]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/arm/mm/mm-armv.c
[PATCH] ARM: Add inline functions to find the pmd from virtual address
[mv-sheeva.git] / arch / arm / mm / mm-armv.c
1 /*
2  *  linux/arch/arm/mm/mm-armv.c
3  *
4  *  Copyright (C) 1998-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  Page table sludge for ARM v3 and v4 processor architectures.
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/nodemask.h>
19
20 #include <asm/pgalloc.h>
21 #include <asm/page.h>
22 #include <asm/io.h>
23 #include <asm/setup.h>
24 #include <asm/tlbflush.h>
25
26 #include <asm/mach/map.h>
27
28 #define CPOLICY_UNCACHED        0
29 #define CPOLICY_BUFFERED        1
30 #define CPOLICY_WRITETHROUGH    2
31 #define CPOLICY_WRITEBACK       3
32 #define CPOLICY_WRITEALLOC      4
33
34 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
35 static unsigned int ecc_mask __initdata = 0;
36 pgprot_t pgprot_kernel;
37
38 EXPORT_SYMBOL(pgprot_kernel);
39
40 struct cachepolicy {
41         const char      policy[16];
42         unsigned int    cr_mask;
43         unsigned int    pmd;
44         unsigned int    pte;
45 };
46
47 static struct cachepolicy cache_policies[] __initdata = {
48         {
49                 .policy         = "uncached",
50                 .cr_mask        = CR_W|CR_C,
51                 .pmd            = PMD_SECT_UNCACHED,
52                 .pte            = 0,
53         }, {
54                 .policy         = "buffered",
55                 .cr_mask        = CR_C,
56                 .pmd            = PMD_SECT_BUFFERED,
57                 .pte            = PTE_BUFFERABLE,
58         }, {
59                 .policy         = "writethrough",
60                 .cr_mask        = 0,
61                 .pmd            = PMD_SECT_WT,
62                 .pte            = PTE_CACHEABLE,
63         }, {
64                 .policy         = "writeback",
65                 .cr_mask        = 0,
66                 .pmd            = PMD_SECT_WB,
67                 .pte            = PTE_BUFFERABLE|PTE_CACHEABLE,
68         }, {
69                 .policy         = "writealloc",
70                 .cr_mask        = 0,
71                 .pmd            = PMD_SECT_WBWA,
72                 .pte            = PTE_BUFFERABLE|PTE_CACHEABLE,
73         }
74 };
75
76 /*
77  * These are useful for identifing cache coherency
78  * problems by allowing the cache or the cache and
79  * writebuffer to be turned off.  (Note: the write
80  * buffer should not be on and the cache off).
81  */
82 static void __init early_cachepolicy(char **p)
83 {
84         int i;
85
86         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
87                 int len = strlen(cache_policies[i].policy);
88
89                 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
90                         cachepolicy = i;
91                         cr_alignment &= ~cache_policies[i].cr_mask;
92                         cr_no_alignment &= ~cache_policies[i].cr_mask;
93                         *p += len;
94                         break;
95                 }
96         }
97         if (i == ARRAY_SIZE(cache_policies))
98                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
99         flush_cache_all();
100         set_cr(cr_alignment);
101 }
102
103 static void __init early_nocache(char **__unused)
104 {
105         char *p = "buffered";
106         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
107         early_cachepolicy(&p);
108 }
109
110 static void __init early_nowrite(char **__unused)
111 {
112         char *p = "uncached";
113         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
114         early_cachepolicy(&p);
115 }
116
117 static void __init early_ecc(char **p)
118 {
119         if (memcmp(*p, "on", 2) == 0) {
120                 ecc_mask = PMD_PROTECTION;
121                 *p += 2;
122         } else if (memcmp(*p, "off", 3) == 0) {
123                 ecc_mask = 0;
124                 *p += 3;
125         }
126 }
127
128 __early_param("nocache", early_nocache);
129 __early_param("nowb", early_nowrite);
130 __early_param("cachepolicy=", early_cachepolicy);
131 __early_param("ecc=", early_ecc);
132
133 static int __init noalign_setup(char *__unused)
134 {
135         cr_alignment &= ~CR_A;
136         cr_no_alignment &= ~CR_A;
137         set_cr(cr_alignment);
138         return 1;
139 }
140
141 __setup("noalign", noalign_setup);
142
143 #define FIRST_KERNEL_PGD_NR     (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
144
145 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
146 {
147         return pmd_offset(pgd, virt);
148 }
149
150 static inline pmd_t *pmd_off_k(unsigned long virt)
151 {
152         return pmd_off(pgd_offset_k(virt), virt);
153 }
154
155 /*
156  * need to get a 16k page for level 1
157  */
158 pgd_t *get_pgd_slow(struct mm_struct *mm)
159 {
160         pgd_t *new_pgd, *init_pgd;
161         pmd_t *new_pmd, *init_pmd;
162         pte_t *new_pte, *init_pte;
163
164         new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
165         if (!new_pgd)
166                 goto no_pgd;
167
168         memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
169
170         init_pgd = pgd_offset_k(0);
171
172         if (!vectors_high()) {
173                 /*
174                  * This lock is here just to satisfy pmd_alloc and pte_lock
175                  */
176                 spin_lock(&mm->page_table_lock);
177
178                 /*
179                  * On ARM, first page must always be allocated since it
180                  * contains the machine vectors.
181                  */
182                 new_pmd = pmd_alloc(mm, new_pgd, 0);
183                 if (!new_pmd)
184                         goto no_pmd;
185
186                 new_pte = pte_alloc_map(mm, new_pmd, 0);
187                 if (!new_pte)
188                         goto no_pte;
189
190                 init_pmd = pmd_offset(init_pgd, 0);
191                 init_pte = pte_offset_map_nested(init_pmd, 0);
192                 set_pte(new_pte, *init_pte);
193                 pte_unmap_nested(init_pte);
194                 pte_unmap(new_pte);
195
196                 spin_unlock(&mm->page_table_lock);
197         }
198
199         /*
200          * Copy over the kernel and IO PGD entries
201          */
202         memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
203                        (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
204
205         clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
206
207         return new_pgd;
208
209 no_pte:
210         spin_unlock(&mm->page_table_lock);
211         pmd_free(new_pmd);
212         free_pages((unsigned long)new_pgd, 2);
213         return NULL;
214
215 no_pmd:
216         spin_unlock(&mm->page_table_lock);
217         free_pages((unsigned long)new_pgd, 2);
218         return NULL;
219
220 no_pgd:
221         return NULL;
222 }
223
224 void free_pgd_slow(pgd_t *pgd)
225 {
226         pmd_t *pmd;
227         struct page *pte;
228
229         if (!pgd)
230                 return;
231
232         /* pgd is always present and good */
233         pmd = pmd_off(pgd, 0);
234         if (pmd_none(*pmd))
235                 goto free;
236         if (pmd_bad(*pmd)) {
237                 pmd_ERROR(*pmd);
238                 pmd_clear(pmd);
239                 goto free;
240         }
241
242         pte = pmd_page(*pmd);
243         pmd_clear(pmd);
244         dec_page_state(nr_page_table_pages);
245         pte_free(pte);
246         pmd_free(pmd);
247 free:
248         free_pages((unsigned long) pgd, 2);
249 }
250
251 /*
252  * Create a SECTION PGD between VIRT and PHYS in domain
253  * DOMAIN with protection PROT.  This operates on half-
254  * pgdir entry increments.
255  */
256 static inline void
257 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
258 {
259         pmd_t *pmdp = pmd_off_k(virt);
260
261         if (virt & (1 << 20))
262                 pmdp++;
263
264         *pmdp = __pmd(phys | prot);
265         flush_pmd_entry(pmdp);
266 }
267
268 /*
269  * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
270  */
271 static inline void
272 alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
273 {
274         int i;
275
276         for (i = 0; i < 16; i += 1) {
277                 alloc_init_section(virt, phys & SUPERSECTION_MASK,
278                                    prot | PMD_SECT_SUPER);
279
280                 virt += (PGDIR_SIZE / 2);
281                 phys += (PGDIR_SIZE / 2);
282         }
283 }
284
285 /*
286  * Add a PAGE mapping between VIRT and PHYS in domain
287  * DOMAIN with protection PROT.  Note that due to the
288  * way we map the PTEs, we must allocate two PTE_SIZE'd
289  * blocks - one for the Linux pte table, and one for
290  * the hardware pte table.
291  */
292 static inline void
293 alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
294 {
295         pmd_t *pmdp = pmd_off_k(virt);
296         pte_t *ptep;
297
298         if (pmd_none(*pmdp)) {
299                 unsigned long pmdval;
300                 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
301                                                sizeof(pte_t));
302
303                 pmdval = __pa(ptep) | prot_l1;
304                 pmdp[0] = __pmd(pmdval);
305                 pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
306                 flush_pmd_entry(pmdp);
307         }
308         ptep = pte_offset_kernel(pmdp, virt);
309
310         set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
311 }
312
313 /*
314  * Clear any PGD mapping.  On a two-level page table system,
315  * the clearance is done by the middle-level functions (pmd)
316  * rather than the top-level (pgd) functions.
317  */
318 static inline void clear_mapping(unsigned long virt)
319 {
320         pmd_clear(pmd_off_k(virt));
321 }
322
323 struct mem_types {
324         unsigned int    prot_pte;
325         unsigned int    prot_l1;
326         unsigned int    prot_sect;
327         unsigned int    domain;
328 };
329
330 static struct mem_types mem_types[] __initdata = {
331         [MT_DEVICE] = {
332                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
333                                 L_PTE_WRITE,
334                 .prot_l1   = PMD_TYPE_TABLE,
335                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
336                                 PMD_SECT_AP_WRITE,
337                 .domain    = DOMAIN_IO,
338         },
339         [MT_CACHECLEAN] = {
340                 .prot_sect = PMD_TYPE_SECT,
341                 .domain    = DOMAIN_KERNEL,
342         },
343         [MT_MINICLEAN] = {
344                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
345                 .domain    = DOMAIN_KERNEL,
346         },
347         [MT_LOW_VECTORS] = {
348                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
349                                 L_PTE_EXEC,
350                 .prot_l1   = PMD_TYPE_TABLE,
351                 .domain    = DOMAIN_USER,
352         },
353         [MT_HIGH_VECTORS] = {
354                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
355                                 L_PTE_USER | L_PTE_EXEC,
356                 .prot_l1   = PMD_TYPE_TABLE,
357                 .domain    = DOMAIN_USER,
358         },
359         [MT_MEMORY] = {
360                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
361                 .domain    = DOMAIN_KERNEL,
362         },
363         [MT_ROM] = {
364                 .prot_sect = PMD_TYPE_SECT,
365                 .domain    = DOMAIN_KERNEL,
366         },
367         [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
368                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
369                                 L_PTE_WRITE,
370                 .prot_l1   = PMD_TYPE_TABLE,
371                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
372                                 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
373                                 PMD_SECT_TEX(1),
374                 .domain    = DOMAIN_IO,
375         }
376 };
377
378 /*
379  * Adjust the PMD section entries according to the CPU in use.
380  */
381 static void __init build_mem_type_table(void)
382 {
383         struct cachepolicy *cp;
384         unsigned int cr = get_cr();
385         int cpu_arch = cpu_architecture();
386         int i;
387
388 #if defined(CONFIG_CPU_DCACHE_DISABLE)
389         if (cachepolicy > CPOLICY_BUFFERED)
390                 cachepolicy = CPOLICY_BUFFERED;
391 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
392         if (cachepolicy > CPOLICY_WRITETHROUGH)
393                 cachepolicy = CPOLICY_WRITETHROUGH;
394 #endif
395         if (cpu_arch < CPU_ARCH_ARMv5) {
396                 if (cachepolicy >= CPOLICY_WRITEALLOC)
397                         cachepolicy = CPOLICY_WRITEBACK;
398                 ecc_mask = 0;
399         }
400
401         if (cpu_arch <= CPU_ARCH_ARMv5) {
402                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
403                         if (mem_types[i].prot_l1)
404                                 mem_types[i].prot_l1 |= PMD_BIT4;
405                         if (mem_types[i].prot_sect)
406                                 mem_types[i].prot_sect |= PMD_BIT4;
407                 }
408         }
409
410         /*
411          * ARMv6 and above have extended page tables.
412          */
413         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
414                 /*
415                  * bit 4 becomes XN which we must clear for the
416                  * kernel memory mapping.
417                  */
418                 mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
419                 mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
420                 /*
421                  * Mark cache clean areas and XIP ROM read only
422                  * from SVC mode and no access from userspace.
423                  */
424                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
425                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
426                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
427         }
428
429         cp = &cache_policies[cachepolicy];
430
431         if (cpu_arch >= CPU_ARCH_ARMv5) {
432                 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
433                 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
434         } else {
435                 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
436                 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
437                 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
438         }
439
440         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
441         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
442         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
443         mem_types[MT_ROM].prot_sect |= cp->pmd;
444
445         for (i = 0; i < 16; i++) {
446                 unsigned long v = pgprot_val(protection_map[i]);
447                 v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
448                 protection_map[i] = __pgprot(v);
449         }
450
451         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
452                                  L_PTE_DIRTY | L_PTE_WRITE |
453                                  L_PTE_EXEC | cp->pte);
454
455         switch (cp->pmd) {
456         case PMD_SECT_WT:
457                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
458                 break;
459         case PMD_SECT_WB:
460         case PMD_SECT_WBWA:
461                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
462                 break;
463         }
464         printk("Memory policy: ECC %sabled, Data cache %s\n",
465                 ecc_mask ? "en" : "dis", cp->policy);
466 }
467
468 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
469
470 /*
471  * Create the page directory entries and any necessary
472  * page tables for the mapping specified by `md'.  We
473  * are able to cope here with varying sizes and address
474  * offsets, and we take full advantage of sections and
475  * supersections.
476  */
477 static void __init create_mapping(struct map_desc *md)
478 {
479         unsigned long virt, length;
480         int prot_sect, prot_l1, domain;
481         pgprot_t prot_pte;
482         long off;
483
484         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
485                 printk(KERN_WARNING "BUG: not creating mapping for "
486                        "0x%08lx at 0x%08lx in user region\n",
487                        md->physical, md->virtual);
488                 return;
489         }
490
491         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
492             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
493                 printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
494                        "overlaps vmalloc space\n",
495                        md->physical, md->virtual);
496         }
497
498         domain    = mem_types[md->type].domain;
499         prot_pte  = __pgprot(mem_types[md->type].prot_pte);
500         prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
501         prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
502
503         virt   = md->virtual;
504         off    = md->physical - virt;
505         length = md->length;
506
507         if (mem_types[md->type].prot_l1 == 0 &&
508             (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
509                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
510                        "be mapped using pages, ignoring.\n",
511                        md->physical, md->virtual);
512                 return;
513         }
514
515         while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
516                 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
517
518                 virt   += PAGE_SIZE;
519                 length -= PAGE_SIZE;
520         }
521
522         /* N.B. ARMv6 supersections are only defined to work with domain 0.
523          *      Since domain assignments can in fact be arbitrary, the
524          *      'domain == 0' check below is required to insure that ARMv6
525          *      supersections are only allocated for domain 0 regardless
526          *      of the actual domain assignments in use.
527          */
528         if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
529                 /* Align to supersection boundary */
530                 while ((virt & ~SUPERSECTION_MASK || (virt + off) &
531                         ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
532                         alloc_init_section(virt, virt + off, prot_sect);
533
534                         virt   += (PGDIR_SIZE / 2);
535                         length -= (PGDIR_SIZE / 2);
536                 }
537
538                 while (length >= SUPERSECTION_SIZE) {
539                         alloc_init_supersection(virt, virt + off, prot_sect);
540
541                         virt   += SUPERSECTION_SIZE;
542                         length -= SUPERSECTION_SIZE;
543                 }
544         }
545
546         /*
547          * A section mapping covers half a "pgdir" entry.
548          */
549         while (length >= (PGDIR_SIZE / 2)) {
550                 alloc_init_section(virt, virt + off, prot_sect);
551
552                 virt   += (PGDIR_SIZE / 2);
553                 length -= (PGDIR_SIZE / 2);
554         }
555
556         while (length >= PAGE_SIZE) {
557                 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
558
559                 virt   += PAGE_SIZE;
560                 length -= PAGE_SIZE;
561         }
562 }
563
564 /*
565  * In order to soft-boot, we need to insert a 1:1 mapping in place of
566  * the user-mode pages.  This will then ensure that we have predictable
567  * results when turning the mmu off
568  */
569 void setup_mm_for_reboot(char mode)
570 {
571         unsigned long pmdval;
572         pgd_t *pgd;
573         pmd_t *pmd;
574         int i;
575         int cpu_arch = cpu_architecture();
576
577         if (current->mm && current->mm->pgd)
578                 pgd = current->mm->pgd;
579         else
580                 pgd = init_mm.pgd;
581
582         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
583                 pmdval = (i << PGDIR_SHIFT) |
584                          PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
585                          PMD_TYPE_SECT;
586                 if (cpu_arch <= CPU_ARCH_ARMv5)
587                         pmdval |= PMD_BIT4;
588                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
589                 pmd[0] = __pmd(pmdval);
590                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
591                 flush_pmd_entry(pmd);
592         }
593 }
594
595 extern void _stext, _etext;
596
597 /*
598  * Setup initial mappings.  We use the page we allocated for zero page to hold
599  * the mappings, which will get overwritten by the vectors in traps_init().
600  * The mappings must be in virtual address order.
601  */
602 void __init memtable_init(struct meminfo *mi)
603 {
604         struct map_desc *init_maps, *p, *q;
605         unsigned long address = 0;
606         int i;
607
608         build_mem_type_table();
609
610         init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
611
612 #ifdef CONFIG_XIP_KERNEL
613         p->physical   = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
614         p->virtual    = (unsigned long)&_stext & PMD_MASK;
615         p->length     = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
616         p->type       = MT_ROM;
617         p ++;
618 #endif
619
620         for (i = 0; i < mi->nr_banks; i++) {
621                 if (mi->bank[i].size == 0)
622                         continue;
623
624                 p->physical   = mi->bank[i].start;
625                 p->virtual    = __phys_to_virt(p->physical);
626                 p->length     = mi->bank[i].size;
627                 p->type       = MT_MEMORY;
628                 p ++;
629         }
630
631 #ifdef FLUSH_BASE
632         p->physical   = FLUSH_BASE_PHYS;
633         p->virtual    = FLUSH_BASE;
634         p->length     = PGDIR_SIZE;
635         p->type       = MT_CACHECLEAN;
636         p ++;
637 #endif
638
639 #ifdef FLUSH_BASE_MINICACHE
640         p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;
641         p->virtual    = FLUSH_BASE_MINICACHE;
642         p->length     = PGDIR_SIZE;
643         p->type       = MT_MINICLEAN;
644         p ++;
645 #endif
646
647         /*
648          * Go through the initial mappings, but clear out any
649          * pgdir entries that are not in the description.
650          */
651         q = init_maps;
652         do {
653                 if (address < q->virtual || q == p) {
654                         clear_mapping(address);
655                         address += PGDIR_SIZE;
656                 } else {
657                         create_mapping(q);
658
659                         address = q->virtual + q->length;
660                         address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
661
662                         q ++;
663                 }
664         } while (address != 0);
665
666         /*
667          * Create a mapping for the machine vectors at the high-vectors
668          * location (0xffff0000).  If we aren't using high-vectors, also
669          * create a mapping at the low-vectors virtual address.
670          */
671         init_maps->physical   = virt_to_phys(init_maps);
672         init_maps->virtual    = 0xffff0000;
673         init_maps->length     = PAGE_SIZE;
674         init_maps->type       = MT_HIGH_VECTORS;
675         create_mapping(init_maps);
676
677         if (!vectors_high()) {
678                 init_maps->virtual = 0;
679                 init_maps->type = MT_LOW_VECTORS;
680                 create_mapping(init_maps);
681         }
682
683         flush_cache_all();
684         flush_tlb_all();
685 }
686
687 /*
688  * Create the architecture specific mappings
689  */
690 void __init iotable_init(struct map_desc *io_desc, int nr)
691 {
692         int i;
693
694         for (i = 0; i < nr; i++)
695                 create_mapping(io_desc + i);
696 }
697
698 static inline void
699 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
700 {
701         struct page *start_pg, *end_pg;
702         unsigned long pg, pgend;
703
704         /*
705          * Convert start_pfn/end_pfn to a struct page pointer.
706          */
707         start_pg = pfn_to_page(start_pfn);
708         end_pg = pfn_to_page(end_pfn);
709
710         /*
711          * Convert to physical addresses, and
712          * round start upwards and end downwards.
713          */
714         pg = PAGE_ALIGN(__pa(start_pg));
715         pgend = __pa(end_pg) & PAGE_MASK;
716
717         /*
718          * If there are free pages between these,
719          * free the section of the memmap array.
720          */
721         if (pg < pgend)
722                 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
723 }
724
725 static inline void free_unused_memmap_node(int node, struct meminfo *mi)
726 {
727         unsigned long bank_start, prev_bank_end = 0;
728         unsigned int i;
729
730         /*
731          * [FIXME] This relies on each bank being in address order.  This
732          * may not be the case, especially if the user has provided the
733          * information on the command line.
734          */
735         for (i = 0; i < mi->nr_banks; i++) {
736                 if (mi->bank[i].size == 0 || mi->bank[i].node != node)
737                         continue;
738
739                 bank_start = mi->bank[i].start >> PAGE_SHIFT;
740                 if (bank_start < prev_bank_end) {
741                         printk(KERN_ERR "MEM: unordered memory banks.  "
742                                 "Not freeing memmap.\n");
743                         break;
744                 }
745
746                 /*
747                  * If we had a previous bank, and there is a space
748                  * between the current bank and the previous, free it.
749                  */
750                 if (prev_bank_end && prev_bank_end != bank_start)
751                         free_memmap(node, prev_bank_end, bank_start);
752
753                 prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
754                                            mi->bank[i].size) >> PAGE_SHIFT;
755         }
756 }
757
758 /*
759  * The mem_map array can get very big.  Free
760  * the unused area of the memory map.
761  */
762 void __init create_memmap_holes(struct meminfo *mi)
763 {
764         int node;
765
766         for_each_online_node(node)
767                 free_unused_memmap_node(node, mi);
768 }