seq_operations cpuinfo_op = {