]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kernel/setup.c
Merge branch 'for-3.10' of git://linux-nfs.org/~bfields/linux
[karo-tx-linux.git] / arch / arm / kernel / setup.c
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33
34 #include <asm/unified.h>
35 #include <asm/cp15.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/elf.h>
39 #include <asm/procinfo.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <asm/smp_plat.h>
43 #include <asm/mach-types.h>
44 #include <asm/cacheflush.h>
45 #include <asm/cachetype.h>
46 #include <asm/tlbflush.h>
47
48 #include <asm/prom.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mach/irq.h>
51 #include <asm/mach/time.h>
52 #include <asm/system_info.h>
53 #include <asm/system_misc.h>
54 #include <asm/traps.h>
55 #include <asm/unwind.h>
56 #include <asm/memblock.h>
57 #include <asm/virt.h>
58
59 #include "atags.h"
60
61
62 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
63 char fpe_type[8];
64
65 static int __init fpe_setup(char *line)
66 {
67         memcpy(fpe_type, line, 8);
68         return 1;
69 }
70
71 __setup("fpe=", fpe_setup);
72 #endif
73
74 extern void paging_init(struct machine_desc *desc);
75 extern void sanity_check_meminfo(void);
76 extern void reboot_setup(char *str);
77 extern void setup_dma_zone(struct machine_desc *desc);
78
79 unsigned int processor_id;
80 EXPORT_SYMBOL(processor_id);
81 unsigned int __machine_arch_type __read_mostly;
82 EXPORT_SYMBOL(__machine_arch_type);
83 unsigned int cacheid __read_mostly;
84 EXPORT_SYMBOL(cacheid);
85
86 unsigned int __atags_pointer __initdata;
87
88 unsigned int system_rev;
89 EXPORT_SYMBOL(system_rev);
90
91 unsigned int system_serial_low;
92 EXPORT_SYMBOL(system_serial_low);
93
94 unsigned int system_serial_high;
95 EXPORT_SYMBOL(system_serial_high);
96
97 unsigned int elf_hwcap __read_mostly;
98 EXPORT_SYMBOL(elf_hwcap);
99
100
101 #ifdef MULTI_CPU
102 struct processor processor __read_mostly;
103 #endif
104 #ifdef MULTI_TLB
105 struct cpu_tlb_fns cpu_tlb __read_mostly;
106 #endif
107 #ifdef MULTI_USER
108 struct cpu_user_fns cpu_user __read_mostly;
109 #endif
110 #ifdef MULTI_CACHE
111 struct cpu_cache_fns cpu_cache __read_mostly;
112 #endif
113 #ifdef CONFIG_OUTER_CACHE
114 struct outer_cache_fns outer_cache __read_mostly;
115 EXPORT_SYMBOL(outer_cache);
116 #endif
117
118 /*
119  * Cached cpu_architecture() result for use by assembler code.
120  * C code should use the cpu_architecture() function instead of accessing this
121  * variable directly.
122  */
123 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
124
125 struct stack {
126         u32 irq[3];
127         u32 abt[3];
128         u32 und[3];
129 } ____cacheline_aligned;
130
131 static struct stack stacks[NR_CPUS];
132
133 char elf_platform[ELF_PLATFORM_SIZE];
134 EXPORT_SYMBOL(elf_platform);
135
136 static const char *cpu_name;
137 static const char *machine_name;
138 static char __initdata cmd_line[COMMAND_LINE_SIZE];
139 struct machine_desc *machine_desc __initdata;
140
141 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
142 #define ENDIANNESS ((char)endian_test.l)
143
144 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
145
146 /*
147  * Standard memory resources
148  */
149 static struct resource mem_res[] = {
150         {
151                 .name = "Video RAM",
152                 .start = 0,
153                 .end = 0,
154                 .flags = IORESOURCE_MEM
155         },
156         {
157                 .name = "Kernel code",
158                 .start = 0,
159                 .end = 0,
160                 .flags = IORESOURCE_MEM
161         },
162         {
163                 .name = "Kernel data",
164                 .start = 0,
165                 .end = 0,
166                 .flags = IORESOURCE_MEM
167         }
168 };
169
170 #define video_ram   mem_res[0]
171 #define kernel_code mem_res[1]
172 #define kernel_data mem_res[2]
173
174 static struct resource io_res[] = {
175         {
176                 .name = "reserved",
177                 .start = 0x3bc,
178                 .end = 0x3be,
179                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
180         },
181         {
182                 .name = "reserved",
183                 .start = 0x378,
184                 .end = 0x37f,
185                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
186         },
187         {
188                 .name = "reserved",
189                 .start = 0x278,
190                 .end = 0x27f,
191                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
192         }
193 };
194
195 #define lp0 io_res[0]
196 #define lp1 io_res[1]
197 #define lp2 io_res[2]
198
199 static const char *proc_arch[] = {
200         "undefined/unknown",
201         "3",
202         "4",
203         "4T",
204         "5",
205         "5T",
206         "5TE",
207         "5TEJ",
208         "6TEJ",
209         "7",
210         "?(11)",
211         "?(12)",
212         "?(13)",
213         "?(14)",
214         "?(15)",
215         "?(16)",
216         "?(17)",
217 };
218
219 static int __get_cpu_architecture(void)
220 {
221         int cpu_arch;
222
223         if ((read_cpuid_id() & 0x0008f000) == 0) {
224                 cpu_arch = CPU_ARCH_UNKNOWN;
225         } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
226                 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
227         } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
228                 cpu_arch = (read_cpuid_id() >> 16) & 7;
229                 if (cpu_arch)
230                         cpu_arch += CPU_ARCH_ARMv3;
231         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
232                 unsigned int mmfr0;
233
234                 /* Revised CPUID format. Read the Memory Model Feature
235                  * Register 0 and check for VMSAv7 or PMSAv7 */
236                 asm("mrc        p15, 0, %0, c0, c1, 4"
237                     : "=r" (mmfr0));
238                 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
239                     (mmfr0 & 0x000000f0) >= 0x00000030)
240                         cpu_arch = CPU_ARCH_ARMv7;
241                 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
242                          (mmfr0 & 0x000000f0) == 0x00000020)
243                         cpu_arch = CPU_ARCH_ARMv6;
244                 else
245                         cpu_arch = CPU_ARCH_UNKNOWN;
246         } else
247                 cpu_arch = CPU_ARCH_UNKNOWN;
248
249         return cpu_arch;
250 }
251
252 int __pure cpu_architecture(void)
253 {
254         BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
255
256         return __cpu_architecture;
257 }
258
259 static int cpu_has_aliasing_icache(unsigned int arch)
260 {
261         int aliasing_icache;
262         unsigned int id_reg, num_sets, line_size;
263
264         /* PIPT caches never alias. */
265         if (icache_is_pipt())
266                 return 0;
267
268         /* arch specifies the register format */
269         switch (arch) {
270         case CPU_ARCH_ARMv7:
271                 asm("mcr        p15, 2, %0, c0, c0, 0 @ set CSSELR"
272                     : /* No output operands */
273                     : "r" (1));
274                 isb();
275                 asm("mrc        p15, 1, %0, c0, c0, 0 @ read CCSIDR"
276                     : "=r" (id_reg));
277                 line_size = 4 << ((id_reg & 0x7) + 2);
278                 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
279                 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
280                 break;
281         case CPU_ARCH_ARMv6:
282                 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
283                 break;
284         default:
285                 /* I-cache aliases will be handled by D-cache aliasing code */
286                 aliasing_icache = 0;
287         }
288
289         return aliasing_icache;
290 }
291
292 static void __init cacheid_init(void)
293 {
294         unsigned int arch = cpu_architecture();
295
296         if (arch >= CPU_ARCH_ARMv6) {
297                 unsigned int cachetype = read_cpuid_cachetype();
298                 if ((cachetype & (7 << 29)) == 4 << 29) {
299                         /* ARMv7 register format */
300                         arch = CPU_ARCH_ARMv7;
301                         cacheid = CACHEID_VIPT_NONALIASING;
302                         switch (cachetype & (3 << 14)) {
303                         case (1 << 14):
304                                 cacheid |= CACHEID_ASID_TAGGED;
305                                 break;
306                         case (3 << 14):
307                                 cacheid |= CACHEID_PIPT;
308                                 break;
309                         }
310                 } else {
311                         arch = CPU_ARCH_ARMv6;
312                         if (cachetype & (1 << 23))
313                                 cacheid = CACHEID_VIPT_ALIASING;
314                         else
315                                 cacheid = CACHEID_VIPT_NONALIASING;
316                 }
317                 if (cpu_has_aliasing_icache(arch))
318                         cacheid |= CACHEID_VIPT_I_ALIASING;
319         } else {
320                 cacheid = CACHEID_VIVT;
321         }
322
323         printk("CPU: %s data cache, %s instruction cache\n",
324                 cache_is_vivt() ? "VIVT" :
325                 cache_is_vipt_aliasing() ? "VIPT aliasing" :
326                 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
327                 cache_is_vivt() ? "VIVT" :
328                 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
329                 icache_is_vipt_aliasing() ? "VIPT aliasing" :
330                 icache_is_pipt() ? "PIPT" :
331                 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
332 }
333
334 /*
335  * These functions re-use the assembly code in head.S, which
336  * already provide the required functionality.
337  */
338 extern struct proc_info_list *lookup_processor_type(unsigned int);
339
340 void __init early_print(const char *str, ...)
341 {
342         extern void printascii(const char *);
343         char buf[256];
344         va_list ap;
345
346         va_start(ap, str);
347         vsnprintf(buf, sizeof(buf), str, ap);
348         va_end(ap);
349
350 #ifdef CONFIG_DEBUG_LL
351         printascii(buf);
352 #endif
353         printk("%s", buf);
354 }
355
356 static void __init cpuid_init_hwcaps(void)
357 {
358         unsigned int divide_instrs;
359
360         if (cpu_architecture() < CPU_ARCH_ARMv7)
361                 return;
362
363         divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
364
365         switch (divide_instrs) {
366         case 2:
367                 elf_hwcap |= HWCAP_IDIVA;
368         case 1:
369                 elf_hwcap |= HWCAP_IDIVT;
370         }
371 }
372
373 static void __init feat_v6_fixup(void)
374 {
375         int id = read_cpuid_id();
376
377         if ((id & 0xff0f0000) != 0x41070000)
378                 return;
379
380         /*
381          * HWCAP_TLS is available only on 1136 r1p0 and later,
382          * see also kuser_get_tls_init.
383          */
384         if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
385                 elf_hwcap &= ~HWCAP_TLS;
386 }
387
388 /*
389  * cpu_init - initialise one CPU.
390  *
391  * cpu_init sets up the per-CPU stacks.
392  */
393 void notrace cpu_init(void)
394 {
395         unsigned int cpu = smp_processor_id();
396         struct stack *stk = &stacks[cpu];
397
398         if (cpu >= NR_CPUS) {
399                 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
400                 BUG();
401         }
402
403         /*
404          * This only works on resume and secondary cores. For booting on the
405          * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
406          */
407         set_my_cpu_offset(per_cpu_offset(cpu));
408
409         cpu_proc_init();
410
411         /*
412          * Define the placement constraint for the inline asm directive below.
413          * In Thumb-2, msr with an immediate value is not allowed.
414          */
415 #ifdef CONFIG_THUMB2_KERNEL
416 #define PLC     "r"
417 #else
418 #define PLC     "I"
419 #endif
420
421         /*
422          * setup stacks for re-entrant exception handlers
423          */
424         __asm__ (
425         "msr    cpsr_c, %1\n\t"
426         "add    r14, %0, %2\n\t"
427         "mov    sp, r14\n\t"
428         "msr    cpsr_c, %3\n\t"
429         "add    r14, %0, %4\n\t"
430         "mov    sp, r14\n\t"
431         "msr    cpsr_c, %5\n\t"
432         "add    r14, %0, %6\n\t"
433         "mov    sp, r14\n\t"
434         "msr    cpsr_c, %7"
435             :
436             : "r" (stk),
437               PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
438               "I" (offsetof(struct stack, irq[0])),
439               PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
440               "I" (offsetof(struct stack, abt[0])),
441               PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
442               "I" (offsetof(struct stack, und[0])),
443               PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
444             : "r14");
445 }
446
447 int __cpu_logical_map[NR_CPUS];
448
449 void __init smp_setup_processor_id(void)
450 {
451         int i;
452         u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
453         u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
454
455         cpu_logical_map(0) = cpu;
456         for (i = 1; i < nr_cpu_ids; ++i)
457                 cpu_logical_map(i) = i == cpu ? 0 : i;
458
459         printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
460 }
461
462 static void __init setup_processor(void)
463 {
464         struct proc_info_list *list;
465
466         /*
467          * locate processor in the list of supported processor
468          * types.  The linker builds this table for us from the
469          * entries in arch/arm/mm/proc-*.S
470          */
471         list = lookup_processor_type(read_cpuid_id());
472         if (!list) {
473                 printk("CPU configuration botched (ID %08x), unable "
474                        "to continue.\n", read_cpuid_id());
475                 while (1);
476         }
477
478         cpu_name = list->cpu_name;
479         __cpu_architecture = __get_cpu_architecture();
480
481 #ifdef MULTI_CPU
482         processor = *list->proc;
483 #endif
484 #ifdef MULTI_TLB
485         cpu_tlb = *list->tlb;
486 #endif
487 #ifdef MULTI_USER
488         cpu_user = *list->user;
489 #endif
490 #ifdef MULTI_CACHE
491         cpu_cache = *list->cache;
492 #endif
493
494         printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
495                cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
496                proc_arch[cpu_architecture()], cr_alignment);
497
498         snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
499                  list->arch_name, ENDIANNESS);
500         snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
501                  list->elf_name, ENDIANNESS);
502         elf_hwcap = list->elf_hwcap;
503
504         cpuid_init_hwcaps();
505
506 #ifndef CONFIG_ARM_THUMB
507         elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
508 #endif
509
510         feat_v6_fixup();
511
512         cacheid_init();
513         cpu_init();
514 }
515
516 void __init dump_machine_table(void)
517 {
518         struct machine_desc *p;
519
520         early_print("Available machine support:\n\nID (hex)\tNAME\n");
521         for_each_machine_desc(p)
522                 early_print("%08x\t%s\n", p->nr, p->name);
523
524         early_print("\nPlease check your kernel config and/or bootloader.\n");
525
526         while (true)
527                 /* can't use cpu_relax() here as it may require MMU setup */;
528 }
529
530 int __init arm_add_memory(phys_addr_t start, phys_addr_t size)
531 {
532         struct membank *bank = &meminfo.bank[meminfo.nr_banks];
533
534         if (meminfo.nr_banks >= NR_BANKS) {
535                 printk(KERN_CRIT "NR_BANKS too low, "
536                         "ignoring memory at 0x%08llx\n", (long long)start);
537                 return -EINVAL;
538         }
539
540         /*
541          * Ensure that start/size are aligned to a page boundary.
542          * Size is appropriately rounded down, start is rounded up.
543          */
544         size -= start & ~PAGE_MASK;
545         bank->start = PAGE_ALIGN(start);
546
547 #ifndef CONFIG_ARM_LPAE
548         if (bank->start + size < bank->start) {
549                 printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
550                         "32-bit physical address space\n", (long long)start);
551                 /*
552                  * To ensure bank->start + bank->size is representable in
553                  * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
554                  * This means we lose a page after masking.
555                  */
556                 size = ULONG_MAX - bank->start;
557         }
558 #endif
559
560         bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
561
562         /*
563          * Check whether this memory region has non-zero size or
564          * invalid node number.
565          */
566         if (bank->size == 0)
567                 return -EINVAL;
568
569         meminfo.nr_banks++;
570         return 0;
571 }
572
573 /*
574  * Pick out the memory size.  We look for mem=size@start,
575  * where start and size are "size[KkMm]"
576  */
577 static int __init early_mem(char *p)
578 {
579         static int usermem __initdata = 0;
580         phys_addr_t size;
581         phys_addr_t start;
582         char *endp;
583
584         /*
585          * If the user specifies memory size, we
586          * blow away any automatically generated
587          * size.
588          */
589         if (usermem == 0) {
590                 usermem = 1;
591                 meminfo.nr_banks = 0;
592         }
593
594         start = PHYS_OFFSET;
595         size  = memparse(p, &endp);
596         if (*endp == '@')
597                 start = memparse(endp + 1, NULL);
598
599         arm_add_memory(start, size);
600
601         return 0;
602 }
603 early_param("mem", early_mem);
604
605 static void __init request_standard_resources(struct machine_desc *mdesc)
606 {
607         struct memblock_region *region;
608         struct resource *res;
609
610         kernel_code.start   = virt_to_phys(_text);
611         kernel_code.end     = virt_to_phys(_etext - 1);
612         kernel_data.start   = virt_to_phys(_sdata);
613         kernel_data.end     = virt_to_phys(_end - 1);
614
615         for_each_memblock(memory, region) {
616                 res = alloc_bootmem_low(sizeof(*res));
617                 res->name  = "System RAM";
618                 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
619                 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
620                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
621
622                 request_resource(&iomem_resource, res);
623
624                 if (kernel_code.start >= res->start &&
625                     kernel_code.end <= res->end)
626                         request_resource(res, &kernel_code);
627                 if (kernel_data.start >= res->start &&
628                     kernel_data.end <= res->end)
629                         request_resource(res, &kernel_data);
630         }
631
632         if (mdesc->video_start) {
633                 video_ram.start = mdesc->video_start;
634                 video_ram.end   = mdesc->video_end;
635                 request_resource(&iomem_resource, &video_ram);
636         }
637
638         /*
639          * Some machines don't have the possibility of ever
640          * possessing lp0, lp1 or lp2
641          */
642         if (mdesc->reserve_lp0)
643                 request_resource(&ioport_resource, &lp0);
644         if (mdesc->reserve_lp1)
645                 request_resource(&ioport_resource, &lp1);
646         if (mdesc->reserve_lp2)
647                 request_resource(&ioport_resource, &lp2);
648 }
649
650 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
651 struct screen_info screen_info = {
652  .orig_video_lines      = 30,
653  .orig_video_cols       = 80,
654  .orig_video_mode       = 0,
655  .orig_video_ega_bx     = 0,
656  .orig_video_isVGA      = 1,
657  .orig_video_points     = 8
658 };
659 #endif
660
661 static int __init customize_machine(void)
662 {
663         /*
664          * customizes platform devices, or adds new ones
665          * On DT based machines, we fall back to populating the
666          * machine from the device tree, if no callback is provided,
667          * otherwise we would always need an init_machine callback.
668          */
669         if (machine_desc->init_machine)
670                 machine_desc->init_machine();
671 #ifdef CONFIG_OF
672         else
673                 of_platform_populate(NULL, of_default_bus_match_table,
674                                         NULL, NULL);
675 #endif
676         return 0;
677 }
678 arch_initcall(customize_machine);
679
680 static int __init init_machine_late(void)
681 {
682         if (machine_desc->init_late)
683                 machine_desc->init_late();
684         return 0;
685 }
686 late_initcall(init_machine_late);
687
688 #ifdef CONFIG_KEXEC
689 static inline unsigned long long get_total_mem(void)
690 {
691         unsigned long total;
692
693         total = max_low_pfn - min_low_pfn;
694         return total << PAGE_SHIFT;
695 }
696
697 /**
698  * reserve_crashkernel() - reserves memory are for crash kernel
699  *
700  * This function reserves memory area given in "crashkernel=" kernel command
701  * line parameter. The memory reserved is used by a dump capture kernel when
702  * primary kernel is crashing.
703  */
704 static void __init reserve_crashkernel(void)
705 {
706         unsigned long long crash_size, crash_base;
707         unsigned long long total_mem;
708         int ret;
709
710         total_mem = get_total_mem();
711         ret = parse_crashkernel(boot_command_line, total_mem,
712                                 &crash_size, &crash_base);
713         if (ret)
714                 return;
715
716         ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
717         if (ret < 0) {
718                 printk(KERN_WARNING "crashkernel reservation failed - "
719                        "memory is in use (0x%lx)\n", (unsigned long)crash_base);
720                 return;
721         }
722
723         printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
724                "for crashkernel (System RAM: %ldMB)\n",
725                (unsigned long)(crash_size >> 20),
726                (unsigned long)(crash_base >> 20),
727                (unsigned long)(total_mem >> 20));
728
729         crashk_res.start = crash_base;
730         crashk_res.end = crash_base + crash_size - 1;
731         insert_resource(&iomem_resource, &crashk_res);
732 }
733 #else
734 static inline void reserve_crashkernel(void) {}
735 #endif /* CONFIG_KEXEC */
736
737 static int __init meminfo_cmp(const void *_a, const void *_b)
738 {
739         const struct membank *a = _a, *b = _b;
740         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
741         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
742 }
743
744 void __init hyp_mode_check(void)
745 {
746 #ifdef CONFIG_ARM_VIRT_EXT
747         if (is_hyp_mode_available()) {
748                 pr_info("CPU: All CPU(s) started in HYP mode.\n");
749                 pr_info("CPU: Virtualization extensions available.\n");
750         } else if (is_hyp_mode_mismatched()) {
751                 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
752                         __boot_cpu_mode & MODE_MASK);
753                 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
754         } else
755                 pr_info("CPU: All CPU(s) started in SVC mode.\n");
756 #endif
757 }
758
759 void __init setup_arch(char **cmdline_p)
760 {
761         struct machine_desc *mdesc;
762
763         setup_processor();
764         mdesc = setup_machine_fdt(__atags_pointer);
765         if (!mdesc)
766                 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
767         machine_desc = mdesc;
768         machine_name = mdesc->name;
769
770         setup_dma_zone(mdesc);
771
772         if (mdesc->restart_mode)
773                 reboot_setup(&mdesc->restart_mode);
774
775         init_mm.start_code = (unsigned long) _text;
776         init_mm.end_code   = (unsigned long) _etext;
777         init_mm.end_data   = (unsigned long) _edata;
778         init_mm.brk        = (unsigned long) _end;
779
780         /* populate cmd_line too for later use, preserving boot_command_line */
781         strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
782         *cmdline_p = cmd_line;
783
784         parse_early_param();
785
786         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
787         sanity_check_meminfo();
788         arm_memblock_init(&meminfo, mdesc);
789
790         paging_init(mdesc);
791         request_standard_resources(mdesc);
792
793         if (mdesc->restart)
794                 arm_pm_restart = mdesc->restart;
795
796         unflatten_device_tree();
797
798         arm_dt_init_cpu_maps();
799 #ifdef CONFIG_SMP
800         if (is_smp()) {
801                 smp_set_ops(mdesc->smp);
802                 smp_init_cpus();
803         }
804 #endif
805
806         if (!is_smp())
807                 hyp_mode_check();
808
809         reserve_crashkernel();
810
811 #ifdef CONFIG_MULTI_IRQ_HANDLER
812         handle_arch_irq = mdesc->handle_irq;
813 #endif
814
815 #ifdef CONFIG_VT
816 #if defined(CONFIG_VGA_CONSOLE)
817         conswitchp = &vga_con;
818 #elif defined(CONFIG_DUMMY_CONSOLE)
819         conswitchp = &dummy_con;
820 #endif
821 #endif
822
823         if (mdesc->init_early)
824                 mdesc->init_early();
825 }
826
827
828 static int __init topology_init(void)
829 {
830         int cpu;
831
832         for_each_possible_cpu(cpu) {
833                 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
834                 cpuinfo->cpu.hotpluggable = 1;
835                 register_cpu(&cpuinfo->cpu, cpu);
836         }
837
838         return 0;
839 }
840 subsys_initcall(topology_init);
841
842 #ifdef CONFIG_HAVE_PROC_CPU
843 static int __init proc_cpu_init(void)
844 {
845         struct proc_dir_entry *res;
846
847         res = proc_mkdir("cpu", NULL);
848         if (!res)
849                 return -ENOMEM;
850         return 0;
851 }
852 fs_initcall(proc_cpu_init);
853 #endif
854
855 static const char *hwcap_str[] = {
856         "swp",
857         "half",
858         "thumb",
859         "26bit",
860         "fastmult",
861         "fpa",
862         "vfp",
863         "edsp",
864         "java",
865         "iwmmxt",
866         "crunch",
867         "thumbee",
868         "neon",
869         "vfpv3",
870         "vfpv3d16",
871         "tls",
872         "vfpv4",
873         "idiva",
874         "idivt",
875         NULL
876 };
877
878 static int c_show(struct seq_file *m, void *v)
879 {
880         int i, j;
881         u32 cpuid;
882
883         for_each_online_cpu(i) {
884                 /*
885                  * glibc reads /proc/cpuinfo to determine the number of
886                  * online processors, looking for lines beginning with
887                  * "processor".  Give glibc what it expects.
888                  */
889                 seq_printf(m, "processor\t: %d\n", i);
890                 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
891                 seq_printf(m, "model name\t: %s rev %d (%s)\n",
892                            cpu_name, cpuid & 15, elf_platform);
893
894 #if defined(CONFIG_SMP)
895                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
896                            per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
897                            (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
898 #else
899                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
900                            loops_per_jiffy / (500000/HZ),
901                            (loops_per_jiffy / (5000/HZ)) % 100);
902 #endif
903                 /* dump out the processor features */
904                 seq_puts(m, "Features\t: ");
905
906                 for (j = 0; hwcap_str[j]; j++)
907                         if (elf_hwcap & (1 << j))
908                                 seq_printf(m, "%s ", hwcap_str[j]);
909
910                 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
911                 seq_printf(m, "CPU architecture: %s\n",
912                            proc_arch[cpu_architecture()]);
913
914                 if ((cpuid & 0x0008f000) == 0x00000000) {
915                         /* pre-ARM7 */
916                         seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
917                 } else {
918                         if ((cpuid & 0x0008f000) == 0x00007000) {
919                                 /* ARM7 */
920                                 seq_printf(m, "CPU variant\t: 0x%02x\n",
921                                            (cpuid >> 16) & 127);
922                         } else {
923                                 /* post-ARM7 */
924                                 seq_printf(m, "CPU variant\t: 0x%x\n",
925                                            (cpuid >> 20) & 15);
926                         }
927                         seq_printf(m, "CPU part\t: 0x%03x\n",
928                                    (cpuid >> 4) & 0xfff);
929                 }
930                 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
931         }
932
933         seq_printf(m, "Hardware\t: %s\n", machine_name);
934         seq_printf(m, "Revision\t: %04x\n", system_rev);
935         seq_printf(m, "Serial\t\t: %08x%08x\n",
936                    system_serial_high, system_serial_low);
937
938         return 0;
939 }
940
941 static void *c_start(struct seq_file *m, loff_t *pos)
942 {
943         return *pos < 1 ? (void *)1 : NULL;
944 }
945
946 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
947 {
948         ++*pos;
949         return NULL;
950 }
951
952 static void c_stop(struct seq_file *m, void *v)
953 {
954 }
955
956 const struct seq_operations cpuinfo_op = {
957         .start  = c_start,
958         .next   = c_next,
959         .stop   = c_stop,
960         .show   = c_show
961 };