]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kvm/arm.c
ARM/arm64: KVM: fix use of WnR bit in kvm_is_write_fault()
[karo-tx-linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115         *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123  * kvm_arch_init_vm - initializes a VM data structure
124  * @kvm:        pointer to the KVM struct
125  */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128         int ret = 0;
129
130         if (type)
131                 return -EINVAL;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_timer_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155         return VM_FAULT_SIGBUS;
156 }
157
158
159 /**
160  * kvm_arch_destroy_vm - destroy the VM data structure
161  * @kvm:        pointer to the KVM struct
162  */
163 void kvm_arch_destroy_vm(struct kvm *kvm)
164 {
165         int i;
166
167         kvm_free_stage2_pgd(kvm);
168
169         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
170                 if (kvm->vcpus[i]) {
171                         kvm_arch_vcpu_free(kvm->vcpus[i]);
172                         kvm->vcpus[i] = NULL;
173                 }
174         }
175 }
176
177 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
178 {
179         int r;
180         switch (ext) {
181         case KVM_CAP_IRQCHIP:
182                 r = vgic_present;
183                 break;
184         case KVM_CAP_DEVICE_CTRL:
185         case KVM_CAP_USER_MEMORY:
186         case KVM_CAP_SYNC_MMU:
187         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
188         case KVM_CAP_ONE_REG:
189         case KVM_CAP_ARM_PSCI:
190         case KVM_CAP_ARM_PSCI_0_2:
191         case KVM_CAP_READONLY_MEM:
192                 r = 1;
193                 break;
194         case KVM_CAP_COALESCED_MMIO:
195                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
196                 break;
197         case KVM_CAP_ARM_SET_DEVICE_ADDR:
198                 r = 1;
199                 break;
200         case KVM_CAP_NR_VCPUS:
201                 r = num_online_cpus();
202                 break;
203         case KVM_CAP_MAX_VCPUS:
204                 r = KVM_MAX_VCPUS;
205                 break;
206         default:
207                 r = kvm_arch_dev_ioctl_check_extension(ext);
208                 break;
209         }
210         return r;
211 }
212
213 long kvm_arch_dev_ioctl(struct file *filp,
214                         unsigned int ioctl, unsigned long arg)
215 {
216         return -EINVAL;
217 }
218
219
220 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
221 {
222         int err;
223         struct kvm_vcpu *vcpu;
224
225         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
226         if (!vcpu) {
227                 err = -ENOMEM;
228                 goto out;
229         }
230
231         err = kvm_vcpu_init(vcpu, kvm, id);
232         if (err)
233                 goto free_vcpu;
234
235         err = create_hyp_mappings(vcpu, vcpu + 1);
236         if (err)
237                 goto vcpu_uninit;
238
239         return vcpu;
240 vcpu_uninit:
241         kvm_vcpu_uninit(vcpu);
242 free_vcpu:
243         kmem_cache_free(kvm_vcpu_cache, vcpu);
244 out:
245         return ERR_PTR(err);
246 }
247
248 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
249 {
250         return 0;
251 }
252
253 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
254 {
255         kvm_mmu_free_memory_caches(vcpu);
256         kvm_timer_vcpu_terminate(vcpu);
257         kmem_cache_free(kvm_vcpu_cache, vcpu);
258 }
259
260 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
261 {
262         kvm_arch_vcpu_free(vcpu);
263 }
264
265 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
266 {
267         return 0;
268 }
269
270 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
271 {
272         int ret;
273
274         /* Force users to call KVM_ARM_VCPU_INIT */
275         vcpu->arch.target = -1;
276
277         /* Set up VGIC */
278         ret = kvm_vgic_vcpu_init(vcpu);
279         if (ret)
280                 return ret;
281
282         /* Set up the timer */
283         kvm_timer_vcpu_init(vcpu);
284
285         return 0;
286 }
287
288 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
289 {
290 }
291
292 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
293 {
294 }
295
296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
297 {
298         vcpu->cpu = cpu;
299         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
300
301         /*
302          * Check whether this vcpu requires the cache to be flushed on
303          * this physical CPU. This is a consequence of doing dcache
304          * operations by set/way on this vcpu. We do it here to be in
305          * a non-preemptible section.
306          */
307         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
308                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
309
310         kvm_arm_set_running_vcpu(vcpu);
311 }
312
313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
314 {
315         /*
316          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
317          * if the vcpu is no longer assigned to a cpu.  This is used for the
318          * optimized make_all_cpus_request path.
319          */
320         vcpu->cpu = -1;
321
322         kvm_arm_set_running_vcpu(NULL);
323 }
324
325 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
326                                         struct kvm_guest_debug *dbg)
327 {
328         return -EINVAL;
329 }
330
331
332 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
333                                     struct kvm_mp_state *mp_state)
334 {
335         return -EINVAL;
336 }
337
338 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
339                                     struct kvm_mp_state *mp_state)
340 {
341         return -EINVAL;
342 }
343
344 /**
345  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
346  * @v:          The VCPU pointer
347  *
348  * If the guest CPU is not waiting for interrupts or an interrupt line is
349  * asserted, the CPU is by definition runnable.
350  */
351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
352 {
353         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
354 }
355
356 /* Just ensure a guest exit from a particular CPU */
357 static void exit_vm_noop(void *info)
358 {
359 }
360
361 void force_vm_exit(const cpumask_t *mask)
362 {
363         smp_call_function_many(mask, exit_vm_noop, NULL, true);
364 }
365
366 /**
367  * need_new_vmid_gen - check that the VMID is still valid
368  * @kvm: The VM's VMID to checkt
369  *
370  * return true if there is a new generation of VMIDs being used
371  *
372  * The hardware supports only 256 values with the value zero reserved for the
373  * host, so we check if an assigned value belongs to a previous generation,
374  * which which requires us to assign a new value. If we're the first to use a
375  * VMID for the new generation, we must flush necessary caches and TLBs on all
376  * CPUs.
377  */
378 static bool need_new_vmid_gen(struct kvm *kvm)
379 {
380         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
381 }
382
383 /**
384  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
385  * @kvm The guest that we are about to run
386  *
387  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
388  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
389  * caches and TLBs.
390  */
391 static void update_vttbr(struct kvm *kvm)
392 {
393         phys_addr_t pgd_phys;
394         u64 vmid;
395
396         if (!need_new_vmid_gen(kvm))
397                 return;
398
399         spin_lock(&kvm_vmid_lock);
400
401         /*
402          * We need to re-check the vmid_gen here to ensure that if another vcpu
403          * already allocated a valid vmid for this vm, then this vcpu should
404          * use the same vmid.
405          */
406         if (!need_new_vmid_gen(kvm)) {
407                 spin_unlock(&kvm_vmid_lock);
408                 return;
409         }
410
411         /* First user of a new VMID generation? */
412         if (unlikely(kvm_next_vmid == 0)) {
413                 atomic64_inc(&kvm_vmid_gen);
414                 kvm_next_vmid = 1;
415
416                 /*
417                  * On SMP we know no other CPUs can use this CPU's or each
418                  * other's VMID after force_vm_exit returns since the
419                  * kvm_vmid_lock blocks them from reentry to the guest.
420                  */
421                 force_vm_exit(cpu_all_mask);
422                 /*
423                  * Now broadcast TLB + ICACHE invalidation over the inner
424                  * shareable domain to make sure all data structures are
425                  * clean.
426                  */
427                 kvm_call_hyp(__kvm_flush_vm_context);
428         }
429
430         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
431         kvm->arch.vmid = kvm_next_vmid;
432         kvm_next_vmid++;
433
434         /* update vttbr to be used with the new vmid */
435         pgd_phys = virt_to_phys(kvm->arch.pgd);
436         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
437         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
438         kvm->arch.vttbr |= vmid;
439
440         spin_unlock(&kvm_vmid_lock);
441 }
442
443 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
444 {
445         int ret;
446
447         if (likely(vcpu->arch.has_run_once))
448                 return 0;
449
450         vcpu->arch.has_run_once = true;
451
452         /*
453          * Initialize the VGIC before running a vcpu the first time on
454          * this VM.
455          */
456         if (unlikely(!vgic_initialized(vcpu->kvm))) {
457                 ret = kvm_vgic_init(vcpu->kvm);
458                 if (ret)
459                         return ret;
460         }
461
462         return 0;
463 }
464
465 static void vcpu_pause(struct kvm_vcpu *vcpu)
466 {
467         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
468
469         wait_event_interruptible(*wq, !vcpu->arch.pause);
470 }
471
472 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
473 {
474         return vcpu->arch.target >= 0;
475 }
476
477 /**
478  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
479  * @vcpu:       The VCPU pointer
480  * @run:        The kvm_run structure pointer used for userspace state exchange
481  *
482  * This function is called through the VCPU_RUN ioctl called from user space. It
483  * will execute VM code in a loop until the time slice for the process is used
484  * or some emulation is needed from user space in which case the function will
485  * return with return value 0 and with the kvm_run structure filled in with the
486  * required data for the requested emulation.
487  */
488 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
489 {
490         int ret;
491         sigset_t sigsaved;
492
493         if (unlikely(!kvm_vcpu_initialized(vcpu)))
494                 return -ENOEXEC;
495
496         ret = kvm_vcpu_first_run_init(vcpu);
497         if (ret)
498                 return ret;
499
500         if (run->exit_reason == KVM_EXIT_MMIO) {
501                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
502                 if (ret)
503                         return ret;
504         }
505
506         if (vcpu->sigset_active)
507                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
508
509         ret = 1;
510         run->exit_reason = KVM_EXIT_UNKNOWN;
511         while (ret > 0) {
512                 /*
513                  * Check conditions before entering the guest
514                  */
515                 cond_resched();
516
517                 update_vttbr(vcpu->kvm);
518
519                 if (vcpu->arch.pause)
520                         vcpu_pause(vcpu);
521
522                 kvm_vgic_flush_hwstate(vcpu);
523                 kvm_timer_flush_hwstate(vcpu);
524
525                 local_irq_disable();
526
527                 /*
528                  * Re-check atomic conditions
529                  */
530                 if (signal_pending(current)) {
531                         ret = -EINTR;
532                         run->exit_reason = KVM_EXIT_INTR;
533                 }
534
535                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
536                         local_irq_enable();
537                         kvm_timer_sync_hwstate(vcpu);
538                         kvm_vgic_sync_hwstate(vcpu);
539                         continue;
540                 }
541
542                 /**************************************************************
543                  * Enter the guest
544                  */
545                 trace_kvm_entry(*vcpu_pc(vcpu));
546                 kvm_guest_enter();
547                 vcpu->mode = IN_GUEST_MODE;
548
549                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
550
551                 vcpu->mode = OUTSIDE_GUEST_MODE;
552                 vcpu->arch.last_pcpu = smp_processor_id();
553                 kvm_guest_exit();
554                 trace_kvm_exit(*vcpu_pc(vcpu));
555                 /*
556                  * We may have taken a host interrupt in HYP mode (ie
557                  * while executing the guest). This interrupt is still
558                  * pending, as we haven't serviced it yet!
559                  *
560                  * We're now back in SVC mode, with interrupts
561                  * disabled.  Enabling the interrupts now will have
562                  * the effect of taking the interrupt again, in SVC
563                  * mode this time.
564                  */
565                 local_irq_enable();
566
567                 /*
568                  * Back from guest
569                  *************************************************************/
570
571                 kvm_timer_sync_hwstate(vcpu);
572                 kvm_vgic_sync_hwstate(vcpu);
573
574                 ret = handle_exit(vcpu, run, ret);
575         }
576
577         if (vcpu->sigset_active)
578                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
579         return ret;
580 }
581
582 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
583 {
584         int bit_index;
585         bool set;
586         unsigned long *ptr;
587
588         if (number == KVM_ARM_IRQ_CPU_IRQ)
589                 bit_index = __ffs(HCR_VI);
590         else /* KVM_ARM_IRQ_CPU_FIQ */
591                 bit_index = __ffs(HCR_VF);
592
593         ptr = (unsigned long *)&vcpu->arch.irq_lines;
594         if (level)
595                 set = test_and_set_bit(bit_index, ptr);
596         else
597                 set = test_and_clear_bit(bit_index, ptr);
598
599         /*
600          * If we didn't change anything, no need to wake up or kick other CPUs
601          */
602         if (set == level)
603                 return 0;
604
605         /*
606          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
607          * trigger a world-switch round on the running physical CPU to set the
608          * virtual IRQ/FIQ fields in the HCR appropriately.
609          */
610         kvm_vcpu_kick(vcpu);
611
612         return 0;
613 }
614
615 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
616                           bool line_status)
617 {
618         u32 irq = irq_level->irq;
619         unsigned int irq_type, vcpu_idx, irq_num;
620         int nrcpus = atomic_read(&kvm->online_vcpus);
621         struct kvm_vcpu *vcpu = NULL;
622         bool level = irq_level->level;
623
624         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
625         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
626         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
627
628         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
629
630         switch (irq_type) {
631         case KVM_ARM_IRQ_TYPE_CPU:
632                 if (irqchip_in_kernel(kvm))
633                         return -ENXIO;
634
635                 if (vcpu_idx >= nrcpus)
636                         return -EINVAL;
637
638                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
639                 if (!vcpu)
640                         return -EINVAL;
641
642                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
643                         return -EINVAL;
644
645                 return vcpu_interrupt_line(vcpu, irq_num, level);
646         case KVM_ARM_IRQ_TYPE_PPI:
647                 if (!irqchip_in_kernel(kvm))
648                         return -ENXIO;
649
650                 if (vcpu_idx >= nrcpus)
651                         return -EINVAL;
652
653                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
654                 if (!vcpu)
655                         return -EINVAL;
656
657                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
658                         return -EINVAL;
659
660                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
661         case KVM_ARM_IRQ_TYPE_SPI:
662                 if (!irqchip_in_kernel(kvm))
663                         return -ENXIO;
664
665                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
666                     irq_num > KVM_ARM_IRQ_GIC_MAX)
667                         return -EINVAL;
668
669                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
670         }
671
672         return -EINVAL;
673 }
674
675 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
676                                          struct kvm_vcpu_init *init)
677 {
678         int ret;
679
680         ret = kvm_vcpu_set_target(vcpu, init);
681         if (ret)
682                 return ret;
683
684         /*
685          * Handle the "start in power-off" case by marking the VCPU as paused.
686          */
687         if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
688                 vcpu->arch.pause = true;
689
690         return 0;
691 }
692
693 long kvm_arch_vcpu_ioctl(struct file *filp,
694                          unsigned int ioctl, unsigned long arg)
695 {
696         struct kvm_vcpu *vcpu = filp->private_data;
697         void __user *argp = (void __user *)arg;
698
699         switch (ioctl) {
700         case KVM_ARM_VCPU_INIT: {
701                 struct kvm_vcpu_init init;
702
703                 if (copy_from_user(&init, argp, sizeof(init)))
704                         return -EFAULT;
705
706                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
707         }
708         case KVM_SET_ONE_REG:
709         case KVM_GET_ONE_REG: {
710                 struct kvm_one_reg reg;
711
712                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
713                         return -ENOEXEC;
714
715                 if (copy_from_user(&reg, argp, sizeof(reg)))
716                         return -EFAULT;
717                 if (ioctl == KVM_SET_ONE_REG)
718                         return kvm_arm_set_reg(vcpu, &reg);
719                 else
720                         return kvm_arm_get_reg(vcpu, &reg);
721         }
722         case KVM_GET_REG_LIST: {
723                 struct kvm_reg_list __user *user_list = argp;
724                 struct kvm_reg_list reg_list;
725                 unsigned n;
726
727                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
728                         return -ENOEXEC;
729
730                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
731                         return -EFAULT;
732                 n = reg_list.n;
733                 reg_list.n = kvm_arm_num_regs(vcpu);
734                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
735                         return -EFAULT;
736                 if (n < reg_list.n)
737                         return -E2BIG;
738                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
739         }
740         default:
741                 return -EINVAL;
742         }
743 }
744
745 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
746 {
747         return -EINVAL;
748 }
749
750 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
751                                         struct kvm_arm_device_addr *dev_addr)
752 {
753         unsigned long dev_id, type;
754
755         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
756                 KVM_ARM_DEVICE_ID_SHIFT;
757         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
758                 KVM_ARM_DEVICE_TYPE_SHIFT;
759
760         switch (dev_id) {
761         case KVM_ARM_DEVICE_VGIC_V2:
762                 if (!vgic_present)
763                         return -ENXIO;
764                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
765         default:
766                 return -ENODEV;
767         }
768 }
769
770 long kvm_arch_vm_ioctl(struct file *filp,
771                        unsigned int ioctl, unsigned long arg)
772 {
773         struct kvm *kvm = filp->private_data;
774         void __user *argp = (void __user *)arg;
775
776         switch (ioctl) {
777         case KVM_CREATE_IRQCHIP: {
778                 if (vgic_present)
779                         return kvm_vgic_create(kvm);
780                 else
781                         return -ENXIO;
782         }
783         case KVM_ARM_SET_DEVICE_ADDR: {
784                 struct kvm_arm_device_addr dev_addr;
785
786                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
787                         return -EFAULT;
788                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
789         }
790         case KVM_ARM_PREFERRED_TARGET: {
791                 int err;
792                 struct kvm_vcpu_init init;
793
794                 err = kvm_vcpu_preferred_target(&init);
795                 if (err)
796                         return err;
797
798                 if (copy_to_user(argp, &init, sizeof(init)))
799                         return -EFAULT;
800
801                 return 0;
802         }
803         default:
804                 return -EINVAL;
805         }
806 }
807
808 static void cpu_init_hyp_mode(void *dummy)
809 {
810         phys_addr_t boot_pgd_ptr;
811         phys_addr_t pgd_ptr;
812         unsigned long hyp_stack_ptr;
813         unsigned long stack_page;
814         unsigned long vector_ptr;
815
816         /* Switch from the HYP stub to our own HYP init vector */
817         __hyp_set_vectors(kvm_get_idmap_vector());
818
819         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
820         pgd_ptr = kvm_mmu_get_httbr();
821         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
822         hyp_stack_ptr = stack_page + PAGE_SIZE;
823         vector_ptr = (unsigned long)__kvm_hyp_vector;
824
825         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
826 }
827
828 static int hyp_init_cpu_notify(struct notifier_block *self,
829                                unsigned long action, void *cpu)
830 {
831         switch (action) {
832         case CPU_STARTING:
833         case CPU_STARTING_FROZEN:
834                 cpu_init_hyp_mode(NULL);
835                 break;
836         }
837
838         return NOTIFY_OK;
839 }
840
841 static struct notifier_block hyp_init_cpu_nb = {
842         .notifier_call = hyp_init_cpu_notify,
843 };
844
845 #ifdef CONFIG_CPU_PM
846 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
847                                     unsigned long cmd,
848                                     void *v)
849 {
850         if (cmd == CPU_PM_EXIT &&
851             __hyp_get_vectors() == hyp_default_vectors) {
852                 cpu_init_hyp_mode(NULL);
853                 return NOTIFY_OK;
854         }
855
856         return NOTIFY_DONE;
857 }
858
859 static struct notifier_block hyp_init_cpu_pm_nb = {
860         .notifier_call = hyp_init_cpu_pm_notifier,
861 };
862
863 static void __init hyp_cpu_pm_init(void)
864 {
865         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
866 }
867 #else
868 static inline void hyp_cpu_pm_init(void)
869 {
870 }
871 #endif
872
873 /**
874  * Inits Hyp-mode on all online CPUs
875  */
876 static int init_hyp_mode(void)
877 {
878         int cpu;
879         int err = 0;
880
881         /*
882          * Allocate Hyp PGD and setup Hyp identity mapping
883          */
884         err = kvm_mmu_init();
885         if (err)
886                 goto out_err;
887
888         /*
889          * It is probably enough to obtain the default on one
890          * CPU. It's unlikely to be different on the others.
891          */
892         hyp_default_vectors = __hyp_get_vectors();
893
894         /*
895          * Allocate stack pages for Hypervisor-mode
896          */
897         for_each_possible_cpu(cpu) {
898                 unsigned long stack_page;
899
900                 stack_page = __get_free_page(GFP_KERNEL);
901                 if (!stack_page) {
902                         err = -ENOMEM;
903                         goto out_free_stack_pages;
904                 }
905
906                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
907         }
908
909         /*
910          * Map the Hyp-code called directly from the host
911          */
912         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
913         if (err) {
914                 kvm_err("Cannot map world-switch code\n");
915                 goto out_free_mappings;
916         }
917
918         /*
919          * Map the Hyp stack pages
920          */
921         for_each_possible_cpu(cpu) {
922                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
923                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
924
925                 if (err) {
926                         kvm_err("Cannot map hyp stack\n");
927                         goto out_free_mappings;
928                 }
929         }
930
931         /*
932          * Map the host CPU structures
933          */
934         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
935         if (!kvm_host_cpu_state) {
936                 err = -ENOMEM;
937                 kvm_err("Cannot allocate host CPU state\n");
938                 goto out_free_mappings;
939         }
940
941         for_each_possible_cpu(cpu) {
942                 kvm_cpu_context_t *cpu_ctxt;
943
944                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
945                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
946
947                 if (err) {
948                         kvm_err("Cannot map host CPU state: %d\n", err);
949                         goto out_free_context;
950                 }
951         }
952
953         /*
954          * Execute the init code on each CPU.
955          */
956         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
957
958         /*
959          * Init HYP view of VGIC
960          */
961         err = kvm_vgic_hyp_init();
962         if (err)
963                 goto out_free_context;
964
965 #ifdef CONFIG_KVM_ARM_VGIC
966                 vgic_present = true;
967 #endif
968
969         /*
970          * Init HYP architected timer support
971          */
972         err = kvm_timer_hyp_init();
973         if (err)
974                 goto out_free_mappings;
975
976 #ifndef CONFIG_HOTPLUG_CPU
977         free_boot_hyp_pgd();
978 #endif
979
980         kvm_perf_init();
981
982         kvm_info("Hyp mode initialized successfully\n");
983
984         return 0;
985 out_free_context:
986         free_percpu(kvm_host_cpu_state);
987 out_free_mappings:
988         free_hyp_pgds();
989 out_free_stack_pages:
990         for_each_possible_cpu(cpu)
991                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
992 out_err:
993         kvm_err("error initializing Hyp mode: %d\n", err);
994         return err;
995 }
996
997 static void check_kvm_target_cpu(void *ret)
998 {
999         *(int *)ret = kvm_target_cpu();
1000 }
1001
1002 /**
1003  * Initialize Hyp-mode and memory mappings on all CPUs.
1004  */
1005 int kvm_arch_init(void *opaque)
1006 {
1007         int err;
1008         int ret, cpu;
1009
1010         if (!is_hyp_mode_available()) {
1011                 kvm_err("HYP mode not available\n");
1012                 return -ENODEV;
1013         }
1014
1015         for_each_online_cpu(cpu) {
1016                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1017                 if (ret < 0) {
1018                         kvm_err("Error, CPU %d not supported!\n", cpu);
1019                         return -ENODEV;
1020                 }
1021         }
1022
1023         cpu_notifier_register_begin();
1024
1025         err = init_hyp_mode();
1026         if (err)
1027                 goto out_err;
1028
1029         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1030         if (err) {
1031                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1032                 goto out_err;
1033         }
1034
1035         cpu_notifier_register_done();
1036
1037         hyp_cpu_pm_init();
1038
1039         kvm_coproc_table_init();
1040         return 0;
1041 out_err:
1042         cpu_notifier_register_done();
1043         return err;
1044 }
1045
1046 /* NOP: Compiling as a module not supported */
1047 void kvm_arch_exit(void)
1048 {
1049         kvm_perf_teardown();
1050 }
1051
1052 static int arm_init(void)
1053 {
1054         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1055         return rc;
1056 }
1057
1058 module_init(arm_init);