]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/kvm/mmu.c
scsi: qedi: Remove WARN_ON from clear task context.
[karo-tx-linux.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
43
44 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
49
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51 {
52         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 }
54
55 /**
56  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57  * @kvm:        pointer to kvm structure.
58  *
59  * Interface to HYP function to flush all VM TLB entries
60  */
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
62 {
63         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64 }
65
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67 {
68         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 }
70
71 /*
72  * D-Cache management functions. They take the page table entries by
73  * value, as they are flushing the cache using the kernel mapping (or
74  * kmap on 32bit).
75  */
76 static void kvm_flush_dcache_pte(pte_t pte)
77 {
78         __kvm_flush_dcache_pte(pte);
79 }
80
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
82 {
83         __kvm_flush_dcache_pmd(pmd);
84 }
85
86 static void kvm_flush_dcache_pud(pud_t pud)
87 {
88         __kvm_flush_dcache_pud(pud);
89 }
90
91 static bool kvm_is_device_pfn(unsigned long pfn)
92 {
93         return !pfn_valid(pfn);
94 }
95
96 /**
97  * stage2_dissolve_pmd() - clear and flush huge PMD entry
98  * @kvm:        pointer to kvm structure.
99  * @addr:       IPA
100  * @pmd:        pmd pointer for IPA
101  *
102  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103  * pages in the range dirty.
104  */
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106 {
107         if (!pmd_thp_or_huge(*pmd))
108                 return;
109
110         pmd_clear(pmd);
111         kvm_tlb_flush_vmid_ipa(kvm, addr);
112         put_page(virt_to_page(pmd));
113 }
114
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116                                   int min, int max)
117 {
118         void *page;
119
120         BUG_ON(max > KVM_NR_MEM_OBJS);
121         if (cache->nobjs >= min)
122                 return 0;
123         while (cache->nobjs < max) {
124                 page = (void *)__get_free_page(PGALLOC_GFP);
125                 if (!page)
126                         return -ENOMEM;
127                 cache->objects[cache->nobjs++] = page;
128         }
129         return 0;
130 }
131
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133 {
134         while (mc->nobjs)
135                 free_page((unsigned long)mc->objects[--mc->nobjs]);
136 }
137
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139 {
140         void *p;
141
142         BUG_ON(!mc || !mc->nobjs);
143         p = mc->objects[--mc->nobjs];
144         return p;
145 }
146
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148 {
149         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150         stage2_pgd_clear(pgd);
151         kvm_tlb_flush_vmid_ipa(kvm, addr);
152         stage2_pud_free(pud_table);
153         put_page(virt_to_page(pgd));
154 }
155
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157 {
158         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159         VM_BUG_ON(stage2_pud_huge(*pud));
160         stage2_pud_clear(pud);
161         kvm_tlb_flush_vmid_ipa(kvm, addr);
162         stage2_pmd_free(pmd_table);
163         put_page(virt_to_page(pud));
164 }
165
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167 {
168         pte_t *pte_table = pte_offset_kernel(pmd, 0);
169         VM_BUG_ON(pmd_thp_or_huge(*pmd));
170         pmd_clear(pmd);
171         kvm_tlb_flush_vmid_ipa(kvm, addr);
172         pte_free_kernel(NULL, pte_table);
173         put_page(virt_to_page(pmd));
174 }
175
176 /*
177  * Unmapping vs dcache management:
178  *
179  * If a guest maps certain memory pages as uncached, all writes will
180  * bypass the data cache and go directly to RAM.  However, the CPUs
181  * can still speculate reads (not writes) and fill cache lines with
182  * data.
183  *
184  * Those cache lines will be *clean* cache lines though, so a
185  * clean+invalidate operation is equivalent to an invalidate
186  * operation, because no cache lines are marked dirty.
187  *
188  * Those clean cache lines could be filled prior to an uncached write
189  * by the guest, and the cache coherent IO subsystem would therefore
190  * end up writing old data to disk.
191  *
192  * This is why right after unmapping a page/section and invalidating
193  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194  * the IO subsystem will never hit in the cache.
195  */
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197                        phys_addr_t addr, phys_addr_t end)
198 {
199         phys_addr_t start_addr = addr;
200         pte_t *pte, *start_pte;
201
202         start_pte = pte = pte_offset_kernel(pmd, addr);
203         do {
204                 if (!pte_none(*pte)) {
205                         pte_t old_pte = *pte;
206
207                         kvm_set_pte(pte, __pte(0));
208                         kvm_tlb_flush_vmid_ipa(kvm, addr);
209
210                         /* No need to invalidate the cache for device mappings */
211                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212                                 kvm_flush_dcache_pte(old_pte);
213
214                         put_page(virt_to_page(pte));
215                 }
216         } while (pte++, addr += PAGE_SIZE, addr != end);
217
218         if (stage2_pte_table_empty(start_pte))
219                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 }
221
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223                        phys_addr_t addr, phys_addr_t end)
224 {
225         phys_addr_t next, start_addr = addr;
226         pmd_t *pmd, *start_pmd;
227
228         start_pmd = pmd = stage2_pmd_offset(pud, addr);
229         do {
230                 next = stage2_pmd_addr_end(addr, end);
231                 if (!pmd_none(*pmd)) {
232                         if (pmd_thp_or_huge(*pmd)) {
233                                 pmd_t old_pmd = *pmd;
234
235                                 pmd_clear(pmd);
236                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
237
238                                 kvm_flush_dcache_pmd(old_pmd);
239
240                                 put_page(virt_to_page(pmd));
241                         } else {
242                                 unmap_stage2_ptes(kvm, pmd, addr, next);
243                         }
244                 }
245         } while (pmd++, addr = next, addr != end);
246
247         if (stage2_pmd_table_empty(start_pmd))
248                 clear_stage2_pud_entry(kvm, pud, start_addr);
249 }
250
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252                        phys_addr_t addr, phys_addr_t end)
253 {
254         phys_addr_t next, start_addr = addr;
255         pud_t *pud, *start_pud;
256
257         start_pud = pud = stage2_pud_offset(pgd, addr);
258         do {
259                 next = stage2_pud_addr_end(addr, end);
260                 if (!stage2_pud_none(*pud)) {
261                         if (stage2_pud_huge(*pud)) {
262                                 pud_t old_pud = *pud;
263
264                                 stage2_pud_clear(pud);
265                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
266                                 kvm_flush_dcache_pud(old_pud);
267                                 put_page(virt_to_page(pud));
268                         } else {
269                                 unmap_stage2_pmds(kvm, pud, addr, next);
270                         }
271                 }
272         } while (pud++, addr = next, addr != end);
273
274         if (stage2_pud_table_empty(start_pud))
275                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 }
277
278 /**
279  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280  * @kvm:   The VM pointer
281  * @start: The intermediate physical base address of the range to unmap
282  * @size:  The size of the area to unmap
283  *
284  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
285  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286  * destroying the VM), otherwise another faulting VCPU may come in and mess
287  * with things behind our backs.
288  */
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 {
291         pgd_t *pgd;
292         phys_addr_t addr = start, end = start + size;
293         phys_addr_t next;
294
295         assert_spin_locked(&kvm->mmu_lock);
296         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
297         do {
298                 next = stage2_pgd_addr_end(addr, end);
299                 if (!stage2_pgd_none(*pgd))
300                         unmap_stage2_puds(kvm, pgd, addr, next);
301                 /*
302                  * If the range is too large, release the kvm->mmu_lock
303                  * to prevent starvation and lockup detector warnings.
304                  */
305                 if (next != end)
306                         cond_resched_lock(&kvm->mmu_lock);
307         } while (pgd++, addr = next, addr != end);
308 }
309
310 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
311                               phys_addr_t addr, phys_addr_t end)
312 {
313         pte_t *pte;
314
315         pte = pte_offset_kernel(pmd, addr);
316         do {
317                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
318                         kvm_flush_dcache_pte(*pte);
319         } while (pte++, addr += PAGE_SIZE, addr != end);
320 }
321
322 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
323                               phys_addr_t addr, phys_addr_t end)
324 {
325         pmd_t *pmd;
326         phys_addr_t next;
327
328         pmd = stage2_pmd_offset(pud, addr);
329         do {
330                 next = stage2_pmd_addr_end(addr, end);
331                 if (!pmd_none(*pmd)) {
332                         if (pmd_thp_or_huge(*pmd))
333                                 kvm_flush_dcache_pmd(*pmd);
334                         else
335                                 stage2_flush_ptes(kvm, pmd, addr, next);
336                 }
337         } while (pmd++, addr = next, addr != end);
338 }
339
340 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
341                               phys_addr_t addr, phys_addr_t end)
342 {
343         pud_t *pud;
344         phys_addr_t next;
345
346         pud = stage2_pud_offset(pgd, addr);
347         do {
348                 next = stage2_pud_addr_end(addr, end);
349                 if (!stage2_pud_none(*pud)) {
350                         if (stage2_pud_huge(*pud))
351                                 kvm_flush_dcache_pud(*pud);
352                         else
353                                 stage2_flush_pmds(kvm, pud, addr, next);
354                 }
355         } while (pud++, addr = next, addr != end);
356 }
357
358 static void stage2_flush_memslot(struct kvm *kvm,
359                                  struct kvm_memory_slot *memslot)
360 {
361         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
362         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
363         phys_addr_t next;
364         pgd_t *pgd;
365
366         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
367         do {
368                 next = stage2_pgd_addr_end(addr, end);
369                 stage2_flush_puds(kvm, pgd, addr, next);
370         } while (pgd++, addr = next, addr != end);
371 }
372
373 /**
374  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
375  * @kvm: The struct kvm pointer
376  *
377  * Go through the stage 2 page tables and invalidate any cache lines
378  * backing memory already mapped to the VM.
379  */
380 static void stage2_flush_vm(struct kvm *kvm)
381 {
382         struct kvm_memslots *slots;
383         struct kvm_memory_slot *memslot;
384         int idx;
385
386         idx = srcu_read_lock(&kvm->srcu);
387         spin_lock(&kvm->mmu_lock);
388
389         slots = kvm_memslots(kvm);
390         kvm_for_each_memslot(memslot, slots)
391                 stage2_flush_memslot(kvm, memslot);
392
393         spin_unlock(&kvm->mmu_lock);
394         srcu_read_unlock(&kvm->srcu, idx);
395 }
396
397 static void clear_hyp_pgd_entry(pgd_t *pgd)
398 {
399         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
400         pgd_clear(pgd);
401         pud_free(NULL, pud_table);
402         put_page(virt_to_page(pgd));
403 }
404
405 static void clear_hyp_pud_entry(pud_t *pud)
406 {
407         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
408         VM_BUG_ON(pud_huge(*pud));
409         pud_clear(pud);
410         pmd_free(NULL, pmd_table);
411         put_page(virt_to_page(pud));
412 }
413
414 static void clear_hyp_pmd_entry(pmd_t *pmd)
415 {
416         pte_t *pte_table = pte_offset_kernel(pmd, 0);
417         VM_BUG_ON(pmd_thp_or_huge(*pmd));
418         pmd_clear(pmd);
419         pte_free_kernel(NULL, pte_table);
420         put_page(virt_to_page(pmd));
421 }
422
423 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
424 {
425         pte_t *pte, *start_pte;
426
427         start_pte = pte = pte_offset_kernel(pmd, addr);
428         do {
429                 if (!pte_none(*pte)) {
430                         kvm_set_pte(pte, __pte(0));
431                         put_page(virt_to_page(pte));
432                 }
433         } while (pte++, addr += PAGE_SIZE, addr != end);
434
435         if (hyp_pte_table_empty(start_pte))
436                 clear_hyp_pmd_entry(pmd);
437 }
438
439 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
440 {
441         phys_addr_t next;
442         pmd_t *pmd, *start_pmd;
443
444         start_pmd = pmd = pmd_offset(pud, addr);
445         do {
446                 next = pmd_addr_end(addr, end);
447                 /* Hyp doesn't use huge pmds */
448                 if (!pmd_none(*pmd))
449                         unmap_hyp_ptes(pmd, addr, next);
450         } while (pmd++, addr = next, addr != end);
451
452         if (hyp_pmd_table_empty(start_pmd))
453                 clear_hyp_pud_entry(pud);
454 }
455
456 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
457 {
458         phys_addr_t next;
459         pud_t *pud, *start_pud;
460
461         start_pud = pud = pud_offset(pgd, addr);
462         do {
463                 next = pud_addr_end(addr, end);
464                 /* Hyp doesn't use huge puds */
465                 if (!pud_none(*pud))
466                         unmap_hyp_pmds(pud, addr, next);
467         } while (pud++, addr = next, addr != end);
468
469         if (hyp_pud_table_empty(start_pud))
470                 clear_hyp_pgd_entry(pgd);
471 }
472
473 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
474 {
475         pgd_t *pgd;
476         phys_addr_t addr = start, end = start + size;
477         phys_addr_t next;
478
479         /*
480          * We don't unmap anything from HYP, except at the hyp tear down.
481          * Hence, we don't have to invalidate the TLBs here.
482          */
483         pgd = pgdp + pgd_index(addr);
484         do {
485                 next = pgd_addr_end(addr, end);
486                 if (!pgd_none(*pgd))
487                         unmap_hyp_puds(pgd, addr, next);
488         } while (pgd++, addr = next, addr != end);
489 }
490
491 /**
492  * free_hyp_pgds - free Hyp-mode page tables
493  *
494  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
495  * therefore contains either mappings in the kernel memory area (above
496  * PAGE_OFFSET), or device mappings in the vmalloc range (from
497  * VMALLOC_START to VMALLOC_END).
498  *
499  * boot_hyp_pgd should only map two pages for the init code.
500  */
501 void free_hyp_pgds(void)
502 {
503         unsigned long addr;
504
505         mutex_lock(&kvm_hyp_pgd_mutex);
506
507         if (boot_hyp_pgd) {
508                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
509                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
510                 boot_hyp_pgd = NULL;
511         }
512
513         if (hyp_pgd) {
514                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
515                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
516                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
517                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
518                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
519
520                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
521                 hyp_pgd = NULL;
522         }
523         if (merged_hyp_pgd) {
524                 clear_page(merged_hyp_pgd);
525                 free_page((unsigned long)merged_hyp_pgd);
526                 merged_hyp_pgd = NULL;
527         }
528
529         mutex_unlock(&kvm_hyp_pgd_mutex);
530 }
531
532 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
533                                     unsigned long end, unsigned long pfn,
534                                     pgprot_t prot)
535 {
536         pte_t *pte;
537         unsigned long addr;
538
539         addr = start;
540         do {
541                 pte = pte_offset_kernel(pmd, addr);
542                 kvm_set_pte(pte, pfn_pte(pfn, prot));
543                 get_page(virt_to_page(pte));
544                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
545                 pfn++;
546         } while (addr += PAGE_SIZE, addr != end);
547 }
548
549 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
550                                    unsigned long end, unsigned long pfn,
551                                    pgprot_t prot)
552 {
553         pmd_t *pmd;
554         pte_t *pte;
555         unsigned long addr, next;
556
557         addr = start;
558         do {
559                 pmd = pmd_offset(pud, addr);
560
561                 BUG_ON(pmd_sect(*pmd));
562
563                 if (pmd_none(*pmd)) {
564                         pte = pte_alloc_one_kernel(NULL, addr);
565                         if (!pte) {
566                                 kvm_err("Cannot allocate Hyp pte\n");
567                                 return -ENOMEM;
568                         }
569                         pmd_populate_kernel(NULL, pmd, pte);
570                         get_page(virt_to_page(pmd));
571                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
572                 }
573
574                 next = pmd_addr_end(addr, end);
575
576                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
577                 pfn += (next - addr) >> PAGE_SHIFT;
578         } while (addr = next, addr != end);
579
580         return 0;
581 }
582
583 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
584                                    unsigned long end, unsigned long pfn,
585                                    pgprot_t prot)
586 {
587         pud_t *pud;
588         pmd_t *pmd;
589         unsigned long addr, next;
590         int ret;
591
592         addr = start;
593         do {
594                 pud = pud_offset(pgd, addr);
595
596                 if (pud_none_or_clear_bad(pud)) {
597                         pmd = pmd_alloc_one(NULL, addr);
598                         if (!pmd) {
599                                 kvm_err("Cannot allocate Hyp pmd\n");
600                                 return -ENOMEM;
601                         }
602                         pud_populate(NULL, pud, pmd);
603                         get_page(virt_to_page(pud));
604                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
605                 }
606
607                 next = pud_addr_end(addr, end);
608                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
609                 if (ret)
610                         return ret;
611                 pfn += (next - addr) >> PAGE_SHIFT;
612         } while (addr = next, addr != end);
613
614         return 0;
615 }
616
617 static int __create_hyp_mappings(pgd_t *pgdp,
618                                  unsigned long start, unsigned long end,
619                                  unsigned long pfn, pgprot_t prot)
620 {
621         pgd_t *pgd;
622         pud_t *pud;
623         unsigned long addr, next;
624         int err = 0;
625
626         mutex_lock(&kvm_hyp_pgd_mutex);
627         addr = start & PAGE_MASK;
628         end = PAGE_ALIGN(end);
629         do {
630                 pgd = pgdp + pgd_index(addr);
631
632                 if (pgd_none(*pgd)) {
633                         pud = pud_alloc_one(NULL, addr);
634                         if (!pud) {
635                                 kvm_err("Cannot allocate Hyp pud\n");
636                                 err = -ENOMEM;
637                                 goto out;
638                         }
639                         pgd_populate(NULL, pgd, pud);
640                         get_page(virt_to_page(pgd));
641                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
642                 }
643
644                 next = pgd_addr_end(addr, end);
645                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
646                 if (err)
647                         goto out;
648                 pfn += (next - addr) >> PAGE_SHIFT;
649         } while (addr = next, addr != end);
650 out:
651         mutex_unlock(&kvm_hyp_pgd_mutex);
652         return err;
653 }
654
655 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
656 {
657         if (!is_vmalloc_addr(kaddr)) {
658                 BUG_ON(!virt_addr_valid(kaddr));
659                 return __pa(kaddr);
660         } else {
661                 return page_to_phys(vmalloc_to_page(kaddr)) +
662                        offset_in_page(kaddr);
663         }
664 }
665
666 /**
667  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
668  * @from:       The virtual kernel start address of the range
669  * @to:         The virtual kernel end address of the range (exclusive)
670  * @prot:       The protection to be applied to this range
671  *
672  * The same virtual address as the kernel virtual address is also used
673  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
674  * physical pages.
675  */
676 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
677 {
678         phys_addr_t phys_addr;
679         unsigned long virt_addr;
680         unsigned long start = kern_hyp_va((unsigned long)from);
681         unsigned long end = kern_hyp_va((unsigned long)to);
682
683         if (is_kernel_in_hyp_mode())
684                 return 0;
685
686         start = start & PAGE_MASK;
687         end = PAGE_ALIGN(end);
688
689         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
690                 int err;
691
692                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
693                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
694                                             virt_addr + PAGE_SIZE,
695                                             __phys_to_pfn(phys_addr),
696                                             prot);
697                 if (err)
698                         return err;
699         }
700
701         return 0;
702 }
703
704 /**
705  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
706  * @from:       The kernel start VA of the range
707  * @to:         The kernel end VA of the range (exclusive)
708  * @phys_addr:  The physical start address which gets mapped
709  *
710  * The resulting HYP VA is the same as the kernel VA, modulo
711  * HYP_PAGE_OFFSET.
712  */
713 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
714 {
715         unsigned long start = kern_hyp_va((unsigned long)from);
716         unsigned long end = kern_hyp_va((unsigned long)to);
717
718         if (is_kernel_in_hyp_mode())
719                 return 0;
720
721         /* Check for a valid kernel IO mapping */
722         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
723                 return -EINVAL;
724
725         return __create_hyp_mappings(hyp_pgd, start, end,
726                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
727 }
728
729 /**
730  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
731  * @kvm:        The KVM struct pointer for the VM.
732  *
733  * Allocates only the stage-2 HW PGD level table(s) (can support either full
734  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
735  * allocated pages.
736  *
737  * Note we don't need locking here as this is only called when the VM is
738  * created, which can only be done once.
739  */
740 int kvm_alloc_stage2_pgd(struct kvm *kvm)
741 {
742         pgd_t *pgd;
743
744         if (kvm->arch.pgd != NULL) {
745                 kvm_err("kvm_arch already initialized?\n");
746                 return -EINVAL;
747         }
748
749         /* Allocate the HW PGD, making sure that each page gets its own refcount */
750         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
751         if (!pgd)
752                 return -ENOMEM;
753
754         kvm->arch.pgd = pgd;
755         return 0;
756 }
757
758 static void stage2_unmap_memslot(struct kvm *kvm,
759                                  struct kvm_memory_slot *memslot)
760 {
761         hva_t hva = memslot->userspace_addr;
762         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
763         phys_addr_t size = PAGE_SIZE * memslot->npages;
764         hva_t reg_end = hva + size;
765
766         /*
767          * A memory region could potentially cover multiple VMAs, and any holes
768          * between them, so iterate over all of them to find out if we should
769          * unmap any of them.
770          *
771          *     +--------------------------------------------+
772          * +---------------+----------------+   +----------------+
773          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
774          * +---------------+----------------+   +----------------+
775          *     |               memory region                |
776          *     +--------------------------------------------+
777          */
778         do {
779                 struct vm_area_struct *vma = find_vma(current->mm, hva);
780                 hva_t vm_start, vm_end;
781
782                 if (!vma || vma->vm_start >= reg_end)
783                         break;
784
785                 /*
786                  * Take the intersection of this VMA with the memory region
787                  */
788                 vm_start = max(hva, vma->vm_start);
789                 vm_end = min(reg_end, vma->vm_end);
790
791                 if (!(vma->vm_flags & VM_PFNMAP)) {
792                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
793                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
794                 }
795                 hva = vm_end;
796         } while (hva < reg_end);
797 }
798
799 /**
800  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
801  * @kvm: The struct kvm pointer
802  *
803  * Go through the memregions and unmap any reguler RAM
804  * backing memory already mapped to the VM.
805  */
806 void stage2_unmap_vm(struct kvm *kvm)
807 {
808         struct kvm_memslots *slots;
809         struct kvm_memory_slot *memslot;
810         int idx;
811
812         idx = srcu_read_lock(&kvm->srcu);
813         down_read(&current->mm->mmap_sem);
814         spin_lock(&kvm->mmu_lock);
815
816         slots = kvm_memslots(kvm);
817         kvm_for_each_memslot(memslot, slots)
818                 stage2_unmap_memslot(kvm, memslot);
819
820         spin_unlock(&kvm->mmu_lock);
821         up_read(&current->mm->mmap_sem);
822         srcu_read_unlock(&kvm->srcu, idx);
823 }
824
825 /**
826  * kvm_free_stage2_pgd - free all stage-2 tables
827  * @kvm:        The KVM struct pointer for the VM.
828  *
829  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
830  * underlying level-2 and level-3 tables before freeing the actual level-1 table
831  * and setting the struct pointer to NULL.
832  *
833  * Note we don't need locking here as this is only called when the VM is
834  * destroyed, which can only be done once.
835  */
836 void kvm_free_stage2_pgd(struct kvm *kvm)
837 {
838         if (kvm->arch.pgd == NULL)
839                 return;
840
841         spin_lock(&kvm->mmu_lock);
842         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
843         spin_unlock(&kvm->mmu_lock);
844
845         /* Free the HW pgd, one page at a time */
846         free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
847         kvm->arch.pgd = NULL;
848 }
849
850 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
851                              phys_addr_t addr)
852 {
853         pgd_t *pgd;
854         pud_t *pud;
855
856         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
857         if (WARN_ON(stage2_pgd_none(*pgd))) {
858                 if (!cache)
859                         return NULL;
860                 pud = mmu_memory_cache_alloc(cache);
861                 stage2_pgd_populate(pgd, pud);
862                 get_page(virt_to_page(pgd));
863         }
864
865         return stage2_pud_offset(pgd, addr);
866 }
867
868 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
869                              phys_addr_t addr)
870 {
871         pud_t *pud;
872         pmd_t *pmd;
873
874         pud = stage2_get_pud(kvm, cache, addr);
875         if (stage2_pud_none(*pud)) {
876                 if (!cache)
877                         return NULL;
878                 pmd = mmu_memory_cache_alloc(cache);
879                 stage2_pud_populate(pud, pmd);
880                 get_page(virt_to_page(pud));
881         }
882
883         return stage2_pmd_offset(pud, addr);
884 }
885
886 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
887                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
888 {
889         pmd_t *pmd, old_pmd;
890
891         pmd = stage2_get_pmd(kvm, cache, addr);
892         VM_BUG_ON(!pmd);
893
894         /*
895          * Mapping in huge pages should only happen through a fault.  If a
896          * page is merged into a transparent huge page, the individual
897          * subpages of that huge page should be unmapped through MMU
898          * notifiers before we get here.
899          *
900          * Merging of CompoundPages is not supported; they should become
901          * splitting first, unmapped, merged, and mapped back in on-demand.
902          */
903         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
904
905         old_pmd = *pmd;
906         if (pmd_present(old_pmd)) {
907                 pmd_clear(pmd);
908                 kvm_tlb_flush_vmid_ipa(kvm, addr);
909         } else {
910                 get_page(virt_to_page(pmd));
911         }
912
913         kvm_set_pmd(pmd, *new_pmd);
914         return 0;
915 }
916
917 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
918                           phys_addr_t addr, const pte_t *new_pte,
919                           unsigned long flags)
920 {
921         pmd_t *pmd;
922         pte_t *pte, old_pte;
923         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
924         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
925
926         VM_BUG_ON(logging_active && !cache);
927
928         /* Create stage-2 page table mapping - Levels 0 and 1 */
929         pmd = stage2_get_pmd(kvm, cache, addr);
930         if (!pmd) {
931                 /*
932                  * Ignore calls from kvm_set_spte_hva for unallocated
933                  * address ranges.
934                  */
935                 return 0;
936         }
937
938         /*
939          * While dirty page logging - dissolve huge PMD, then continue on to
940          * allocate page.
941          */
942         if (logging_active)
943                 stage2_dissolve_pmd(kvm, addr, pmd);
944
945         /* Create stage-2 page mappings - Level 2 */
946         if (pmd_none(*pmd)) {
947                 if (!cache)
948                         return 0; /* ignore calls from kvm_set_spte_hva */
949                 pte = mmu_memory_cache_alloc(cache);
950                 pmd_populate_kernel(NULL, pmd, pte);
951                 get_page(virt_to_page(pmd));
952         }
953
954         pte = pte_offset_kernel(pmd, addr);
955
956         if (iomap && pte_present(*pte))
957                 return -EFAULT;
958
959         /* Create 2nd stage page table mapping - Level 3 */
960         old_pte = *pte;
961         if (pte_present(old_pte)) {
962                 kvm_set_pte(pte, __pte(0));
963                 kvm_tlb_flush_vmid_ipa(kvm, addr);
964         } else {
965                 get_page(virt_to_page(pte));
966         }
967
968         kvm_set_pte(pte, *new_pte);
969         return 0;
970 }
971
972 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
973 static int stage2_ptep_test_and_clear_young(pte_t *pte)
974 {
975         if (pte_young(*pte)) {
976                 *pte = pte_mkold(*pte);
977                 return 1;
978         }
979         return 0;
980 }
981 #else
982 static int stage2_ptep_test_and_clear_young(pte_t *pte)
983 {
984         return __ptep_test_and_clear_young(pte);
985 }
986 #endif
987
988 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
989 {
990         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
991 }
992
993 /**
994  * kvm_phys_addr_ioremap - map a device range to guest IPA
995  *
996  * @kvm:        The KVM pointer
997  * @guest_ipa:  The IPA at which to insert the mapping
998  * @pa:         The physical address of the device
999  * @size:       The size of the mapping
1000  */
1001 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1002                           phys_addr_t pa, unsigned long size, bool writable)
1003 {
1004         phys_addr_t addr, end;
1005         int ret = 0;
1006         unsigned long pfn;
1007         struct kvm_mmu_memory_cache cache = { 0, };
1008
1009         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1010         pfn = __phys_to_pfn(pa);
1011
1012         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1013                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1014
1015                 if (writable)
1016                         pte = kvm_s2pte_mkwrite(pte);
1017
1018                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1019                                                 KVM_NR_MEM_OBJS);
1020                 if (ret)
1021                         goto out;
1022                 spin_lock(&kvm->mmu_lock);
1023                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1024                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1025                 spin_unlock(&kvm->mmu_lock);
1026                 if (ret)
1027                         goto out;
1028
1029                 pfn++;
1030         }
1031
1032 out:
1033         mmu_free_memory_cache(&cache);
1034         return ret;
1035 }
1036
1037 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1038 {
1039         kvm_pfn_t pfn = *pfnp;
1040         gfn_t gfn = *ipap >> PAGE_SHIFT;
1041
1042         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1043                 unsigned long mask;
1044                 /*
1045                  * The address we faulted on is backed by a transparent huge
1046                  * page.  However, because we map the compound huge page and
1047                  * not the individual tail page, we need to transfer the
1048                  * refcount to the head page.  We have to be careful that the
1049                  * THP doesn't start to split while we are adjusting the
1050                  * refcounts.
1051                  *
1052                  * We are sure this doesn't happen, because mmu_notifier_retry
1053                  * was successful and we are holding the mmu_lock, so if this
1054                  * THP is trying to split, it will be blocked in the mmu
1055                  * notifier before touching any of the pages, specifically
1056                  * before being able to call __split_huge_page_refcount().
1057                  *
1058                  * We can therefore safely transfer the refcount from PG_tail
1059                  * to PG_head and switch the pfn from a tail page to the head
1060                  * page accordingly.
1061                  */
1062                 mask = PTRS_PER_PMD - 1;
1063                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1064                 if (pfn & mask) {
1065                         *ipap &= PMD_MASK;
1066                         kvm_release_pfn_clean(pfn);
1067                         pfn &= ~mask;
1068                         kvm_get_pfn(pfn);
1069                         *pfnp = pfn;
1070                 }
1071
1072                 return true;
1073         }
1074
1075         return false;
1076 }
1077
1078 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1079 {
1080         if (kvm_vcpu_trap_is_iabt(vcpu))
1081                 return false;
1082
1083         return kvm_vcpu_dabt_iswrite(vcpu);
1084 }
1085
1086 /**
1087  * stage2_wp_ptes - write protect PMD range
1088  * @pmd:        pointer to pmd entry
1089  * @addr:       range start address
1090  * @end:        range end address
1091  */
1092 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1093 {
1094         pte_t *pte;
1095
1096         pte = pte_offset_kernel(pmd, addr);
1097         do {
1098                 if (!pte_none(*pte)) {
1099                         if (!kvm_s2pte_readonly(pte))
1100                                 kvm_set_s2pte_readonly(pte);
1101                 }
1102         } while (pte++, addr += PAGE_SIZE, addr != end);
1103 }
1104
1105 /**
1106  * stage2_wp_pmds - write protect PUD range
1107  * @pud:        pointer to pud entry
1108  * @addr:       range start address
1109  * @end:        range end address
1110  */
1111 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1112 {
1113         pmd_t *pmd;
1114         phys_addr_t next;
1115
1116         pmd = stage2_pmd_offset(pud, addr);
1117
1118         do {
1119                 next = stage2_pmd_addr_end(addr, end);
1120                 if (!pmd_none(*pmd)) {
1121                         if (pmd_thp_or_huge(*pmd)) {
1122                                 if (!kvm_s2pmd_readonly(pmd))
1123                                         kvm_set_s2pmd_readonly(pmd);
1124                         } else {
1125                                 stage2_wp_ptes(pmd, addr, next);
1126                         }
1127                 }
1128         } while (pmd++, addr = next, addr != end);
1129 }
1130
1131 /**
1132   * stage2_wp_puds - write protect PGD range
1133   * @pgd:       pointer to pgd entry
1134   * @addr:      range start address
1135   * @end:       range end address
1136   *
1137   * Process PUD entries, for a huge PUD we cause a panic.
1138   */
1139 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1140 {
1141         pud_t *pud;
1142         phys_addr_t next;
1143
1144         pud = stage2_pud_offset(pgd, addr);
1145         do {
1146                 next = stage2_pud_addr_end(addr, end);
1147                 if (!stage2_pud_none(*pud)) {
1148                         /* TODO:PUD not supported, revisit later if supported */
1149                         BUG_ON(stage2_pud_huge(*pud));
1150                         stage2_wp_pmds(pud, addr, next);
1151                 }
1152         } while (pud++, addr = next, addr != end);
1153 }
1154
1155 /**
1156  * stage2_wp_range() - write protect stage2 memory region range
1157  * @kvm:        The KVM pointer
1158  * @addr:       Start address of range
1159  * @end:        End address of range
1160  */
1161 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1162 {
1163         pgd_t *pgd;
1164         phys_addr_t next;
1165
1166         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1167         do {
1168                 /*
1169                  * Release kvm_mmu_lock periodically if the memory region is
1170                  * large. Otherwise, we may see kernel panics with
1171                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1172                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1173                  * will also starve other vCPUs.
1174                  */
1175                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1176                         cond_resched_lock(&kvm->mmu_lock);
1177
1178                 next = stage2_pgd_addr_end(addr, end);
1179                 if (stage2_pgd_present(*pgd))
1180                         stage2_wp_puds(pgd, addr, next);
1181         } while (pgd++, addr = next, addr != end);
1182 }
1183
1184 /**
1185  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1186  * @kvm:        The KVM pointer
1187  * @slot:       The memory slot to write protect
1188  *
1189  * Called to start logging dirty pages after memory region
1190  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1191  * all present PMD and PTEs are write protected in the memory region.
1192  * Afterwards read of dirty page log can be called.
1193  *
1194  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1195  * serializing operations for VM memory regions.
1196  */
1197 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1198 {
1199         struct kvm_memslots *slots = kvm_memslots(kvm);
1200         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1201         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1202         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1203
1204         spin_lock(&kvm->mmu_lock);
1205         stage2_wp_range(kvm, start, end);
1206         spin_unlock(&kvm->mmu_lock);
1207         kvm_flush_remote_tlbs(kvm);
1208 }
1209
1210 /**
1211  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1212  * @kvm:        The KVM pointer
1213  * @slot:       The memory slot associated with mask
1214  * @gfn_offset: The gfn offset in memory slot
1215  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1216  *              slot to be write protected
1217  *
1218  * Walks bits set in mask write protects the associated pte's. Caller must
1219  * acquire kvm_mmu_lock.
1220  */
1221 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1222                 struct kvm_memory_slot *slot,
1223                 gfn_t gfn_offset, unsigned long mask)
1224 {
1225         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1226         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1227         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1228
1229         stage2_wp_range(kvm, start, end);
1230 }
1231
1232 /*
1233  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1234  * dirty pages.
1235  *
1236  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1237  * enable dirty logging for them.
1238  */
1239 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1240                 struct kvm_memory_slot *slot,
1241                 gfn_t gfn_offset, unsigned long mask)
1242 {
1243         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1244 }
1245
1246 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1247                                       unsigned long size)
1248 {
1249         __coherent_cache_guest_page(vcpu, pfn, size);
1250 }
1251
1252 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1253                           struct kvm_memory_slot *memslot, unsigned long hva,
1254                           unsigned long fault_status)
1255 {
1256         int ret;
1257         bool write_fault, writable, hugetlb = false, force_pte = false;
1258         unsigned long mmu_seq;
1259         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1260         struct kvm *kvm = vcpu->kvm;
1261         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1262         struct vm_area_struct *vma;
1263         kvm_pfn_t pfn;
1264         pgprot_t mem_type = PAGE_S2;
1265         bool logging_active = memslot_is_logging(memslot);
1266         unsigned long flags = 0;
1267
1268         write_fault = kvm_is_write_fault(vcpu);
1269         if (fault_status == FSC_PERM && !write_fault) {
1270                 kvm_err("Unexpected L2 read permission error\n");
1271                 return -EFAULT;
1272         }
1273
1274         /* Let's check if we will get back a huge page backed by hugetlbfs */
1275         down_read(&current->mm->mmap_sem);
1276         vma = find_vma_intersection(current->mm, hva, hva + 1);
1277         if (unlikely(!vma)) {
1278                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1279                 up_read(&current->mm->mmap_sem);
1280                 return -EFAULT;
1281         }
1282
1283         if (is_vm_hugetlb_page(vma) && !logging_active) {
1284                 hugetlb = true;
1285                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1286         } else {
1287                 /*
1288                  * Pages belonging to memslots that don't have the same
1289                  * alignment for userspace and IPA cannot be mapped using
1290                  * block descriptors even if the pages belong to a THP for
1291                  * the process, because the stage-2 block descriptor will
1292                  * cover more than a single THP and we loose atomicity for
1293                  * unmapping, updates, and splits of the THP or other pages
1294                  * in the stage-2 block range.
1295                  */
1296                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1297                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1298                         force_pte = true;
1299         }
1300         up_read(&current->mm->mmap_sem);
1301
1302         /* We need minimum second+third level pages */
1303         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1304                                      KVM_NR_MEM_OBJS);
1305         if (ret)
1306                 return ret;
1307
1308         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1309         /*
1310          * Ensure the read of mmu_notifier_seq happens before we call
1311          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1312          * the page we just got a reference to gets unmapped before we have a
1313          * chance to grab the mmu_lock, which ensure that if the page gets
1314          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1315          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1316          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1317          */
1318         smp_rmb();
1319
1320         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1321         if (is_error_noslot_pfn(pfn))
1322                 return -EFAULT;
1323
1324         if (kvm_is_device_pfn(pfn)) {
1325                 mem_type = PAGE_S2_DEVICE;
1326                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1327         } else if (logging_active) {
1328                 /*
1329                  * Faults on pages in a memslot with logging enabled
1330                  * should not be mapped with huge pages (it introduces churn
1331                  * and performance degradation), so force a pte mapping.
1332                  */
1333                 force_pte = true;
1334                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1335
1336                 /*
1337                  * Only actually map the page as writable if this was a write
1338                  * fault.
1339                  */
1340                 if (!write_fault)
1341                         writable = false;
1342         }
1343
1344         spin_lock(&kvm->mmu_lock);
1345         if (mmu_notifier_retry(kvm, mmu_seq))
1346                 goto out_unlock;
1347
1348         if (!hugetlb && !force_pte)
1349                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1350
1351         if (hugetlb) {
1352                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1353                 new_pmd = pmd_mkhuge(new_pmd);
1354                 if (writable) {
1355                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1356                         kvm_set_pfn_dirty(pfn);
1357                 }
1358                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1359                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1360         } else {
1361                 pte_t new_pte = pfn_pte(pfn, mem_type);
1362
1363                 if (writable) {
1364                         new_pte = kvm_s2pte_mkwrite(new_pte);
1365                         kvm_set_pfn_dirty(pfn);
1366                         mark_page_dirty(kvm, gfn);
1367                 }
1368                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1369                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1370         }
1371
1372 out_unlock:
1373         spin_unlock(&kvm->mmu_lock);
1374         kvm_set_pfn_accessed(pfn);
1375         kvm_release_pfn_clean(pfn);
1376         return ret;
1377 }
1378
1379 /*
1380  * Resolve the access fault by making the page young again.
1381  * Note that because the faulting entry is guaranteed not to be
1382  * cached in the TLB, we don't need to invalidate anything.
1383  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1384  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1385  */
1386 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1387 {
1388         pmd_t *pmd;
1389         pte_t *pte;
1390         kvm_pfn_t pfn;
1391         bool pfn_valid = false;
1392
1393         trace_kvm_access_fault(fault_ipa);
1394
1395         spin_lock(&vcpu->kvm->mmu_lock);
1396
1397         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1398         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1399                 goto out;
1400
1401         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1402                 *pmd = pmd_mkyoung(*pmd);
1403                 pfn = pmd_pfn(*pmd);
1404                 pfn_valid = true;
1405                 goto out;
1406         }
1407
1408         pte = pte_offset_kernel(pmd, fault_ipa);
1409         if (pte_none(*pte))             /* Nothing there either */
1410                 goto out;
1411
1412         *pte = pte_mkyoung(*pte);       /* Just a page... */
1413         pfn = pte_pfn(*pte);
1414         pfn_valid = true;
1415 out:
1416         spin_unlock(&vcpu->kvm->mmu_lock);
1417         if (pfn_valid)
1418                 kvm_set_pfn_accessed(pfn);
1419 }
1420
1421 /**
1422  * kvm_handle_guest_abort - handles all 2nd stage aborts
1423  * @vcpu:       the VCPU pointer
1424  * @run:        the kvm_run structure
1425  *
1426  * Any abort that gets to the host is almost guaranteed to be caused by a
1427  * missing second stage translation table entry, which can mean that either the
1428  * guest simply needs more memory and we must allocate an appropriate page or it
1429  * can mean that the guest tried to access I/O memory, which is emulated by user
1430  * space. The distinction is based on the IPA causing the fault and whether this
1431  * memory region has been registered as standard RAM by user space.
1432  */
1433 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1434 {
1435         unsigned long fault_status;
1436         phys_addr_t fault_ipa;
1437         struct kvm_memory_slot *memslot;
1438         unsigned long hva;
1439         bool is_iabt, write_fault, writable;
1440         gfn_t gfn;
1441         int ret, idx;
1442
1443         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1444         if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1445                 kvm_inject_vabt(vcpu);
1446                 return 1;
1447         }
1448
1449         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1450
1451         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1452                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1453
1454         /* Check the stage-2 fault is trans. fault or write fault */
1455         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1456         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1457             fault_status != FSC_ACCESS) {
1458                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1459                         kvm_vcpu_trap_get_class(vcpu),
1460                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1461                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1462                 return -EFAULT;
1463         }
1464
1465         idx = srcu_read_lock(&vcpu->kvm->srcu);
1466
1467         gfn = fault_ipa >> PAGE_SHIFT;
1468         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1469         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1470         write_fault = kvm_is_write_fault(vcpu);
1471         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1472                 if (is_iabt) {
1473                         /* Prefetch Abort on I/O address */
1474                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1475                         ret = 1;
1476                         goto out_unlock;
1477                 }
1478
1479                 /*
1480                  * Check for a cache maintenance operation. Since we
1481                  * ended-up here, we know it is outside of any memory
1482                  * slot. But we can't find out if that is for a device,
1483                  * or if the guest is just being stupid. The only thing
1484                  * we know for sure is that this range cannot be cached.
1485                  *
1486                  * So let's assume that the guest is just being
1487                  * cautious, and skip the instruction.
1488                  */
1489                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1490                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1491                         ret = 1;
1492                         goto out_unlock;
1493                 }
1494
1495                 /*
1496                  * The IPA is reported as [MAX:12], so we need to
1497                  * complement it with the bottom 12 bits from the
1498                  * faulting VA. This is always 12 bits, irrespective
1499                  * of the page size.
1500                  */
1501                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1502                 ret = io_mem_abort(vcpu, run, fault_ipa);
1503                 goto out_unlock;
1504         }
1505
1506         /* Userspace should not be able to register out-of-bounds IPAs */
1507         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1508
1509         if (fault_status == FSC_ACCESS) {
1510                 handle_access_fault(vcpu, fault_ipa);
1511                 ret = 1;
1512                 goto out_unlock;
1513         }
1514
1515         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1516         if (ret == 0)
1517                 ret = 1;
1518 out_unlock:
1519         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1520         return ret;
1521 }
1522
1523 static int handle_hva_to_gpa(struct kvm *kvm,
1524                              unsigned long start,
1525                              unsigned long end,
1526                              int (*handler)(struct kvm *kvm,
1527                                             gpa_t gpa, u64 size,
1528                                             void *data),
1529                              void *data)
1530 {
1531         struct kvm_memslots *slots;
1532         struct kvm_memory_slot *memslot;
1533         int ret = 0;
1534
1535         slots = kvm_memslots(kvm);
1536
1537         /* we only care about the pages that the guest sees */
1538         kvm_for_each_memslot(memslot, slots) {
1539                 unsigned long hva_start, hva_end;
1540                 gfn_t gpa;
1541
1542                 hva_start = max(start, memslot->userspace_addr);
1543                 hva_end = min(end, memslot->userspace_addr +
1544                                         (memslot->npages << PAGE_SHIFT));
1545                 if (hva_start >= hva_end)
1546                         continue;
1547
1548                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1549                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1550         }
1551
1552         return ret;
1553 }
1554
1555 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1556 {
1557         unmap_stage2_range(kvm, gpa, size);
1558         return 0;
1559 }
1560
1561 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1562 {
1563         unsigned long end = hva + PAGE_SIZE;
1564
1565         if (!kvm->arch.pgd)
1566                 return 0;
1567
1568         trace_kvm_unmap_hva(hva);
1569         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1570         return 0;
1571 }
1572
1573 int kvm_unmap_hva_range(struct kvm *kvm,
1574                         unsigned long start, unsigned long end)
1575 {
1576         if (!kvm->arch.pgd)
1577                 return 0;
1578
1579         trace_kvm_unmap_hva_range(start, end);
1580         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1581         return 0;
1582 }
1583
1584 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1585 {
1586         pte_t *pte = (pte_t *)data;
1587
1588         WARN_ON(size != PAGE_SIZE);
1589         /*
1590          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1591          * flag clear because MMU notifiers will have unmapped a huge PMD before
1592          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1593          * therefore stage2_set_pte() never needs to clear out a huge PMD
1594          * through this calling path.
1595          */
1596         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1597         return 0;
1598 }
1599
1600
1601 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1602 {
1603         unsigned long end = hva + PAGE_SIZE;
1604         pte_t stage2_pte;
1605
1606         if (!kvm->arch.pgd)
1607                 return;
1608
1609         trace_kvm_set_spte_hva(hva);
1610         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1611         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1612 }
1613
1614 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1615 {
1616         pmd_t *pmd;
1617         pte_t *pte;
1618
1619         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1620         pmd = stage2_get_pmd(kvm, NULL, gpa);
1621         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1622                 return 0;
1623
1624         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1625                 return stage2_pmdp_test_and_clear_young(pmd);
1626
1627         pte = pte_offset_kernel(pmd, gpa);
1628         if (pte_none(*pte))
1629                 return 0;
1630
1631         return stage2_ptep_test_and_clear_young(pte);
1632 }
1633
1634 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1635 {
1636         pmd_t *pmd;
1637         pte_t *pte;
1638
1639         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1640         pmd = stage2_get_pmd(kvm, NULL, gpa);
1641         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1642                 return 0;
1643
1644         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1645                 return pmd_young(*pmd);
1646
1647         pte = pte_offset_kernel(pmd, gpa);
1648         if (!pte_none(*pte))            /* Just a page... */
1649                 return pte_young(*pte);
1650
1651         return 0;
1652 }
1653
1654 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1655 {
1656         trace_kvm_age_hva(start, end);
1657         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1658 }
1659
1660 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1661 {
1662         trace_kvm_test_age_hva(hva);
1663         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1664 }
1665
1666 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1667 {
1668         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1669 }
1670
1671 phys_addr_t kvm_mmu_get_httbr(void)
1672 {
1673         if (__kvm_cpu_uses_extended_idmap())
1674                 return virt_to_phys(merged_hyp_pgd);
1675         else
1676                 return virt_to_phys(hyp_pgd);
1677 }
1678
1679 phys_addr_t kvm_get_idmap_vector(void)
1680 {
1681         return hyp_idmap_vector;
1682 }
1683
1684 static int kvm_map_idmap_text(pgd_t *pgd)
1685 {
1686         int err;
1687
1688         /* Create the idmap in the boot page tables */
1689         err =   __create_hyp_mappings(pgd,
1690                                       hyp_idmap_start, hyp_idmap_end,
1691                                       __phys_to_pfn(hyp_idmap_start),
1692                                       PAGE_HYP_EXEC);
1693         if (err)
1694                 kvm_err("Failed to idmap %lx-%lx\n",
1695                         hyp_idmap_start, hyp_idmap_end);
1696
1697         return err;
1698 }
1699
1700 int kvm_mmu_init(void)
1701 {
1702         int err;
1703
1704         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1705         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1706         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1707
1708         /*
1709          * We rely on the linker script to ensure at build time that the HYP
1710          * init code does not cross a page boundary.
1711          */
1712         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1713
1714         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1715         kvm_info("HYP VA range: %lx:%lx\n",
1716                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1717
1718         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1719             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1720             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1721                 /*
1722                  * The idmap page is intersecting with the VA space,
1723                  * it is not safe to continue further.
1724                  */
1725                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1726                 err = -EINVAL;
1727                 goto out;
1728         }
1729
1730         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1731         if (!hyp_pgd) {
1732                 kvm_err("Hyp mode PGD not allocated\n");
1733                 err = -ENOMEM;
1734                 goto out;
1735         }
1736
1737         if (__kvm_cpu_uses_extended_idmap()) {
1738                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1739                                                          hyp_pgd_order);
1740                 if (!boot_hyp_pgd) {
1741                         kvm_err("Hyp boot PGD not allocated\n");
1742                         err = -ENOMEM;
1743                         goto out;
1744                 }
1745
1746                 err = kvm_map_idmap_text(boot_hyp_pgd);
1747                 if (err)
1748                         goto out;
1749
1750                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1751                 if (!merged_hyp_pgd) {
1752                         kvm_err("Failed to allocate extra HYP pgd\n");
1753                         goto out;
1754                 }
1755                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1756                                     hyp_idmap_start);
1757         } else {
1758                 err = kvm_map_idmap_text(hyp_pgd);
1759                 if (err)
1760                         goto out;
1761         }
1762
1763         return 0;
1764 out:
1765         free_hyp_pgds();
1766         return err;
1767 }
1768
1769 void kvm_arch_commit_memory_region(struct kvm *kvm,
1770                                    const struct kvm_userspace_memory_region *mem,
1771                                    const struct kvm_memory_slot *old,
1772                                    const struct kvm_memory_slot *new,
1773                                    enum kvm_mr_change change)
1774 {
1775         /*
1776          * At this point memslot has been committed and there is an
1777          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1778          * memory slot is write protected.
1779          */
1780         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1781                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1782 }
1783
1784 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1785                                    struct kvm_memory_slot *memslot,
1786                                    const struct kvm_userspace_memory_region *mem,
1787                                    enum kvm_mr_change change)
1788 {
1789         hva_t hva = mem->userspace_addr;
1790         hva_t reg_end = hva + mem->memory_size;
1791         bool writable = !(mem->flags & KVM_MEM_READONLY);
1792         int ret = 0;
1793
1794         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1795                         change != KVM_MR_FLAGS_ONLY)
1796                 return 0;
1797
1798         /*
1799          * Prevent userspace from creating a memory region outside of the IPA
1800          * space addressable by the KVM guest IPA space.
1801          */
1802         if (memslot->base_gfn + memslot->npages >=
1803             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1804                 return -EFAULT;
1805
1806         down_read(&current->mm->mmap_sem);
1807         /*
1808          * A memory region could potentially cover multiple VMAs, and any holes
1809          * between them, so iterate over all of them to find out if we can map
1810          * any of them right now.
1811          *
1812          *     +--------------------------------------------+
1813          * +---------------+----------------+   +----------------+
1814          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1815          * +---------------+----------------+   +----------------+
1816          *     |               memory region                |
1817          *     +--------------------------------------------+
1818          */
1819         do {
1820                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1821                 hva_t vm_start, vm_end;
1822
1823                 if (!vma || vma->vm_start >= reg_end)
1824                         break;
1825
1826                 /*
1827                  * Mapping a read-only VMA is only allowed if the
1828                  * memory region is configured as read-only.
1829                  */
1830                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1831                         ret = -EPERM;
1832                         break;
1833                 }
1834
1835                 /*
1836                  * Take the intersection of this VMA with the memory region
1837                  */
1838                 vm_start = max(hva, vma->vm_start);
1839                 vm_end = min(reg_end, vma->vm_end);
1840
1841                 if (vma->vm_flags & VM_PFNMAP) {
1842                         gpa_t gpa = mem->guest_phys_addr +
1843                                     (vm_start - mem->userspace_addr);
1844                         phys_addr_t pa;
1845
1846                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1847                         pa += vm_start - vma->vm_start;
1848
1849                         /* IO region dirty page logging not allowed */
1850                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1851                                 ret = -EINVAL;
1852                                 goto out;
1853                         }
1854
1855                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1856                                                     vm_end - vm_start,
1857                                                     writable);
1858                         if (ret)
1859                                 break;
1860                 }
1861                 hva = vm_end;
1862         } while (hva < reg_end);
1863
1864         if (change == KVM_MR_FLAGS_ONLY)
1865                 goto out;
1866
1867         spin_lock(&kvm->mmu_lock);
1868         if (ret)
1869                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1870         else
1871                 stage2_flush_memslot(kvm, memslot);
1872         spin_unlock(&kvm->mmu_lock);
1873 out:
1874         up_read(&current->mm->mmap_sem);
1875         return ret;
1876 }
1877
1878 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1879                            struct kvm_memory_slot *dont)
1880 {
1881 }
1882
1883 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1884                             unsigned long npages)
1885 {
1886         return 0;
1887 }
1888
1889 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1890 {
1891 }
1892
1893 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1894 {
1895         kvm_free_stage2_pgd(kvm);
1896 }
1897
1898 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1899                                    struct kvm_memory_slot *slot)
1900 {
1901         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1902         phys_addr_t size = slot->npages << PAGE_SHIFT;
1903
1904         spin_lock(&kvm->mmu_lock);
1905         unmap_stage2_range(kvm, gpa, size);
1906         spin_unlock(&kvm->mmu_lock);
1907 }
1908
1909 /*
1910  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1911  *
1912  * Main problems:
1913  * - S/W ops are local to a CPU (not broadcast)
1914  * - We have line migration behind our back (speculation)
1915  * - System caches don't support S/W at all (damn!)
1916  *
1917  * In the face of the above, the best we can do is to try and convert
1918  * S/W ops to VA ops. Because the guest is not allowed to infer the
1919  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1920  * which is a rather good thing for us.
1921  *
1922  * Also, it is only used when turning caches on/off ("The expected
1923  * usage of the cache maintenance instructions that operate by set/way
1924  * is associated with the cache maintenance instructions associated
1925  * with the powerdown and powerup of caches, if this is required by
1926  * the implementation.").
1927  *
1928  * We use the following policy:
1929  *
1930  * - If we trap a S/W operation, we enable VM trapping to detect
1931  *   caches being turned on/off, and do a full clean.
1932  *
1933  * - We flush the caches on both caches being turned on and off.
1934  *
1935  * - Once the caches are enabled, we stop trapping VM ops.
1936  */
1937 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1938 {
1939         unsigned long hcr = vcpu_get_hcr(vcpu);
1940
1941         /*
1942          * If this is the first time we do a S/W operation
1943          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1944          * VM trapping.
1945          *
1946          * Otherwise, rely on the VM trapping to wait for the MMU +
1947          * Caches to be turned off. At that point, we'll be able to
1948          * clean the caches again.
1949          */
1950         if (!(hcr & HCR_TVM)) {
1951                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1952                                         vcpu_has_cache_enabled(vcpu));
1953                 stage2_flush_vm(vcpu->kvm);
1954                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1955         }
1956 }
1957
1958 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1959 {
1960         bool now_enabled = vcpu_has_cache_enabled(vcpu);
1961
1962         /*
1963          * If switching the MMU+caches on, need to invalidate the caches.
1964          * If switching it off, need to clean the caches.
1965          * Clean + invalidate does the trick always.
1966          */
1967         if (now_enabled != was_enabled)
1968                 stage2_flush_vm(vcpu->kvm);
1969
1970         /* Caches are now on, stop trapping VM ops (until a S/W op) */
1971         if (now_enabled)
1972                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1973
1974         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1975 }