]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kernel/smp.c
Merge tag 'jfs-3.7' of git://github.com/kleikamp/linux-shaggy
[karo-tx-linux.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/mach/arch.h>
47
48 /*
49  * as from 2.5, kernels no longer have an init_tasks structure
50  * so we need some other way of telling a new secondary core
51  * where to place its SVC stack
52  */
53 struct secondary_data secondary_data;
54
55 /*
56  * control for which core is the next to come out of the secondary
57  * boot "holding pen"
58  */
59 volatile int __cpuinitdata pen_release = -1;
60
61 enum ipi_msg_type {
62         IPI_TIMER = 2,
63         IPI_RESCHEDULE,
64         IPI_CALL_FUNC,
65         IPI_CALL_FUNC_SINGLE,
66         IPI_CPU_STOP,
67 };
68
69 static DECLARE_COMPLETION(cpu_running);
70
71 static struct smp_operations smp_ops;
72
73 void __init smp_set_ops(struct smp_operations *ops)
74 {
75         if (ops)
76                 smp_ops = *ops;
77 };
78
79 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
80 {
81         int ret;
82
83         /*
84          * We need to tell the secondary core where to find
85          * its stack and the page tables.
86          */
87         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
88         secondary_data.pgdir = virt_to_phys(idmap_pgd);
89         secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
90         __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
91         outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
92
93         /*
94          * Now bring the CPU into our world.
95          */
96         ret = boot_secondary(cpu, idle);
97         if (ret == 0) {
98                 /*
99                  * CPU was successfully started, wait for it
100                  * to come online or time out.
101                  */
102                 wait_for_completion_timeout(&cpu_running,
103                                                  msecs_to_jiffies(1000));
104
105                 if (!cpu_online(cpu)) {
106                         pr_crit("CPU%u: failed to come online\n", cpu);
107                         ret = -EIO;
108                 }
109         } else {
110                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
111         }
112
113         secondary_data.stack = NULL;
114         secondary_data.pgdir = 0;
115
116         return ret;
117 }
118
119 /* platform specific SMP operations */
120 void __init smp_init_cpus(void)
121 {
122         if (smp_ops.smp_init_cpus)
123                 smp_ops.smp_init_cpus();
124 }
125
126 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
127 {
128         if (smp_ops.smp_prepare_cpus)
129                 smp_ops.smp_prepare_cpus(max_cpus);
130 }
131
132 static void __cpuinit platform_secondary_init(unsigned int cpu)
133 {
134         if (smp_ops.smp_secondary_init)
135                 smp_ops.smp_secondary_init(cpu);
136 }
137
138 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
139 {
140         if (smp_ops.smp_boot_secondary)
141                 return smp_ops.smp_boot_secondary(cpu, idle);
142         return -ENOSYS;
143 }
144
145 #ifdef CONFIG_HOTPLUG_CPU
146 static void percpu_timer_stop(void);
147
148 static int platform_cpu_kill(unsigned int cpu)
149 {
150         if (smp_ops.cpu_kill)
151                 return smp_ops.cpu_kill(cpu);
152         return 1;
153 }
154
155 static void platform_cpu_die(unsigned int cpu)
156 {
157         if (smp_ops.cpu_die)
158                 smp_ops.cpu_die(cpu);
159 }
160
161 static int platform_cpu_disable(unsigned int cpu)
162 {
163         if (smp_ops.cpu_disable)
164                 return smp_ops.cpu_disable(cpu);
165
166         /*
167          * By default, allow disabling all CPUs except the first one,
168          * since this is special on a lot of platforms, e.g. because
169          * of clock tick interrupts.
170          */
171         return cpu == 0 ? -EPERM : 0;
172 }
173 /*
174  * __cpu_disable runs on the processor to be shutdown.
175  */
176 int __cpuinit __cpu_disable(void)
177 {
178         unsigned int cpu = smp_processor_id();
179         int ret;
180
181         ret = platform_cpu_disable(cpu);
182         if (ret)
183                 return ret;
184
185         /*
186          * Take this CPU offline.  Once we clear this, we can't return,
187          * and we must not schedule until we're ready to give up the cpu.
188          */
189         set_cpu_online(cpu, false);
190
191         /*
192          * OK - migrate IRQs away from this CPU
193          */
194         migrate_irqs();
195
196         /*
197          * Stop the local timer for this CPU.
198          */
199         percpu_timer_stop();
200
201         /*
202          * Flush user cache and TLB mappings, and then remove this CPU
203          * from the vm mask set of all processes.
204          */
205         flush_cache_all();
206         local_flush_tlb_all();
207
208         clear_tasks_mm_cpumask(cpu);
209
210         return 0;
211 }
212
213 static DECLARE_COMPLETION(cpu_died);
214
215 /*
216  * called on the thread which is asking for a CPU to be shutdown -
217  * waits until shutdown has completed, or it is timed out.
218  */
219 void __cpuinit __cpu_die(unsigned int cpu)
220 {
221         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
222                 pr_err("CPU%u: cpu didn't die\n", cpu);
223                 return;
224         }
225         printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
226
227         if (!platform_cpu_kill(cpu))
228                 printk("CPU%u: unable to kill\n", cpu);
229 }
230
231 /*
232  * Called from the idle thread for the CPU which has been shutdown.
233  *
234  * Note that we disable IRQs here, but do not re-enable them
235  * before returning to the caller. This is also the behaviour
236  * of the other hotplug-cpu capable cores, so presumably coming
237  * out of idle fixes this.
238  */
239 void __ref cpu_die(void)
240 {
241         unsigned int cpu = smp_processor_id();
242
243         idle_task_exit();
244
245         local_irq_disable();
246         mb();
247
248         /* Tell __cpu_die() that this CPU is now safe to dispose of */
249         RCU_NONIDLE(complete(&cpu_died));
250
251         /*
252          * actual CPU shutdown procedure is at least platform (if not
253          * CPU) specific.
254          */
255         platform_cpu_die(cpu);
256
257         /*
258          * Do not return to the idle loop - jump back to the secondary
259          * cpu initialisation.  There's some initialisation which needs
260          * to be repeated to undo the effects of taking the CPU offline.
261          */
262         __asm__("mov    sp, %0\n"
263         "       mov     fp, #0\n"
264         "       b       secondary_start_kernel"
265                 :
266                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
267 }
268 #endif /* CONFIG_HOTPLUG_CPU */
269
270 /*
271  * Called by both boot and secondaries to move global data into
272  * per-processor storage.
273  */
274 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
275 {
276         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
277
278         cpu_info->loops_per_jiffy = loops_per_jiffy;
279
280         store_cpu_topology(cpuid);
281 }
282
283 static void percpu_timer_setup(void);
284
285 /*
286  * This is the secondary CPU boot entry.  We're using this CPUs
287  * idle thread stack, but a set of temporary page tables.
288  */
289 asmlinkage void __cpuinit secondary_start_kernel(void)
290 {
291         struct mm_struct *mm = &init_mm;
292         unsigned int cpu = smp_processor_id();
293
294         /*
295          * All kernel threads share the same mm context; grab a
296          * reference and switch to it.
297          */
298         atomic_inc(&mm->mm_count);
299         current->active_mm = mm;
300         cpumask_set_cpu(cpu, mm_cpumask(mm));
301         cpu_switch_mm(mm->pgd, mm);
302         enter_lazy_tlb(mm, current);
303         local_flush_tlb_all();
304
305         printk("CPU%u: Booted secondary processor\n", cpu);
306
307         cpu_init();
308         preempt_disable();
309         trace_hardirqs_off();
310
311         /*
312          * Give the platform a chance to do its own initialisation.
313          */
314         platform_secondary_init(cpu);
315
316         notify_cpu_starting(cpu);
317
318         calibrate_delay();
319
320         smp_store_cpu_info(cpu);
321
322         /*
323          * OK, now it's safe to let the boot CPU continue.  Wait for
324          * the CPU migration code to notice that the CPU is online
325          * before we continue - which happens after __cpu_up returns.
326          */
327         set_cpu_online(cpu, true);
328         complete(&cpu_running);
329
330         /*
331          * Setup the percpu timer for this CPU.
332          */
333         percpu_timer_setup();
334
335         local_irq_enable();
336         local_fiq_enable();
337
338         /*
339          * OK, it's off to the idle thread for us
340          */
341         cpu_idle();
342 }
343
344 void __init smp_cpus_done(unsigned int max_cpus)
345 {
346         int cpu;
347         unsigned long bogosum = 0;
348
349         for_each_online_cpu(cpu)
350                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
351
352         printk(KERN_INFO "SMP: Total of %d processors activated "
353                "(%lu.%02lu BogoMIPS).\n",
354                num_online_cpus(),
355                bogosum / (500000/HZ),
356                (bogosum / (5000/HZ)) % 100);
357 }
358
359 void __init smp_prepare_boot_cpu(void)
360 {
361 }
362
363 void __init smp_prepare_cpus(unsigned int max_cpus)
364 {
365         unsigned int ncores = num_possible_cpus();
366
367         init_cpu_topology();
368
369         smp_store_cpu_info(smp_processor_id());
370
371         /*
372          * are we trying to boot more cores than exist?
373          */
374         if (max_cpus > ncores)
375                 max_cpus = ncores;
376         if (ncores > 1 && max_cpus) {
377                 /*
378                  * Enable the local timer or broadcast device for the
379                  * boot CPU, but only if we have more than one CPU.
380                  */
381                 percpu_timer_setup();
382
383                 /*
384                  * Initialise the present map, which describes the set of CPUs
385                  * actually populated at the present time. A platform should
386                  * re-initialize the map in platform_smp_prepare_cpus() if
387                  * present != possible (e.g. physical hotplug).
388                  */
389                 init_cpu_present(cpu_possible_mask);
390
391                 /*
392                  * Initialise the SCU if there are more than one CPU
393                  * and let them know where to start.
394                  */
395                 platform_smp_prepare_cpus(max_cpus);
396         }
397 }
398
399 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
400
401 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
402 {
403         smp_cross_call = fn;
404 }
405
406 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
407 {
408         smp_cross_call(mask, IPI_CALL_FUNC);
409 }
410
411 void arch_send_call_function_single_ipi(int cpu)
412 {
413         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
414 }
415
416 static const char *ipi_types[NR_IPI] = {
417 #define S(x,s)  [x - IPI_TIMER] = s
418         S(IPI_TIMER, "Timer broadcast interrupts"),
419         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
420         S(IPI_CALL_FUNC, "Function call interrupts"),
421         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
422         S(IPI_CPU_STOP, "CPU stop interrupts"),
423 };
424
425 void show_ipi_list(struct seq_file *p, int prec)
426 {
427         unsigned int cpu, i;
428
429         for (i = 0; i < NR_IPI; i++) {
430                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
431
432                 for_each_present_cpu(cpu)
433                         seq_printf(p, "%10u ",
434                                    __get_irq_stat(cpu, ipi_irqs[i]));
435
436                 seq_printf(p, " %s\n", ipi_types[i]);
437         }
438 }
439
440 u64 smp_irq_stat_cpu(unsigned int cpu)
441 {
442         u64 sum = 0;
443         int i;
444
445         for (i = 0; i < NR_IPI; i++)
446                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
447
448         return sum;
449 }
450
451 /*
452  * Timer (local or broadcast) support
453  */
454 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
455
456 static void ipi_timer(void)
457 {
458         struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
459         evt->event_handler(evt);
460 }
461
462 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
463 static void smp_timer_broadcast(const struct cpumask *mask)
464 {
465         smp_cross_call(mask, IPI_TIMER);
466 }
467 #else
468 #define smp_timer_broadcast     NULL
469 #endif
470
471 static void broadcast_timer_set_mode(enum clock_event_mode mode,
472         struct clock_event_device *evt)
473 {
474 }
475
476 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
477 {
478         evt->name       = "dummy_timer";
479         evt->features   = CLOCK_EVT_FEAT_ONESHOT |
480                           CLOCK_EVT_FEAT_PERIODIC |
481                           CLOCK_EVT_FEAT_DUMMY;
482         evt->rating     = 400;
483         evt->mult       = 1;
484         evt->set_mode   = broadcast_timer_set_mode;
485
486         clockevents_register_device(evt);
487 }
488
489 static struct local_timer_ops *lt_ops;
490
491 #ifdef CONFIG_LOCAL_TIMERS
492 int local_timer_register(struct local_timer_ops *ops)
493 {
494         if (!is_smp() || !setup_max_cpus)
495                 return -ENXIO;
496
497         if (lt_ops)
498                 return -EBUSY;
499
500         lt_ops = ops;
501         return 0;
502 }
503 #endif
504
505 static void __cpuinit percpu_timer_setup(void)
506 {
507         unsigned int cpu = smp_processor_id();
508         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
509
510         evt->cpumask = cpumask_of(cpu);
511         evt->broadcast = smp_timer_broadcast;
512
513         if (!lt_ops || lt_ops->setup(evt))
514                 broadcast_timer_setup(evt);
515 }
516
517 #ifdef CONFIG_HOTPLUG_CPU
518 /*
519  * The generic clock events code purposely does not stop the local timer
520  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
521  * manually here.
522  */
523 static void percpu_timer_stop(void)
524 {
525         unsigned int cpu = smp_processor_id();
526         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
527
528         if (lt_ops)
529                 lt_ops->stop(evt);
530 }
531 #endif
532
533 static DEFINE_RAW_SPINLOCK(stop_lock);
534
535 /*
536  * ipi_cpu_stop - handle IPI from smp_send_stop()
537  */
538 static void ipi_cpu_stop(unsigned int cpu)
539 {
540         if (system_state == SYSTEM_BOOTING ||
541             system_state == SYSTEM_RUNNING) {
542                 raw_spin_lock(&stop_lock);
543                 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
544                 dump_stack();
545                 raw_spin_unlock(&stop_lock);
546         }
547
548         set_cpu_online(cpu, false);
549
550         local_fiq_disable();
551         local_irq_disable();
552
553         while (1)
554                 cpu_relax();
555 }
556
557 /*
558  * Main handler for inter-processor interrupts
559  */
560 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
561 {
562         handle_IPI(ipinr, regs);
563 }
564
565 void handle_IPI(int ipinr, struct pt_regs *regs)
566 {
567         unsigned int cpu = smp_processor_id();
568         struct pt_regs *old_regs = set_irq_regs(regs);
569
570         if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
571                 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
572
573         switch (ipinr) {
574         case IPI_TIMER:
575                 irq_enter();
576                 ipi_timer();
577                 irq_exit();
578                 break;
579
580         case IPI_RESCHEDULE:
581                 scheduler_ipi();
582                 break;
583
584         case IPI_CALL_FUNC:
585                 irq_enter();
586                 generic_smp_call_function_interrupt();
587                 irq_exit();
588                 break;
589
590         case IPI_CALL_FUNC_SINGLE:
591                 irq_enter();
592                 generic_smp_call_function_single_interrupt();
593                 irq_exit();
594                 break;
595
596         case IPI_CPU_STOP:
597                 irq_enter();
598                 ipi_cpu_stop(cpu);
599                 irq_exit();
600                 break;
601
602         default:
603                 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
604                        cpu, ipinr);
605                 break;
606         }
607         set_irq_regs(old_regs);
608 }
609
610 void smp_send_reschedule(int cpu)
611 {
612         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
613 }
614
615 #ifdef CONFIG_HOTPLUG_CPU
616 static void smp_kill_cpus(cpumask_t *mask)
617 {
618         unsigned int cpu;
619         for_each_cpu(cpu, mask)
620                 platform_cpu_kill(cpu);
621 }
622 #else
623 static void smp_kill_cpus(cpumask_t *mask) { }
624 #endif
625
626 void smp_send_stop(void)
627 {
628         unsigned long timeout;
629         struct cpumask mask;
630
631         cpumask_copy(&mask, cpu_online_mask);
632         cpumask_clear_cpu(smp_processor_id(), &mask);
633         if (!cpumask_empty(&mask))
634                 smp_cross_call(&mask, IPI_CPU_STOP);
635
636         /* Wait up to one second for other CPUs to stop */
637         timeout = USEC_PER_SEC;
638         while (num_online_cpus() > 1 && timeout--)
639                 udelay(1);
640
641         if (num_online_cpus() > 1)
642                 pr_warning("SMP: failed to stop secondary CPUs\n");
643
644         smp_kill_cpus(&mask);
645 }
646
647 /*
648  * not supported here
649  */
650 int setup_profiling_timer(unsigned int multiplier)
651 {
652         return -EINVAL;
653 }
654
655 #ifdef CONFIG_CPU_FREQ
656
657 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
658 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
659 static unsigned long global_l_p_j_ref;
660 static unsigned long global_l_p_j_ref_freq;
661
662 static int cpufreq_callback(struct notifier_block *nb,
663                                         unsigned long val, void *data)
664 {
665         struct cpufreq_freqs *freq = data;
666         int cpu = freq->cpu;
667
668         if (freq->flags & CPUFREQ_CONST_LOOPS)
669                 return NOTIFY_OK;
670
671         if (!per_cpu(l_p_j_ref, cpu)) {
672                 per_cpu(l_p_j_ref, cpu) =
673                         per_cpu(cpu_data, cpu).loops_per_jiffy;
674                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
675                 if (!global_l_p_j_ref) {
676                         global_l_p_j_ref = loops_per_jiffy;
677                         global_l_p_j_ref_freq = freq->old;
678                 }
679         }
680
681         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
682             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
683             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
684                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
685                                                 global_l_p_j_ref_freq,
686                                                 freq->new);
687                 per_cpu(cpu_data, cpu).loops_per_jiffy =
688                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
689                                         per_cpu(l_p_j_ref_freq, cpu),
690                                         freq->new);
691         }
692         return NOTIFY_OK;
693 }
694
695 static struct notifier_block cpufreq_notifier = {
696         .notifier_call  = cpufreq_callback,
697 };
698
699 static int __init register_cpufreq_notifier(void)
700 {
701         return cpufreq_register_notifier(&cpufreq_notifier,
702                                                 CPUFREQ_TRANSITION_NOTIFIER);
703 }
704 core_initcall(register_cpufreq_notifier);
705
706 #endif