]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kvm/arm.c
Merge tag 'for-linus-20161216' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <asm/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73         BUG_ON(preemptible());
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79  * Must be called from non-preemptible context
80  */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83         BUG_ON(preemptible());
84         return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89  */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92         return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102         return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107         *(int *)rtn = 0;
108 }
109
110
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:        pointer to the KVM struct
114  */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117         int ret, cpu;
118
119         if (type)
120                 return -EINVAL;
121
122         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123         if (!kvm->arch.last_vcpu_ran)
124                 return -ENOMEM;
125
126         for_each_possible_cpu(cpu)
127                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129         ret = kvm_alloc_stage2_pgd(kvm);
130         if (ret)
131                 goto out_fail_alloc;
132
133         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134         if (ret)
135                 goto out_free_stage2_pgd;
136
137         kvm_vgic_early_init(kvm);
138         kvm_timer_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         free_percpu(kvm->arch.last_vcpu_ran);
181         kvm->arch.last_vcpu_ran = NULL;
182
183         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
184                 if (kvm->vcpus[i]) {
185                         kvm_arch_vcpu_free(kvm->vcpus[i]);
186                         kvm->vcpus[i] = NULL;
187                 }
188         }
189
190         kvm_vgic_destroy(kvm);
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210                 r = 1;
211                 break;
212         case KVM_CAP_COALESCED_MMIO:
213                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214                 break;
215         case KVM_CAP_ARM_SET_DEVICE_ADDR:
216                 r = 1;
217                 break;
218         case KVM_CAP_NR_VCPUS:
219                 r = num_online_cpus();
220                 break;
221         case KVM_CAP_MAX_VCPUS:
222                 r = KVM_MAX_VCPUS;
223                 break;
224         case KVM_CAP_MSI_DEVID:
225                 if (!kvm)
226                         r = -EINVAL;
227                 else
228                         r = kvm->arch.vgic.msis_require_devid;
229                 break;
230         default:
231                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
232                 break;
233         }
234         return r;
235 }
236
237 long kvm_arch_dev_ioctl(struct file *filp,
238                         unsigned int ioctl, unsigned long arg)
239 {
240         return -EINVAL;
241 }
242
243
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246         int err;
247         struct kvm_vcpu *vcpu;
248
249         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
250                 err = -EBUSY;
251                 goto out;
252         }
253
254         if (id >= kvm->arch.max_vcpus) {
255                 err = -EINVAL;
256                 goto out;
257         }
258
259         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
260         if (!vcpu) {
261                 err = -ENOMEM;
262                 goto out;
263         }
264
265         err = kvm_vcpu_init(vcpu, kvm, id);
266         if (err)
267                 goto free_vcpu;
268
269         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
270         if (err)
271                 goto vcpu_uninit;
272
273         return vcpu;
274 vcpu_uninit:
275         kvm_vcpu_uninit(vcpu);
276 free_vcpu:
277         kmem_cache_free(kvm_vcpu_cache, vcpu);
278 out:
279         return ERR_PTR(err);
280 }
281
282 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
283 {
284         kvm_vgic_vcpu_early_init(vcpu);
285 }
286
287 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
288 {
289         kvm_mmu_free_memory_caches(vcpu);
290         kvm_timer_vcpu_terminate(vcpu);
291         kvm_vgic_vcpu_destroy(vcpu);
292         kvm_pmu_vcpu_destroy(vcpu);
293         kvm_vcpu_uninit(vcpu);
294         kmem_cache_free(kvm_vcpu_cache, vcpu);
295 }
296
297 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
298 {
299         kvm_arch_vcpu_free(vcpu);
300 }
301
302 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
303 {
304         return kvm_timer_should_fire(vcpu);
305 }
306
307 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
308 {
309         kvm_timer_schedule(vcpu);
310 }
311
312 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
313 {
314         kvm_timer_unschedule(vcpu);
315 }
316
317 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
318 {
319         /* Force users to call KVM_ARM_VCPU_INIT */
320         vcpu->arch.target = -1;
321         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
322
323         /* Set up the timer */
324         kvm_timer_vcpu_init(vcpu);
325
326         kvm_arm_reset_debug_ptr(vcpu);
327
328         return 0;
329 }
330
331 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
332 {
333         int *last_ran;
334
335         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
336
337         /*
338          * We might get preempted before the vCPU actually runs, but
339          * over-invalidation doesn't affect correctness.
340          */
341         if (*last_ran != vcpu->vcpu_id) {
342                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
343                 *last_ran = vcpu->vcpu_id;
344         }
345
346         vcpu->cpu = cpu;
347         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
348
349         kvm_arm_set_running_vcpu(vcpu);
350 }
351
352 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
353 {
354         /*
355          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
356          * if the vcpu is no longer assigned to a cpu.  This is used for the
357          * optimized make_all_cpus_request path.
358          */
359         vcpu->cpu = -1;
360
361         kvm_arm_set_running_vcpu(NULL);
362         kvm_timer_vcpu_put(vcpu);
363 }
364
365 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
366                                     struct kvm_mp_state *mp_state)
367 {
368         if (vcpu->arch.power_off)
369                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
370         else
371                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
372
373         return 0;
374 }
375
376 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
377                                     struct kvm_mp_state *mp_state)
378 {
379         switch (mp_state->mp_state) {
380         case KVM_MP_STATE_RUNNABLE:
381                 vcpu->arch.power_off = false;
382                 break;
383         case KVM_MP_STATE_STOPPED:
384                 vcpu->arch.power_off = true;
385                 break;
386         default:
387                 return -EINVAL;
388         }
389
390         return 0;
391 }
392
393 /**
394  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
395  * @v:          The VCPU pointer
396  *
397  * If the guest CPU is not waiting for interrupts or an interrupt line is
398  * asserted, the CPU is by definition runnable.
399  */
400 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
401 {
402         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
403                 && !v->arch.power_off && !v->arch.pause);
404 }
405
406 /* Just ensure a guest exit from a particular CPU */
407 static void exit_vm_noop(void *info)
408 {
409 }
410
411 void force_vm_exit(const cpumask_t *mask)
412 {
413         preempt_disable();
414         smp_call_function_many(mask, exit_vm_noop, NULL, true);
415         preempt_enable();
416 }
417
418 /**
419  * need_new_vmid_gen - check that the VMID is still valid
420  * @kvm: The VM's VMID to check
421  *
422  * return true if there is a new generation of VMIDs being used
423  *
424  * The hardware supports only 256 values with the value zero reserved for the
425  * host, so we check if an assigned value belongs to a previous generation,
426  * which which requires us to assign a new value. If we're the first to use a
427  * VMID for the new generation, we must flush necessary caches and TLBs on all
428  * CPUs.
429  */
430 static bool need_new_vmid_gen(struct kvm *kvm)
431 {
432         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
433 }
434
435 /**
436  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
437  * @kvm The guest that we are about to run
438  *
439  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
440  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
441  * caches and TLBs.
442  */
443 static void update_vttbr(struct kvm *kvm)
444 {
445         phys_addr_t pgd_phys;
446         u64 vmid;
447
448         if (!need_new_vmid_gen(kvm))
449                 return;
450
451         spin_lock(&kvm_vmid_lock);
452
453         /*
454          * We need to re-check the vmid_gen here to ensure that if another vcpu
455          * already allocated a valid vmid for this vm, then this vcpu should
456          * use the same vmid.
457          */
458         if (!need_new_vmid_gen(kvm)) {
459                 spin_unlock(&kvm_vmid_lock);
460                 return;
461         }
462
463         /* First user of a new VMID generation? */
464         if (unlikely(kvm_next_vmid == 0)) {
465                 atomic64_inc(&kvm_vmid_gen);
466                 kvm_next_vmid = 1;
467
468                 /*
469                  * On SMP we know no other CPUs can use this CPU's or each
470                  * other's VMID after force_vm_exit returns since the
471                  * kvm_vmid_lock blocks them from reentry to the guest.
472                  */
473                 force_vm_exit(cpu_all_mask);
474                 /*
475                  * Now broadcast TLB + ICACHE invalidation over the inner
476                  * shareable domain to make sure all data structures are
477                  * clean.
478                  */
479                 kvm_call_hyp(__kvm_flush_vm_context);
480         }
481
482         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
483         kvm->arch.vmid = kvm_next_vmid;
484         kvm_next_vmid++;
485         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
486
487         /* update vttbr to be used with the new vmid */
488         pgd_phys = virt_to_phys(kvm->arch.pgd);
489         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
490         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
491         kvm->arch.vttbr = pgd_phys | vmid;
492
493         spin_unlock(&kvm_vmid_lock);
494 }
495
496 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
497 {
498         struct kvm *kvm = vcpu->kvm;
499         int ret = 0;
500
501         if (likely(vcpu->arch.has_run_once))
502                 return 0;
503
504         vcpu->arch.has_run_once = true;
505
506         /*
507          * Map the VGIC hardware resources before running a vcpu the first
508          * time on this VM.
509          */
510         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
511                 ret = kvm_vgic_map_resources(kvm);
512                 if (ret)
513                         return ret;
514         }
515
516         /*
517          * Enable the arch timers only if we have an in-kernel VGIC
518          * and it has been properly initialized, since we cannot handle
519          * interrupts from the virtual timer with a userspace gic.
520          */
521         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
522                 ret = kvm_timer_enable(vcpu);
523
524         return ret;
525 }
526
527 bool kvm_arch_intc_initialized(struct kvm *kvm)
528 {
529         return vgic_initialized(kvm);
530 }
531
532 void kvm_arm_halt_guest(struct kvm *kvm)
533 {
534         int i;
535         struct kvm_vcpu *vcpu;
536
537         kvm_for_each_vcpu(i, vcpu, kvm)
538                 vcpu->arch.pause = true;
539         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
540 }
541
542 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
543 {
544         vcpu->arch.pause = true;
545         kvm_vcpu_kick(vcpu);
546 }
547
548 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
549 {
550         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
551
552         vcpu->arch.pause = false;
553         swake_up(wq);
554 }
555
556 void kvm_arm_resume_guest(struct kvm *kvm)
557 {
558         int i;
559         struct kvm_vcpu *vcpu;
560
561         kvm_for_each_vcpu(i, vcpu, kvm)
562                 kvm_arm_resume_vcpu(vcpu);
563 }
564
565 static void vcpu_sleep(struct kvm_vcpu *vcpu)
566 {
567         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
568
569         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
570                                        (!vcpu->arch.pause)));
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575         return vcpu->arch.target >= 0;
576 }
577
578 /**
579  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
580  * @vcpu:       The VCPU pointer
581  * @run:        The kvm_run structure pointer used for userspace state exchange
582  *
583  * This function is called through the VCPU_RUN ioctl called from user space. It
584  * will execute VM code in a loop until the time slice for the process is used
585  * or some emulation is needed from user space in which case the function will
586  * return with return value 0 and with the kvm_run structure filled in with the
587  * required data for the requested emulation.
588  */
589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
590 {
591         int ret;
592         sigset_t sigsaved;
593
594         if (unlikely(!kvm_vcpu_initialized(vcpu)))
595                 return -ENOEXEC;
596
597         ret = kvm_vcpu_first_run_init(vcpu);
598         if (ret)
599                 return ret;
600
601         if (run->exit_reason == KVM_EXIT_MMIO) {
602                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
603                 if (ret)
604                         return ret;
605         }
606
607         if (vcpu->sigset_active)
608                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
609
610         ret = 1;
611         run->exit_reason = KVM_EXIT_UNKNOWN;
612         while (ret > 0) {
613                 /*
614                  * Check conditions before entering the guest
615                  */
616                 cond_resched();
617
618                 update_vttbr(vcpu->kvm);
619
620                 if (vcpu->arch.power_off || vcpu->arch.pause)
621                         vcpu_sleep(vcpu);
622
623                 /*
624                  * Preparing the interrupts to be injected also
625                  * involves poking the GIC, which must be done in a
626                  * non-preemptible context.
627                  */
628                 preempt_disable();
629                 kvm_pmu_flush_hwstate(vcpu);
630                 kvm_timer_flush_hwstate(vcpu);
631                 kvm_vgic_flush_hwstate(vcpu);
632
633                 local_irq_disable();
634
635                 /*
636                  * Re-check atomic conditions
637                  */
638                 if (signal_pending(current)) {
639                         ret = -EINTR;
640                         run->exit_reason = KVM_EXIT_INTR;
641                 }
642
643                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
644                         vcpu->arch.power_off || vcpu->arch.pause) {
645                         local_irq_enable();
646                         kvm_pmu_sync_hwstate(vcpu);
647                         kvm_timer_sync_hwstate(vcpu);
648                         kvm_vgic_sync_hwstate(vcpu);
649                         preempt_enable();
650                         continue;
651                 }
652
653                 kvm_arm_setup_debug(vcpu);
654
655                 /**************************************************************
656                  * Enter the guest
657                  */
658                 trace_kvm_entry(*vcpu_pc(vcpu));
659                 guest_enter_irqoff();
660                 vcpu->mode = IN_GUEST_MODE;
661
662                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
663
664                 vcpu->mode = OUTSIDE_GUEST_MODE;
665                 vcpu->stat.exits++;
666                 /*
667                  * Back from guest
668                  *************************************************************/
669
670                 kvm_arm_clear_debug(vcpu);
671
672                 /*
673                  * We may have taken a host interrupt in HYP mode (ie
674                  * while executing the guest). This interrupt is still
675                  * pending, as we haven't serviced it yet!
676                  *
677                  * We're now back in SVC mode, with interrupts
678                  * disabled.  Enabling the interrupts now will have
679                  * the effect of taking the interrupt again, in SVC
680                  * mode this time.
681                  */
682                 local_irq_enable();
683
684                 /*
685                  * We do local_irq_enable() before calling guest_exit() so
686                  * that if a timer interrupt hits while running the guest we
687                  * account that tick as being spent in the guest.  We enable
688                  * preemption after calling guest_exit() so that if we get
689                  * preempted we make sure ticks after that is not counted as
690                  * guest time.
691                  */
692                 guest_exit();
693                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
694
695                 /*
696                  * We must sync the PMU and timer state before the vgic state so
697                  * that the vgic can properly sample the updated state of the
698                  * interrupt line.
699                  */
700                 kvm_pmu_sync_hwstate(vcpu);
701                 kvm_timer_sync_hwstate(vcpu);
702
703                 kvm_vgic_sync_hwstate(vcpu);
704
705                 preempt_enable();
706
707                 ret = handle_exit(vcpu, run, ret);
708         }
709
710         if (vcpu->sigset_active)
711                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
712         return ret;
713 }
714
715 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
716 {
717         int bit_index;
718         bool set;
719         unsigned long *ptr;
720
721         if (number == KVM_ARM_IRQ_CPU_IRQ)
722                 bit_index = __ffs(HCR_VI);
723         else /* KVM_ARM_IRQ_CPU_FIQ */
724                 bit_index = __ffs(HCR_VF);
725
726         ptr = (unsigned long *)&vcpu->arch.irq_lines;
727         if (level)
728                 set = test_and_set_bit(bit_index, ptr);
729         else
730                 set = test_and_clear_bit(bit_index, ptr);
731
732         /*
733          * If we didn't change anything, no need to wake up or kick other CPUs
734          */
735         if (set == level)
736                 return 0;
737
738         /*
739          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
740          * trigger a world-switch round on the running physical CPU to set the
741          * virtual IRQ/FIQ fields in the HCR appropriately.
742          */
743         kvm_vcpu_kick(vcpu);
744
745         return 0;
746 }
747
748 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
749                           bool line_status)
750 {
751         u32 irq = irq_level->irq;
752         unsigned int irq_type, vcpu_idx, irq_num;
753         int nrcpus = atomic_read(&kvm->online_vcpus);
754         struct kvm_vcpu *vcpu = NULL;
755         bool level = irq_level->level;
756
757         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
758         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
759         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
760
761         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
762
763         switch (irq_type) {
764         case KVM_ARM_IRQ_TYPE_CPU:
765                 if (irqchip_in_kernel(kvm))
766                         return -ENXIO;
767
768                 if (vcpu_idx >= nrcpus)
769                         return -EINVAL;
770
771                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
772                 if (!vcpu)
773                         return -EINVAL;
774
775                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
776                         return -EINVAL;
777
778                 return vcpu_interrupt_line(vcpu, irq_num, level);
779         case KVM_ARM_IRQ_TYPE_PPI:
780                 if (!irqchip_in_kernel(kvm))
781                         return -ENXIO;
782
783                 if (vcpu_idx >= nrcpus)
784                         return -EINVAL;
785
786                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
787                 if (!vcpu)
788                         return -EINVAL;
789
790                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
791                         return -EINVAL;
792
793                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
794         case KVM_ARM_IRQ_TYPE_SPI:
795                 if (!irqchip_in_kernel(kvm))
796                         return -ENXIO;
797
798                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
799                         return -EINVAL;
800
801                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
802         }
803
804         return -EINVAL;
805 }
806
807 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
808                                const struct kvm_vcpu_init *init)
809 {
810         unsigned int i;
811         int phys_target = kvm_target_cpu();
812
813         if (init->target != phys_target)
814                 return -EINVAL;
815
816         /*
817          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
818          * use the same target.
819          */
820         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
821                 return -EINVAL;
822
823         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
824         for (i = 0; i < sizeof(init->features) * 8; i++) {
825                 bool set = (init->features[i / 32] & (1 << (i % 32)));
826
827                 if (set && i >= KVM_VCPU_MAX_FEATURES)
828                         return -ENOENT;
829
830                 /*
831                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
832                  * use the same feature set.
833                  */
834                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
835                     test_bit(i, vcpu->arch.features) != set)
836                         return -EINVAL;
837
838                 if (set)
839                         set_bit(i, vcpu->arch.features);
840         }
841
842         vcpu->arch.target = phys_target;
843
844         /* Now we know what it is, we can reset it. */
845         return kvm_reset_vcpu(vcpu);
846 }
847
848
849 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
850                                          struct kvm_vcpu_init *init)
851 {
852         int ret;
853
854         ret = kvm_vcpu_set_target(vcpu, init);
855         if (ret)
856                 return ret;
857
858         /*
859          * Ensure a rebooted VM will fault in RAM pages and detect if the
860          * guest MMU is turned off and flush the caches as needed.
861          */
862         if (vcpu->arch.has_run_once)
863                 stage2_unmap_vm(vcpu->kvm);
864
865         vcpu_reset_hcr(vcpu);
866
867         /*
868          * Handle the "start in power-off" case.
869          */
870         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
871                 vcpu->arch.power_off = true;
872         else
873                 vcpu->arch.power_off = false;
874
875         return 0;
876 }
877
878 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
879                                  struct kvm_device_attr *attr)
880 {
881         int ret = -ENXIO;
882
883         switch (attr->group) {
884         default:
885                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
886                 break;
887         }
888
889         return ret;
890 }
891
892 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
893                                  struct kvm_device_attr *attr)
894 {
895         int ret = -ENXIO;
896
897         switch (attr->group) {
898         default:
899                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
900                 break;
901         }
902
903         return ret;
904 }
905
906 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
907                                  struct kvm_device_attr *attr)
908 {
909         int ret = -ENXIO;
910
911         switch (attr->group) {
912         default:
913                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
914                 break;
915         }
916
917         return ret;
918 }
919
920 long kvm_arch_vcpu_ioctl(struct file *filp,
921                          unsigned int ioctl, unsigned long arg)
922 {
923         struct kvm_vcpu *vcpu = filp->private_data;
924         void __user *argp = (void __user *)arg;
925         struct kvm_device_attr attr;
926
927         switch (ioctl) {
928         case KVM_ARM_VCPU_INIT: {
929                 struct kvm_vcpu_init init;
930
931                 if (copy_from_user(&init, argp, sizeof(init)))
932                         return -EFAULT;
933
934                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
935         }
936         case KVM_SET_ONE_REG:
937         case KVM_GET_ONE_REG: {
938                 struct kvm_one_reg reg;
939
940                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
941                         return -ENOEXEC;
942
943                 if (copy_from_user(&reg, argp, sizeof(reg)))
944                         return -EFAULT;
945                 if (ioctl == KVM_SET_ONE_REG)
946                         return kvm_arm_set_reg(vcpu, &reg);
947                 else
948                         return kvm_arm_get_reg(vcpu, &reg);
949         }
950         case KVM_GET_REG_LIST: {
951                 struct kvm_reg_list __user *user_list = argp;
952                 struct kvm_reg_list reg_list;
953                 unsigned n;
954
955                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
956                         return -ENOEXEC;
957
958                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
959                         return -EFAULT;
960                 n = reg_list.n;
961                 reg_list.n = kvm_arm_num_regs(vcpu);
962                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
963                         return -EFAULT;
964                 if (n < reg_list.n)
965                         return -E2BIG;
966                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
967         }
968         case KVM_SET_DEVICE_ATTR: {
969                 if (copy_from_user(&attr, argp, sizeof(attr)))
970                         return -EFAULT;
971                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
972         }
973         case KVM_GET_DEVICE_ATTR: {
974                 if (copy_from_user(&attr, argp, sizeof(attr)))
975                         return -EFAULT;
976                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
977         }
978         case KVM_HAS_DEVICE_ATTR: {
979                 if (copy_from_user(&attr, argp, sizeof(attr)))
980                         return -EFAULT;
981                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
982         }
983         default:
984                 return -EINVAL;
985         }
986 }
987
988 /**
989  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
990  * @kvm: kvm instance
991  * @log: slot id and address to which we copy the log
992  *
993  * Steps 1-4 below provide general overview of dirty page logging. See
994  * kvm_get_dirty_log_protect() function description for additional details.
995  *
996  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
997  * always flush the TLB (step 4) even if previous step failed  and the dirty
998  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
999  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1000  * writes will be marked dirty for next log read.
1001  *
1002  *   1. Take a snapshot of the bit and clear it if needed.
1003  *   2. Write protect the corresponding page.
1004  *   3. Copy the snapshot to the userspace.
1005  *   4. Flush TLB's if needed.
1006  */
1007 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1008 {
1009         bool is_dirty = false;
1010         int r;
1011
1012         mutex_lock(&kvm->slots_lock);
1013
1014         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1015
1016         if (is_dirty)
1017                 kvm_flush_remote_tlbs(kvm);
1018
1019         mutex_unlock(&kvm->slots_lock);
1020         return r;
1021 }
1022
1023 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1024                                         struct kvm_arm_device_addr *dev_addr)
1025 {
1026         unsigned long dev_id, type;
1027
1028         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1029                 KVM_ARM_DEVICE_ID_SHIFT;
1030         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1031                 KVM_ARM_DEVICE_TYPE_SHIFT;
1032
1033         switch (dev_id) {
1034         case KVM_ARM_DEVICE_VGIC_V2:
1035                 if (!vgic_present)
1036                         return -ENXIO;
1037                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1038         default:
1039                 return -ENODEV;
1040         }
1041 }
1042
1043 long kvm_arch_vm_ioctl(struct file *filp,
1044                        unsigned int ioctl, unsigned long arg)
1045 {
1046         struct kvm *kvm = filp->private_data;
1047         void __user *argp = (void __user *)arg;
1048
1049         switch (ioctl) {
1050         case KVM_CREATE_IRQCHIP: {
1051                 int ret;
1052                 if (!vgic_present)
1053                         return -ENXIO;
1054                 mutex_lock(&kvm->lock);
1055                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1056                 mutex_unlock(&kvm->lock);
1057                 return ret;
1058         }
1059         case KVM_ARM_SET_DEVICE_ADDR: {
1060                 struct kvm_arm_device_addr dev_addr;
1061
1062                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1063                         return -EFAULT;
1064                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1065         }
1066         case KVM_ARM_PREFERRED_TARGET: {
1067                 int err;
1068                 struct kvm_vcpu_init init;
1069
1070                 err = kvm_vcpu_preferred_target(&init);
1071                 if (err)
1072                         return err;
1073
1074                 if (copy_to_user(argp, &init, sizeof(init)))
1075                         return -EFAULT;
1076
1077                 return 0;
1078         }
1079         default:
1080                 return -EINVAL;
1081         }
1082 }
1083
1084 static void cpu_init_hyp_mode(void *dummy)
1085 {
1086         phys_addr_t pgd_ptr;
1087         unsigned long hyp_stack_ptr;
1088         unsigned long stack_page;
1089         unsigned long vector_ptr;
1090
1091         /* Switch from the HYP stub to our own HYP init vector */
1092         __hyp_set_vectors(kvm_get_idmap_vector());
1093
1094         pgd_ptr = kvm_mmu_get_httbr();
1095         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1096         hyp_stack_ptr = stack_page + PAGE_SIZE;
1097         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1098
1099         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1100         __cpu_init_stage2();
1101
1102         kvm_arm_init_debug();
1103 }
1104
1105 static void cpu_hyp_reinit(void)
1106 {
1107         if (is_kernel_in_hyp_mode()) {
1108                 /*
1109                  * __cpu_init_stage2() is safe to call even if the PM
1110                  * event was cancelled before the CPU was reset.
1111                  */
1112                 __cpu_init_stage2();
1113         } else {
1114                 if (__hyp_get_vectors() == hyp_default_vectors)
1115                         cpu_init_hyp_mode(NULL);
1116         }
1117 }
1118
1119 static void cpu_hyp_reset(void)
1120 {
1121         if (!is_kernel_in_hyp_mode())
1122                 __cpu_reset_hyp_mode(hyp_default_vectors,
1123                                      kvm_get_idmap_start());
1124 }
1125
1126 static void _kvm_arch_hardware_enable(void *discard)
1127 {
1128         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1129                 cpu_hyp_reinit();
1130                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1131         }
1132 }
1133
1134 int kvm_arch_hardware_enable(void)
1135 {
1136         _kvm_arch_hardware_enable(NULL);
1137         return 0;
1138 }
1139
1140 static void _kvm_arch_hardware_disable(void *discard)
1141 {
1142         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1143                 cpu_hyp_reset();
1144                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1145         }
1146 }
1147
1148 void kvm_arch_hardware_disable(void)
1149 {
1150         _kvm_arch_hardware_disable(NULL);
1151 }
1152
1153 #ifdef CONFIG_CPU_PM
1154 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1155                                     unsigned long cmd,
1156                                     void *v)
1157 {
1158         /*
1159          * kvm_arm_hardware_enabled is left with its old value over
1160          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1161          * re-enable hyp.
1162          */
1163         switch (cmd) {
1164         case CPU_PM_ENTER:
1165                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1166                         /*
1167                          * don't update kvm_arm_hardware_enabled here
1168                          * so that the hardware will be re-enabled
1169                          * when we resume. See below.
1170                          */
1171                         cpu_hyp_reset();
1172
1173                 return NOTIFY_OK;
1174         case CPU_PM_EXIT:
1175                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1176                         /* The hardware was enabled before suspend. */
1177                         cpu_hyp_reinit();
1178
1179                 return NOTIFY_OK;
1180
1181         default:
1182                 return NOTIFY_DONE;
1183         }
1184 }
1185
1186 static struct notifier_block hyp_init_cpu_pm_nb = {
1187         .notifier_call = hyp_init_cpu_pm_notifier,
1188 };
1189
1190 static void __init hyp_cpu_pm_init(void)
1191 {
1192         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1193 }
1194 static void __init hyp_cpu_pm_exit(void)
1195 {
1196         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1197 }
1198 #else
1199 static inline void hyp_cpu_pm_init(void)
1200 {
1201 }
1202 static inline void hyp_cpu_pm_exit(void)
1203 {
1204 }
1205 #endif
1206
1207 static void teardown_common_resources(void)
1208 {
1209         free_percpu(kvm_host_cpu_state);
1210 }
1211
1212 static int init_common_resources(void)
1213 {
1214         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1215         if (!kvm_host_cpu_state) {
1216                 kvm_err("Cannot allocate host CPU state\n");
1217                 return -ENOMEM;
1218         }
1219
1220         /* set size of VMID supported by CPU */
1221         kvm_vmid_bits = kvm_get_vmid_bits();
1222         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1223
1224         return 0;
1225 }
1226
1227 static int init_subsystems(void)
1228 {
1229         int err = 0;
1230
1231         /*
1232          * Enable hardware so that subsystem initialisation can access EL2.
1233          */
1234         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1235
1236         /*
1237          * Register CPU lower-power notifier
1238          */
1239         hyp_cpu_pm_init();
1240
1241         /*
1242          * Init HYP view of VGIC
1243          */
1244         err = kvm_vgic_hyp_init();
1245         switch (err) {
1246         case 0:
1247                 vgic_present = true;
1248                 break;
1249         case -ENODEV:
1250         case -ENXIO:
1251                 vgic_present = false;
1252                 err = 0;
1253                 break;
1254         default:
1255                 goto out;
1256         }
1257
1258         /*
1259          * Init HYP architected timer support
1260          */
1261         err = kvm_timer_hyp_init();
1262         if (err)
1263                 goto out;
1264
1265         kvm_perf_init();
1266         kvm_coproc_table_init();
1267
1268 out:
1269         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1270
1271         return err;
1272 }
1273
1274 static void teardown_hyp_mode(void)
1275 {
1276         int cpu;
1277
1278         if (is_kernel_in_hyp_mode())
1279                 return;
1280
1281         free_hyp_pgds();
1282         for_each_possible_cpu(cpu)
1283                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1284         hyp_cpu_pm_exit();
1285 }
1286
1287 static int init_vhe_mode(void)
1288 {
1289         kvm_info("VHE mode initialized successfully\n");
1290         return 0;
1291 }
1292
1293 /**
1294  * Inits Hyp-mode on all online CPUs
1295  */
1296 static int init_hyp_mode(void)
1297 {
1298         int cpu;
1299         int err = 0;
1300
1301         /*
1302          * Allocate Hyp PGD and setup Hyp identity mapping
1303          */
1304         err = kvm_mmu_init();
1305         if (err)
1306                 goto out_err;
1307
1308         /*
1309          * It is probably enough to obtain the default on one
1310          * CPU. It's unlikely to be different on the others.
1311          */
1312         hyp_default_vectors = __hyp_get_vectors();
1313
1314         /*
1315          * Allocate stack pages for Hypervisor-mode
1316          */
1317         for_each_possible_cpu(cpu) {
1318                 unsigned long stack_page;
1319
1320                 stack_page = __get_free_page(GFP_KERNEL);
1321                 if (!stack_page) {
1322                         err = -ENOMEM;
1323                         goto out_err;
1324                 }
1325
1326                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1327         }
1328
1329         /*
1330          * Map the Hyp-code called directly from the host
1331          */
1332         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1333                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1334         if (err) {
1335                 kvm_err("Cannot map world-switch code\n");
1336                 goto out_err;
1337         }
1338
1339         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1340                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1341         if (err) {
1342                 kvm_err("Cannot map rodata section\n");
1343                 goto out_err;
1344         }
1345
1346         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1347                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1348         if (err) {
1349                 kvm_err("Cannot map bss section\n");
1350                 goto out_err;
1351         }
1352
1353         /*
1354          * Map the Hyp stack pages
1355          */
1356         for_each_possible_cpu(cpu) {
1357                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1358                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1359                                           PAGE_HYP);
1360
1361                 if (err) {
1362                         kvm_err("Cannot map hyp stack\n");
1363                         goto out_err;
1364                 }
1365         }
1366
1367         for_each_possible_cpu(cpu) {
1368                 kvm_cpu_context_t *cpu_ctxt;
1369
1370                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1371                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1372
1373                 if (err) {
1374                         kvm_err("Cannot map host CPU state: %d\n", err);
1375                         goto out_err;
1376                 }
1377         }
1378
1379         kvm_info("Hyp mode initialized successfully\n");
1380
1381         return 0;
1382
1383 out_err:
1384         teardown_hyp_mode();
1385         kvm_err("error initializing Hyp mode: %d\n", err);
1386         return err;
1387 }
1388
1389 static void check_kvm_target_cpu(void *ret)
1390 {
1391         *(int *)ret = kvm_target_cpu();
1392 }
1393
1394 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1395 {
1396         struct kvm_vcpu *vcpu;
1397         int i;
1398
1399         mpidr &= MPIDR_HWID_BITMASK;
1400         kvm_for_each_vcpu(i, vcpu, kvm) {
1401                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1402                         return vcpu;
1403         }
1404         return NULL;
1405 }
1406
1407 /**
1408  * Initialize Hyp-mode and memory mappings on all CPUs.
1409  */
1410 int kvm_arch_init(void *opaque)
1411 {
1412         int err;
1413         int ret, cpu;
1414
1415         if (!is_hyp_mode_available()) {
1416                 kvm_err("HYP mode not available\n");
1417                 return -ENODEV;
1418         }
1419
1420         for_each_online_cpu(cpu) {
1421                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1422                 if (ret < 0) {
1423                         kvm_err("Error, CPU %d not supported!\n", cpu);
1424                         return -ENODEV;
1425                 }
1426         }
1427
1428         err = init_common_resources();
1429         if (err)
1430                 return err;
1431
1432         if (is_kernel_in_hyp_mode())
1433                 err = init_vhe_mode();
1434         else
1435                 err = init_hyp_mode();
1436         if (err)
1437                 goto out_err;
1438
1439         err = init_subsystems();
1440         if (err)
1441                 goto out_hyp;
1442
1443         return 0;
1444
1445 out_hyp:
1446         teardown_hyp_mode();
1447 out_err:
1448         teardown_common_resources();
1449         return err;
1450 }
1451
1452 /* NOP: Compiling as a module not supported */
1453 void kvm_arch_exit(void)
1454 {
1455         kvm_perf_teardown();
1456 }
1457
1458 static int arm_init(void)
1459 {
1460         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1461         return rc;
1462 }
1463
1464 module_init(arm_init);