]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/mach-vexpress/tc2_pm.c
ddd97dd4e9b759d9cd98ab8b4d1b6ce667a83f63
[karo-tx-linux.git] / arch / arm / mach-vexpress / tc2_pm.c
1 /*
2  * arch/arm/mach-vexpress/tc2_pm.c - TC2 power management support
3  *
4  * Created by:  Nicolas Pitre, October 2012
5  * Copyright:   (C) 2012-2013  Linaro Limited
6  *
7  * Some portions of this file were originally written by Achin Gupta
8  * Copyright:   (C) 2012  ARM Limited
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #include <linux/init.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/of_address.h>
19 #include <linux/spinlock.h>
20 #include <linux/errno.h>
21
22 #include <asm/mcpm.h>
23 #include <asm/proc-fns.h>
24 #include <asm/cacheflush.h>
25 #include <asm/cputype.h>
26 #include <asm/cp15.h>
27
28 #include <linux/arm-cci.h>
29
30 #include "spc.h"
31
32 /* SCC conf registers */
33 #define A15_CONF                0x400
34 #define A7_CONF                 0x500
35 #define SYS_INFO                0x700
36 #define SPC_BASE                0xb00
37
38 /*
39  * We can't use regular spinlocks. In the switcher case, it is possible
40  * for an outbound CPU to call power_down() after its inbound counterpart
41  * is already live using the same logical CPU number which trips lockdep
42  * debugging.
43  */
44 static arch_spinlock_t tc2_pm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
45
46 #define TC2_CLUSTERS                    2
47 #define TC2_MAX_CPUS_PER_CLUSTER        3
48
49 static unsigned int tc2_nr_cpus[TC2_CLUSTERS];
50
51 /* Keep per-cpu usage count to cope with unordered up/down requests */
52 static int tc2_pm_use_count[TC2_MAX_CPUS_PER_CLUSTER][TC2_CLUSTERS];
53
54 #define tc2_cluster_unused(cluster) \
55         (!tc2_pm_use_count[0][cluster] && \
56          !tc2_pm_use_count[1][cluster] && \
57          !tc2_pm_use_count[2][cluster])
58
59 static int tc2_pm_power_up(unsigned int cpu, unsigned int cluster)
60 {
61         pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
62         if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster])
63                 return -EINVAL;
64
65         /*
66          * Since this is called with IRQs enabled, and no arch_spin_lock_irq
67          * variant exists, we need to disable IRQs manually here.
68          */
69         local_irq_disable();
70         arch_spin_lock(&tc2_pm_lock);
71
72         if (tc2_cluster_unused(cluster))
73                 ve_spc_powerdown(cluster, false);
74
75         tc2_pm_use_count[cpu][cluster]++;
76         if (tc2_pm_use_count[cpu][cluster] == 1) {
77                 ve_spc_set_resume_addr(cluster, cpu,
78                                        virt_to_phys(mcpm_entry_point));
79                 ve_spc_cpu_wakeup_irq(cluster, cpu, true);
80         } else if (tc2_pm_use_count[cpu][cluster] != 2) {
81                 /*
82                  * The only possible values are:
83                  * 0 = CPU down
84                  * 1 = CPU (still) up
85                  * 2 = CPU requested to be up before it had a chance
86                  *     to actually make itself down.
87                  * Any other value is a bug.
88                  */
89                 BUG();
90         }
91
92         arch_spin_unlock(&tc2_pm_lock);
93         local_irq_enable();
94
95         return 0;
96 }
97
98 static void tc2_pm_down(u64 residency)
99 {
100         unsigned int mpidr, cpu, cluster;
101         bool last_man = false, skip_wfi = false;
102
103         mpidr = read_cpuid_mpidr();
104         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
105         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
106
107         pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
108         BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
109
110         __mcpm_cpu_going_down(cpu, cluster);
111
112         arch_spin_lock(&tc2_pm_lock);
113         BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
114         tc2_pm_use_count[cpu][cluster]--;
115         if (tc2_pm_use_count[cpu][cluster] == 0) {
116                 ve_spc_cpu_wakeup_irq(cluster, cpu, true);
117                 if (tc2_cluster_unused(cluster)) {
118                         ve_spc_powerdown(cluster, true);
119                         ve_spc_global_wakeup_irq(true);
120                         last_man = true;
121                 }
122         } else if (tc2_pm_use_count[cpu][cluster] == 1) {
123                 /*
124                  * A power_up request went ahead of us.
125                  * Even if we do not want to shut this CPU down,
126                  * the caller expects a certain state as if the WFI
127                  * was aborted.  So let's continue with cache cleaning.
128                  */
129                 skip_wfi = true;
130         } else
131                 BUG();
132
133         if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
134                 arch_spin_unlock(&tc2_pm_lock);
135
136                 if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A15) {
137                         /*
138                          * On the Cortex-A15 we need to disable
139                          * L2 prefetching before flushing the cache.
140                          */
141                         asm volatile(
142                         "mcr    p15, 1, %0, c15, c0, 3 \n\t"
143                         "isb    \n\t"
144                         "dsb    "
145                         : : "r" (0x400) );
146                 }
147
148                 /*
149                  * We need to disable and flush the whole (L1 and L2) cache.
150                  * Let's do it in the safest possible way i.e. with
151                  * no memory access within the following sequence
152                  * including the stack.
153                  */
154                 asm volatile(
155                 "mrc    p15, 0, r0, c1, c0, 0   @ get CR \n\t"
156                 "bic    r0, r0, #"__stringify(CR_C)" \n\t"
157                 "mcr    p15, 0, r0, c1, c0, 0   @ set CR \n\t"
158                 "isb    \n\t"
159                 "bl     v7_flush_dcache_all \n\t"
160                 "clrex  \n\t"
161                 "mrc    p15, 0, r0, c1, c0, 1   @ get AUXCR \n\t"
162                 "bic    r0, r0, #(1 << 6)       @ disable local coherency \n\t"
163                 "mcr    p15, 0, r0, c1, c0, 1   @ set AUXCR \n\t"
164                 "isb    \n\t"
165                 "dsb    "
166                 : : : "r0","r1","r2","r3","r4","r5","r6","r7",
167                       "r9","r10","r11","lr","memory");
168
169                 cci_disable_port_by_cpu(mpidr);
170
171                 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
172         } else {
173                 /*
174                  * If last man then undo any setup done previously.
175                  */
176                 if (last_man) {
177                         ve_spc_powerdown(cluster, false);
178                         ve_spc_global_wakeup_irq(false);
179                 }
180
181                 arch_spin_unlock(&tc2_pm_lock);
182
183                 /*
184                  * We need to disable and flush only the L1 cache.
185                  * Let's do it in the safest possible way as above.
186                  */
187                 asm volatile(
188                 "mrc    p15, 0, r0, c1, c0, 0   @ get CR \n\t"
189                 "bic    r0, r0, #"__stringify(CR_C)" \n\t"
190                 "mcr    p15, 0, r0, c1, c0, 0   @ set CR \n\t"
191                 "isb    \n\t"
192                 "bl     v7_flush_dcache_louis \n\t"
193                 "clrex  \n\t"
194                 "mrc    p15, 0, r0, c1, c0, 1   @ get AUXCR \n\t"
195                 "bic    r0, r0, #(1 << 6)       @ disable local coherency \n\t"
196                 "mcr    p15, 0, r0, c1, c0, 1   @ set AUXCR \n\t"
197                 "isb    \n\t"
198                 "dsb    "
199                 : : : "r0","r1","r2","r3","r4","r5","r6","r7",
200                       "r9","r10","r11","lr","memory");
201         }
202
203         __mcpm_cpu_down(cpu, cluster);
204
205         /* Now we are prepared for power-down, do it: */
206         if (!skip_wfi)
207                 wfi();
208
209         /* Not dead at this point?  Let our caller cope. */
210 }
211
212 static void tc2_pm_power_down(void)
213 {
214         tc2_pm_down(0);
215 }
216
217 static void tc2_pm_suspend(u64 residency)
218 {
219         unsigned int mpidr, cpu, cluster;
220
221         mpidr = read_cpuid_mpidr();
222         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
223         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
224         ve_spc_set_resume_addr(cluster, cpu, virt_to_phys(mcpm_entry_point));
225         tc2_pm_down(residency);
226 }
227
228 static void tc2_pm_powered_up(void)
229 {
230         unsigned int mpidr, cpu, cluster;
231         unsigned long flags;
232
233         mpidr = read_cpuid_mpidr();
234         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
235         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
236
237         pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
238         BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
239
240         local_irq_save(flags);
241         arch_spin_lock(&tc2_pm_lock);
242
243         if (tc2_cluster_unused(cluster)) {
244                 ve_spc_powerdown(cluster, false);
245                 ve_spc_global_wakeup_irq(false);
246         }
247
248         if (!tc2_pm_use_count[cpu][cluster])
249                 tc2_pm_use_count[cpu][cluster] = 1;
250
251         ve_spc_cpu_wakeup_irq(cluster, cpu, false);
252         ve_spc_set_resume_addr(cluster, cpu, 0);
253
254         arch_spin_unlock(&tc2_pm_lock);
255         local_irq_restore(flags);
256 }
257
258 static const struct mcpm_platform_ops tc2_pm_power_ops = {
259         .power_up       = tc2_pm_power_up,
260         .power_down     = tc2_pm_power_down,
261         .suspend        = tc2_pm_suspend,
262         .powered_up     = tc2_pm_powered_up,
263 };
264
265 static bool __init tc2_pm_usage_count_init(void)
266 {
267         unsigned int mpidr, cpu, cluster;
268
269         mpidr = read_cpuid_mpidr();
270         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
271         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
272
273         pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
274         if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) {
275                 pr_err("%s: boot CPU is out of bound!\n", __func__);
276                 return false;
277         }
278         tc2_pm_use_count[cpu][cluster] = 1;
279         return true;
280 }
281
282 /*
283  * Enable cluster-level coherency, in preparation for turning on the MMU.
284  */
285 static void __naked tc2_pm_power_up_setup(unsigned int affinity_level)
286 {
287         asm volatile (" \n"
288 "       cmp     r0, #1 \n"
289 "       bxne    lr \n"
290 "       b       cci_enable_port_for_self ");
291 }
292
293 static int __init tc2_pm_init(void)
294 {
295         int ret;
296         void __iomem *scc;
297         u32 a15_cluster_id, a7_cluster_id, sys_info;
298         struct device_node *np;
299
300         /*
301          * The power management-related features are hidden behind
302          * SCC registers. We need to extract runtime information like
303          * cluster ids and number of CPUs really available in clusters.
304          */
305         np = of_find_compatible_node(NULL, NULL,
306                         "arm,vexpress-scc,v2p-ca15_a7");
307         scc = of_iomap(np, 0);
308         if (!scc)
309                 return -ENODEV;
310
311         a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf;
312         a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf;
313         if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS)
314                 return -EINVAL;
315
316         sys_info = readl_relaxed(scc + SYS_INFO);
317         tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf;
318         tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf;
319
320         /*
321          * A subset of the SCC registers is also used to communicate
322          * with the SPC (power controller). We need to be able to
323          * drive it very early in the boot process to power up
324          * processors, so we initialize the SPC driver here.
325          */
326         ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id);
327         if (ret)
328                 return ret;
329
330         if (!cci_probed())
331                 return -ENODEV;
332
333         if (!tc2_pm_usage_count_init())
334                 return -EINVAL;
335
336         ret = mcpm_platform_register(&tc2_pm_power_ops);
337         if (!ret) {
338                 mcpm_sync_init(tc2_pm_power_up_setup);
339                 pr_info("TC2 power management initialized\n");
340         }
341         return ret;
342 }
343
344 early_initcall(tc2_pm_init);