]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kvm/arm.c
Merge branch 'akpm-current/current'
[karo-tx-linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/sections.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
69 {
70         BUG_ON(preemptible());
71         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
72 }
73
74 /**
75  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
76  * Must be called from non-preemptible context
77  */
78 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
79 {
80         BUG_ON(preemptible());
81         return __this_cpu_read(kvm_arm_running_vcpu);
82 }
83
84 /**
85  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
86  */
87 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
88 {
89         return &kvm_arm_running_vcpu;
90 }
91
92 int kvm_arch_hardware_enable(void)
93 {
94         return 0;
95 }
96
97 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
98 {
99         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
100 }
101
102 int kvm_arch_hardware_setup(void)
103 {
104         return 0;
105 }
106
107 void kvm_arch_check_processor_compat(void *rtn)
108 {
109         *(int *)rtn = 0;
110 }
111
112
113 /**
114  * kvm_arch_init_vm - initializes a VM data structure
115  * @kvm:        pointer to the KVM struct
116  */
117 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
118 {
119         int ret = 0;
120
121         if (type)
122                 return -EINVAL;
123
124         ret = kvm_alloc_stage2_pgd(kvm);
125         if (ret)
126                 goto out_fail_alloc;
127
128         ret = create_hyp_mappings(kvm, kvm + 1);
129         if (ret)
130                 goto out_free_stage2_pgd;
131
132         kvm_vgic_early_init(kvm);
133         kvm_timer_init(kvm);
134
135         /* Mark the initial VMID generation invalid */
136         kvm->arch.vmid_gen = 0;
137
138         /* The maximum number of VCPUs is limited by the host's GIC model */
139         kvm->arch.max_vcpus = vgic_present ?
140                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
141
142         return ret;
143 out_free_stage2_pgd:
144         kvm_free_stage2_pgd(kvm);
145 out_fail_alloc:
146         return ret;
147 }
148
149 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
150 {
151         return VM_FAULT_SIGBUS;
152 }
153
154
155 /**
156  * kvm_arch_destroy_vm - destroy the VM data structure
157  * @kvm:        pointer to the KVM struct
158  */
159 void kvm_arch_destroy_vm(struct kvm *kvm)
160 {
161         int i;
162
163         kvm_free_stage2_pgd(kvm);
164
165         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
166                 if (kvm->vcpus[i]) {
167                         kvm_arch_vcpu_free(kvm->vcpus[i]);
168                         kvm->vcpus[i] = NULL;
169                 }
170         }
171
172         kvm_vgic_destroy(kvm);
173 }
174
175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
176 {
177         int r;
178         switch (ext) {
179         case KVM_CAP_IRQCHIP:
180                 r = vgic_present;
181                 break;
182         case KVM_CAP_IOEVENTFD:
183         case KVM_CAP_DEVICE_CTRL:
184         case KVM_CAP_USER_MEMORY:
185         case KVM_CAP_SYNC_MMU:
186         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
187         case KVM_CAP_ONE_REG:
188         case KVM_CAP_ARM_PSCI:
189         case KVM_CAP_ARM_PSCI_0_2:
190         case KVM_CAP_READONLY_MEM:
191         case KVM_CAP_MP_STATE:
192                 r = 1;
193                 break;
194         case KVM_CAP_COALESCED_MMIO:
195                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
196                 break;
197         case KVM_CAP_ARM_SET_DEVICE_ADDR:
198                 r = 1;
199                 break;
200         case KVM_CAP_NR_VCPUS:
201                 r = num_online_cpus();
202                 break;
203         case KVM_CAP_MAX_VCPUS:
204                 r = KVM_MAX_VCPUS;
205                 break;
206         default:
207                 r = kvm_arch_dev_ioctl_check_extension(ext);
208                 break;
209         }
210         return r;
211 }
212
213 long kvm_arch_dev_ioctl(struct file *filp,
214                         unsigned int ioctl, unsigned long arg)
215 {
216         return -EINVAL;
217 }
218
219
220 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
221 {
222         int err;
223         struct kvm_vcpu *vcpu;
224
225         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
226                 err = -EBUSY;
227                 goto out;
228         }
229
230         if (id >= kvm->arch.max_vcpus) {
231                 err = -EINVAL;
232                 goto out;
233         }
234
235         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
236         if (!vcpu) {
237                 err = -ENOMEM;
238                 goto out;
239         }
240
241         err = kvm_vcpu_init(vcpu, kvm, id);
242         if (err)
243                 goto free_vcpu;
244
245         err = create_hyp_mappings(vcpu, vcpu + 1);
246         if (err)
247                 goto vcpu_uninit;
248
249         return vcpu;
250 vcpu_uninit:
251         kvm_vcpu_uninit(vcpu);
252 free_vcpu:
253         kmem_cache_free(kvm_vcpu_cache, vcpu);
254 out:
255         return ERR_PTR(err);
256 }
257
258 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
259 {
260         kvm_vgic_vcpu_early_init(vcpu);
261 }
262
263 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
264 {
265         kvm_mmu_free_memory_caches(vcpu);
266         kvm_timer_vcpu_terminate(vcpu);
267         kvm_vgic_vcpu_destroy(vcpu);
268         kmem_cache_free(kvm_vcpu_cache, vcpu);
269 }
270
271 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
272 {
273         kvm_arch_vcpu_free(vcpu);
274 }
275
276 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
277 {
278         return kvm_timer_should_fire(vcpu);
279 }
280
281 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
282 {
283         kvm_timer_schedule(vcpu);
284 }
285
286 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
287 {
288         kvm_timer_unschedule(vcpu);
289 }
290
291 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
292 {
293         /* Force users to call KVM_ARM_VCPU_INIT */
294         vcpu->arch.target = -1;
295         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
296
297         /* Set up the timer */
298         kvm_timer_vcpu_init(vcpu);
299
300         kvm_arm_reset_debug_ptr(vcpu);
301
302         return 0;
303 }
304
305 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
306 {
307         vcpu->cpu = cpu;
308         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
309
310         kvm_arm_set_running_vcpu(vcpu);
311 }
312
313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
314 {
315         /*
316          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
317          * if the vcpu is no longer assigned to a cpu.  This is used for the
318          * optimized make_all_cpus_request path.
319          */
320         vcpu->cpu = -1;
321
322         kvm_arm_set_running_vcpu(NULL);
323 }
324
325 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
326                                     struct kvm_mp_state *mp_state)
327 {
328         if (vcpu->arch.power_off)
329                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
330         else
331                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
332
333         return 0;
334 }
335
336 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
337                                     struct kvm_mp_state *mp_state)
338 {
339         switch (mp_state->mp_state) {
340         case KVM_MP_STATE_RUNNABLE:
341                 vcpu->arch.power_off = false;
342                 break;
343         case KVM_MP_STATE_STOPPED:
344                 vcpu->arch.power_off = true;
345                 break;
346         default:
347                 return -EINVAL;
348         }
349
350         return 0;
351 }
352
353 /**
354  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
355  * @v:          The VCPU pointer
356  *
357  * If the guest CPU is not waiting for interrupts or an interrupt line is
358  * asserted, the CPU is by definition runnable.
359  */
360 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
361 {
362         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
363                 && !v->arch.power_off && !v->arch.pause);
364 }
365
366 /* Just ensure a guest exit from a particular CPU */
367 static void exit_vm_noop(void *info)
368 {
369 }
370
371 void force_vm_exit(const cpumask_t *mask)
372 {
373         smp_call_function_many(mask, exit_vm_noop, NULL, true);
374 }
375
376 /**
377  * need_new_vmid_gen - check that the VMID is still valid
378  * @kvm: The VM's VMID to checkt
379  *
380  * return true if there is a new generation of VMIDs being used
381  *
382  * The hardware supports only 256 values with the value zero reserved for the
383  * host, so we check if an assigned value belongs to a previous generation,
384  * which which requires us to assign a new value. If we're the first to use a
385  * VMID for the new generation, we must flush necessary caches and TLBs on all
386  * CPUs.
387  */
388 static bool need_new_vmid_gen(struct kvm *kvm)
389 {
390         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
391 }
392
393 /**
394  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
395  * @kvm The guest that we are about to run
396  *
397  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
398  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
399  * caches and TLBs.
400  */
401 static void update_vttbr(struct kvm *kvm)
402 {
403         phys_addr_t pgd_phys;
404         u64 vmid;
405
406         if (!need_new_vmid_gen(kvm))
407                 return;
408
409         spin_lock(&kvm_vmid_lock);
410
411         /*
412          * We need to re-check the vmid_gen here to ensure that if another vcpu
413          * already allocated a valid vmid for this vm, then this vcpu should
414          * use the same vmid.
415          */
416         if (!need_new_vmid_gen(kvm)) {
417                 spin_unlock(&kvm_vmid_lock);
418                 return;
419         }
420
421         /* First user of a new VMID generation? */
422         if (unlikely(kvm_next_vmid == 0)) {
423                 atomic64_inc(&kvm_vmid_gen);
424                 kvm_next_vmid = 1;
425
426                 /*
427                  * On SMP we know no other CPUs can use this CPU's or each
428                  * other's VMID after force_vm_exit returns since the
429                  * kvm_vmid_lock blocks them from reentry to the guest.
430                  */
431                 force_vm_exit(cpu_all_mask);
432                 /*
433                  * Now broadcast TLB + ICACHE invalidation over the inner
434                  * shareable domain to make sure all data structures are
435                  * clean.
436                  */
437                 kvm_call_hyp(__kvm_flush_vm_context);
438         }
439
440         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
441         kvm->arch.vmid = kvm_next_vmid;
442         kvm_next_vmid++;
443         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
444
445         /* update vttbr to be used with the new vmid */
446         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
447         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
448         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
449         kvm->arch.vttbr = pgd_phys | vmid;
450
451         spin_unlock(&kvm_vmid_lock);
452 }
453
454 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
455 {
456         struct kvm *kvm = vcpu->kvm;
457         int ret;
458
459         if (likely(vcpu->arch.has_run_once))
460                 return 0;
461
462         vcpu->arch.has_run_once = true;
463
464         /*
465          * Map the VGIC hardware resources before running a vcpu the first
466          * time on this VM.
467          */
468         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
469                 ret = kvm_vgic_map_resources(kvm);
470                 if (ret)
471                         return ret;
472         }
473
474         /*
475          * Enable the arch timers only if we have an in-kernel VGIC
476          * and it has been properly initialized, since we cannot handle
477          * interrupts from the virtual timer with a userspace gic.
478          */
479         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
480                 kvm_timer_enable(kvm);
481
482         return 0;
483 }
484
485 bool kvm_arch_intc_initialized(struct kvm *kvm)
486 {
487         return vgic_initialized(kvm);
488 }
489
490 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
491 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
492
493 static void kvm_arm_halt_guest(struct kvm *kvm)
494 {
495         int i;
496         struct kvm_vcpu *vcpu;
497
498         kvm_for_each_vcpu(i, vcpu, kvm)
499                 vcpu->arch.pause = true;
500         force_vm_exit(cpu_all_mask);
501 }
502
503 static void kvm_arm_resume_guest(struct kvm *kvm)
504 {
505         int i;
506         struct kvm_vcpu *vcpu;
507
508         kvm_for_each_vcpu(i, vcpu, kvm) {
509                 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
510
511                 vcpu->arch.pause = false;
512                 wake_up_interruptible(wq);
513         }
514 }
515
516 static void vcpu_sleep(struct kvm_vcpu *vcpu)
517 {
518         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
519
520         wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
521                                        (!vcpu->arch.pause)));
522 }
523
524 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
525 {
526         return vcpu->arch.target >= 0;
527 }
528
529 /**
530  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
531  * @vcpu:       The VCPU pointer
532  * @run:        The kvm_run structure pointer used for userspace state exchange
533  *
534  * This function is called through the VCPU_RUN ioctl called from user space. It
535  * will execute VM code in a loop until the time slice for the process is used
536  * or some emulation is needed from user space in which case the function will
537  * return with return value 0 and with the kvm_run structure filled in with the
538  * required data for the requested emulation.
539  */
540 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
541 {
542         int ret;
543         sigset_t sigsaved;
544
545         if (unlikely(!kvm_vcpu_initialized(vcpu)))
546                 return -ENOEXEC;
547
548         ret = kvm_vcpu_first_run_init(vcpu);
549         if (ret)
550                 return ret;
551
552         if (run->exit_reason == KVM_EXIT_MMIO) {
553                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
554                 if (ret)
555                         return ret;
556         }
557
558         if (vcpu->sigset_active)
559                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
560
561         ret = 1;
562         run->exit_reason = KVM_EXIT_UNKNOWN;
563         while (ret > 0) {
564                 /*
565                  * Check conditions before entering the guest
566                  */
567                 cond_resched();
568
569                 update_vttbr(vcpu->kvm);
570
571                 if (vcpu->arch.power_off || vcpu->arch.pause)
572                         vcpu_sleep(vcpu);
573
574                 /*
575                  * Preparing the interrupts to be injected also
576                  * involves poking the GIC, which must be done in a
577                  * non-preemptible context.
578                  */
579                 preempt_disable();
580                 kvm_timer_flush_hwstate(vcpu);
581                 kvm_vgic_flush_hwstate(vcpu);
582
583                 local_irq_disable();
584
585                 /*
586                  * Re-check atomic conditions
587                  */
588                 if (signal_pending(current)) {
589                         ret = -EINTR;
590                         run->exit_reason = KVM_EXIT_INTR;
591                 }
592
593                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
594                         vcpu->arch.power_off || vcpu->arch.pause) {
595                         local_irq_enable();
596                         kvm_timer_sync_hwstate(vcpu);
597                         kvm_vgic_sync_hwstate(vcpu);
598                         preempt_enable();
599                         continue;
600                 }
601
602                 kvm_arm_setup_debug(vcpu);
603
604                 /**************************************************************
605                  * Enter the guest
606                  */
607                 trace_kvm_entry(*vcpu_pc(vcpu));
608                 __kvm_guest_enter();
609                 vcpu->mode = IN_GUEST_MODE;
610
611                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
612
613                 vcpu->mode = OUTSIDE_GUEST_MODE;
614                 vcpu->stat.exits++;
615                 /*
616                  * Back from guest
617                  *************************************************************/
618
619                 kvm_arm_clear_debug(vcpu);
620
621                 /*
622                  * We may have taken a host interrupt in HYP mode (ie
623                  * while executing the guest). This interrupt is still
624                  * pending, as we haven't serviced it yet!
625                  *
626                  * We're now back in SVC mode, with interrupts
627                  * disabled.  Enabling the interrupts now will have
628                  * the effect of taking the interrupt again, in SVC
629                  * mode this time.
630                  */
631                 local_irq_enable();
632
633                 /*
634                  * We do local_irq_enable() before calling kvm_guest_exit() so
635                  * that if a timer interrupt hits while running the guest we
636                  * account that tick as being spent in the guest.  We enable
637                  * preemption after calling kvm_guest_exit() so that if we get
638                  * preempted we make sure ticks after that is not counted as
639                  * guest time.
640                  */
641                 kvm_guest_exit();
642                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
643
644                 /*
645                  * We must sync the timer state before the vgic state so that
646                  * the vgic can properly sample the updated state of the
647                  * interrupt line.
648                  */
649                 kvm_timer_sync_hwstate(vcpu);
650
651                 kvm_vgic_sync_hwstate(vcpu);
652
653                 preempt_enable();
654
655                 ret = handle_exit(vcpu, run, ret);
656         }
657
658         if (vcpu->sigset_active)
659                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
660         return ret;
661 }
662
663 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
664 {
665         int bit_index;
666         bool set;
667         unsigned long *ptr;
668
669         if (number == KVM_ARM_IRQ_CPU_IRQ)
670                 bit_index = __ffs(HCR_VI);
671         else /* KVM_ARM_IRQ_CPU_FIQ */
672                 bit_index = __ffs(HCR_VF);
673
674         ptr = (unsigned long *)&vcpu->arch.irq_lines;
675         if (level)
676                 set = test_and_set_bit(bit_index, ptr);
677         else
678                 set = test_and_clear_bit(bit_index, ptr);
679
680         /*
681          * If we didn't change anything, no need to wake up or kick other CPUs
682          */
683         if (set == level)
684                 return 0;
685
686         /*
687          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
688          * trigger a world-switch round on the running physical CPU to set the
689          * virtual IRQ/FIQ fields in the HCR appropriately.
690          */
691         kvm_vcpu_kick(vcpu);
692
693         return 0;
694 }
695
696 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
697                           bool line_status)
698 {
699         u32 irq = irq_level->irq;
700         unsigned int irq_type, vcpu_idx, irq_num;
701         int nrcpus = atomic_read(&kvm->online_vcpus);
702         struct kvm_vcpu *vcpu = NULL;
703         bool level = irq_level->level;
704
705         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
706         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
707         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
708
709         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
710
711         switch (irq_type) {
712         case KVM_ARM_IRQ_TYPE_CPU:
713                 if (irqchip_in_kernel(kvm))
714                         return -ENXIO;
715
716                 if (vcpu_idx >= nrcpus)
717                         return -EINVAL;
718
719                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
720                 if (!vcpu)
721                         return -EINVAL;
722
723                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
724                         return -EINVAL;
725
726                 return vcpu_interrupt_line(vcpu, irq_num, level);
727         case KVM_ARM_IRQ_TYPE_PPI:
728                 if (!irqchip_in_kernel(kvm))
729                         return -ENXIO;
730
731                 if (vcpu_idx >= nrcpus)
732                         return -EINVAL;
733
734                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
735                 if (!vcpu)
736                         return -EINVAL;
737
738                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
739                         return -EINVAL;
740
741                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
742         case KVM_ARM_IRQ_TYPE_SPI:
743                 if (!irqchip_in_kernel(kvm))
744                         return -ENXIO;
745
746                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
747                         return -EINVAL;
748
749                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
750         }
751
752         return -EINVAL;
753 }
754
755 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
756                                const struct kvm_vcpu_init *init)
757 {
758         unsigned int i;
759         int phys_target = kvm_target_cpu();
760
761         if (init->target != phys_target)
762                 return -EINVAL;
763
764         /*
765          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
766          * use the same target.
767          */
768         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
769                 return -EINVAL;
770
771         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
772         for (i = 0; i < sizeof(init->features) * 8; i++) {
773                 bool set = (init->features[i / 32] & (1 << (i % 32)));
774
775                 if (set && i >= KVM_VCPU_MAX_FEATURES)
776                         return -ENOENT;
777
778                 /*
779                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
780                  * use the same feature set.
781                  */
782                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
783                     test_bit(i, vcpu->arch.features) != set)
784                         return -EINVAL;
785
786                 if (set)
787                         set_bit(i, vcpu->arch.features);
788         }
789
790         vcpu->arch.target = phys_target;
791
792         /* Now we know what it is, we can reset it. */
793         return kvm_reset_vcpu(vcpu);
794 }
795
796
797 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
798                                          struct kvm_vcpu_init *init)
799 {
800         int ret;
801
802         ret = kvm_vcpu_set_target(vcpu, init);
803         if (ret)
804                 return ret;
805
806         /*
807          * Ensure a rebooted VM will fault in RAM pages and detect if the
808          * guest MMU is turned off and flush the caches as needed.
809          */
810         if (vcpu->arch.has_run_once)
811                 stage2_unmap_vm(vcpu->kvm);
812
813         vcpu_reset_hcr(vcpu);
814
815         /*
816          * Handle the "start in power-off" case.
817          */
818         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
819                 vcpu->arch.power_off = true;
820         else
821                 vcpu->arch.power_off = false;
822
823         return 0;
824 }
825
826 long kvm_arch_vcpu_ioctl(struct file *filp,
827                          unsigned int ioctl, unsigned long arg)
828 {
829         struct kvm_vcpu *vcpu = filp->private_data;
830         void __user *argp = (void __user *)arg;
831
832         switch (ioctl) {
833         case KVM_ARM_VCPU_INIT: {
834                 struct kvm_vcpu_init init;
835
836                 if (copy_from_user(&init, argp, sizeof(init)))
837                         return -EFAULT;
838
839                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
840         }
841         case KVM_SET_ONE_REG:
842         case KVM_GET_ONE_REG: {
843                 struct kvm_one_reg reg;
844
845                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
846                         return -ENOEXEC;
847
848                 if (copy_from_user(&reg, argp, sizeof(reg)))
849                         return -EFAULT;
850                 if (ioctl == KVM_SET_ONE_REG)
851                         return kvm_arm_set_reg(vcpu, &reg);
852                 else
853                         return kvm_arm_get_reg(vcpu, &reg);
854         }
855         case KVM_GET_REG_LIST: {
856                 struct kvm_reg_list __user *user_list = argp;
857                 struct kvm_reg_list reg_list;
858                 unsigned n;
859
860                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
861                         return -ENOEXEC;
862
863                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
864                         return -EFAULT;
865                 n = reg_list.n;
866                 reg_list.n = kvm_arm_num_regs(vcpu);
867                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
868                         return -EFAULT;
869                 if (n < reg_list.n)
870                         return -E2BIG;
871                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
872         }
873         default:
874                 return -EINVAL;
875         }
876 }
877
878 /**
879  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
880  * @kvm: kvm instance
881  * @log: slot id and address to which we copy the log
882  *
883  * Steps 1-4 below provide general overview of dirty page logging. See
884  * kvm_get_dirty_log_protect() function description for additional details.
885  *
886  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
887  * always flush the TLB (step 4) even if previous step failed  and the dirty
888  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
889  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
890  * writes will be marked dirty for next log read.
891  *
892  *   1. Take a snapshot of the bit and clear it if needed.
893  *   2. Write protect the corresponding page.
894  *   3. Copy the snapshot to the userspace.
895  *   4. Flush TLB's if needed.
896  */
897 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
898 {
899         bool is_dirty = false;
900         int r;
901
902         mutex_lock(&kvm->slots_lock);
903
904         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
905
906         if (is_dirty)
907                 kvm_flush_remote_tlbs(kvm);
908
909         mutex_unlock(&kvm->slots_lock);
910         return r;
911 }
912
913 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
914                                         struct kvm_arm_device_addr *dev_addr)
915 {
916         unsigned long dev_id, type;
917
918         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
919                 KVM_ARM_DEVICE_ID_SHIFT;
920         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
921                 KVM_ARM_DEVICE_TYPE_SHIFT;
922
923         switch (dev_id) {
924         case KVM_ARM_DEVICE_VGIC_V2:
925                 if (!vgic_present)
926                         return -ENXIO;
927                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
928         default:
929                 return -ENODEV;
930         }
931 }
932
933 long kvm_arch_vm_ioctl(struct file *filp,
934                        unsigned int ioctl, unsigned long arg)
935 {
936         struct kvm *kvm = filp->private_data;
937         void __user *argp = (void __user *)arg;
938
939         switch (ioctl) {
940         case KVM_CREATE_IRQCHIP: {
941                 if (!vgic_present)
942                         return -ENXIO;
943                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
944         }
945         case KVM_ARM_SET_DEVICE_ADDR: {
946                 struct kvm_arm_device_addr dev_addr;
947
948                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
949                         return -EFAULT;
950                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
951         }
952         case KVM_ARM_PREFERRED_TARGET: {
953                 int err;
954                 struct kvm_vcpu_init init;
955
956                 err = kvm_vcpu_preferred_target(&init);
957                 if (err)
958                         return err;
959
960                 if (copy_to_user(argp, &init, sizeof(init)))
961                         return -EFAULT;
962
963                 return 0;
964         }
965         default:
966                 return -EINVAL;
967         }
968 }
969
970 static void cpu_init_hyp_mode(void *dummy)
971 {
972         phys_addr_t boot_pgd_ptr;
973         phys_addr_t pgd_ptr;
974         unsigned long hyp_stack_ptr;
975         unsigned long stack_page;
976         unsigned long vector_ptr;
977
978         /* Switch from the HYP stub to our own HYP init vector */
979         __hyp_set_vectors(kvm_get_idmap_vector());
980
981         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
982         pgd_ptr = kvm_mmu_get_httbr();
983         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
984         hyp_stack_ptr = stack_page + PAGE_SIZE;
985         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
986
987         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
988
989         kvm_arm_init_debug();
990 }
991
992 static int hyp_init_cpu_notify(struct notifier_block *self,
993                                unsigned long action, void *cpu)
994 {
995         switch (action) {
996         case CPU_STARTING:
997         case CPU_STARTING_FROZEN:
998                 if (__hyp_get_vectors() == hyp_default_vectors)
999                         cpu_init_hyp_mode(NULL);
1000                 break;
1001         }
1002
1003         return NOTIFY_OK;
1004 }
1005
1006 static struct notifier_block hyp_init_cpu_nb = {
1007         .notifier_call = hyp_init_cpu_notify,
1008 };
1009
1010 #ifdef CONFIG_CPU_PM
1011 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1012                                     unsigned long cmd,
1013                                     void *v)
1014 {
1015         if (cmd == CPU_PM_EXIT &&
1016             __hyp_get_vectors() == hyp_default_vectors) {
1017                 cpu_init_hyp_mode(NULL);
1018                 return NOTIFY_OK;
1019         }
1020
1021         return NOTIFY_DONE;
1022 }
1023
1024 static struct notifier_block hyp_init_cpu_pm_nb = {
1025         .notifier_call = hyp_init_cpu_pm_notifier,
1026 };
1027
1028 static void __init hyp_cpu_pm_init(void)
1029 {
1030         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1031 }
1032 #else
1033 static inline void hyp_cpu_pm_init(void)
1034 {
1035 }
1036 #endif
1037
1038 /**
1039  * Inits Hyp-mode on all online CPUs
1040  */
1041 static int init_hyp_mode(void)
1042 {
1043         int cpu;
1044         int err = 0;
1045
1046         /*
1047          * Allocate Hyp PGD and setup Hyp identity mapping
1048          */
1049         err = kvm_mmu_init();
1050         if (err)
1051                 goto out_err;
1052
1053         /*
1054          * It is probably enough to obtain the default on one
1055          * CPU. It's unlikely to be different on the others.
1056          */
1057         hyp_default_vectors = __hyp_get_vectors();
1058
1059         /*
1060          * Allocate stack pages for Hypervisor-mode
1061          */
1062         for_each_possible_cpu(cpu) {
1063                 unsigned long stack_page;
1064
1065                 stack_page = __get_free_page(GFP_KERNEL);
1066                 if (!stack_page) {
1067                         err = -ENOMEM;
1068                         goto out_free_stack_pages;
1069                 }
1070
1071                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1072         }
1073
1074         /*
1075          * Map the Hyp-code called directly from the host
1076          */
1077         err = create_hyp_mappings(kvm_ksym_ref(__kvm_hyp_code_start),
1078                                   kvm_ksym_ref(__kvm_hyp_code_end));
1079         if (err) {
1080                 kvm_err("Cannot map world-switch code\n");
1081                 goto out_free_mappings;
1082         }
1083
1084         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1085                                   kvm_ksym_ref(__end_rodata));
1086         if (err) {
1087                 kvm_err("Cannot map rodata section\n");
1088                 goto out_free_mappings;
1089         }
1090
1091         /*
1092          * Map the Hyp stack pages
1093          */
1094         for_each_possible_cpu(cpu) {
1095                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1096                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1097
1098                 if (err) {
1099                         kvm_err("Cannot map hyp stack\n");
1100                         goto out_free_mappings;
1101                 }
1102         }
1103
1104         /*
1105          * Map the host CPU structures
1106          */
1107         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1108         if (!kvm_host_cpu_state) {
1109                 err = -ENOMEM;
1110                 kvm_err("Cannot allocate host CPU state\n");
1111                 goto out_free_mappings;
1112         }
1113
1114         for_each_possible_cpu(cpu) {
1115                 kvm_cpu_context_t *cpu_ctxt;
1116
1117                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1118                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1119
1120                 if (err) {
1121                         kvm_err("Cannot map host CPU state: %d\n", err);
1122                         goto out_free_context;
1123                 }
1124         }
1125
1126         /*
1127          * Execute the init code on each CPU.
1128          */
1129         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1130
1131         /*
1132          * Init HYP view of VGIC
1133          */
1134         err = kvm_vgic_hyp_init();
1135         switch (err) {
1136         case 0:
1137                 vgic_present = true;
1138                 break;
1139         case -ENODEV:
1140         case -ENXIO:
1141                 vgic_present = false;
1142                 break;
1143         default:
1144                 goto out_free_context;
1145         }
1146
1147         /*
1148          * Init HYP architected timer support
1149          */
1150         err = kvm_timer_hyp_init();
1151         if (err)
1152                 goto out_free_context;
1153
1154 #ifndef CONFIG_HOTPLUG_CPU
1155         free_boot_hyp_pgd();
1156 #endif
1157
1158         kvm_perf_init();
1159
1160         /* set size of VMID supported by CPU */
1161         kvm_vmid_bits = kvm_get_vmid_bits();
1162         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1163
1164         kvm_info("Hyp mode initialized successfully\n");
1165
1166         return 0;
1167 out_free_context:
1168         free_percpu(kvm_host_cpu_state);
1169 out_free_mappings:
1170         free_hyp_pgds();
1171 out_free_stack_pages:
1172         for_each_possible_cpu(cpu)
1173                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1174 out_err:
1175         kvm_err("error initializing Hyp mode: %d\n", err);
1176         return err;
1177 }
1178
1179 static void check_kvm_target_cpu(void *ret)
1180 {
1181         *(int *)ret = kvm_target_cpu();
1182 }
1183
1184 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1185 {
1186         struct kvm_vcpu *vcpu;
1187         int i;
1188
1189         mpidr &= MPIDR_HWID_BITMASK;
1190         kvm_for_each_vcpu(i, vcpu, kvm) {
1191                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1192                         return vcpu;
1193         }
1194         return NULL;
1195 }
1196
1197 /**
1198  * Initialize Hyp-mode and memory mappings on all CPUs.
1199  */
1200 int kvm_arch_init(void *opaque)
1201 {
1202         int err;
1203         int ret, cpu;
1204
1205         if (!is_hyp_mode_available()) {
1206                 kvm_err("HYP mode not available\n");
1207                 return -ENODEV;
1208         }
1209
1210         for_each_online_cpu(cpu) {
1211                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1212                 if (ret < 0) {
1213                         kvm_err("Error, CPU %d not supported!\n", cpu);
1214                         return -ENODEV;
1215                 }
1216         }
1217
1218         cpu_notifier_register_begin();
1219
1220         err = init_hyp_mode();
1221         if (err)
1222                 goto out_err;
1223
1224         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1225         if (err) {
1226                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1227                 goto out_err;
1228         }
1229
1230         cpu_notifier_register_done();
1231
1232         hyp_cpu_pm_init();
1233
1234         kvm_coproc_table_init();
1235         return 0;
1236 out_err:
1237         cpu_notifier_register_done();
1238         return err;
1239 }
1240
1241 /* NOP: Compiling as a module not supported */
1242 void kvm_arch_exit(void)
1243 {
1244         kvm_perf_teardown();
1245 }
1246
1247 static int arm_init(void)
1248 {
1249         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1250         return rc;
1251 }
1252
1253 module_init(arm_init);