]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/mm/mmu.c
Merge remote-tracking branch 'v4l-dvb/master'
[karo-tx-linux.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37
38 /*
39  * empty_zero_page is a special page that is used for
40  * zero-initialized data and COW.
41  */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44
45 /*
46  * The pmd table for the upper-most set of pages.
47  */
48 pmd_t *top_pmd;
49
50 #define CPOLICY_UNCACHED        0
51 #define CPOLICY_BUFFERED        1
52 #define CPOLICY_WRITETHROUGH    2
53 #define CPOLICY_WRITEBACK       3
54 #define CPOLICY_WRITEALLOC      4
55
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60 pgprot_t pgprot_hyp_device;
61 pgprot_t pgprot_s2;
62 pgprot_t pgprot_s2_device;
63
64 EXPORT_SYMBOL(pgprot_user);
65 EXPORT_SYMBOL(pgprot_kernel);
66
67 struct cachepolicy {
68         const char      policy[16];
69         unsigned int    cr_mask;
70         pmdval_t        pmd;
71         pteval_t        pte;
72         pteval_t        pte_s2;
73 };
74
75 #ifdef CONFIG_ARM_LPAE
76 #define s2_policy(policy)       policy
77 #else
78 #define s2_policy(policy)       0
79 #endif
80
81 static struct cachepolicy cache_policies[] __initdata = {
82         {
83                 .policy         = "uncached",
84                 .cr_mask        = CR_W|CR_C,
85                 .pmd            = PMD_SECT_UNCACHED,
86                 .pte            = L_PTE_MT_UNCACHED,
87                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
88         }, {
89                 .policy         = "buffered",
90                 .cr_mask        = CR_C,
91                 .pmd            = PMD_SECT_BUFFERED,
92                 .pte            = L_PTE_MT_BUFFERABLE,
93                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
94         }, {
95                 .policy         = "writethrough",
96                 .cr_mask        = 0,
97                 .pmd            = PMD_SECT_WT,
98                 .pte            = L_PTE_MT_WRITETHROUGH,
99                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
100         }, {
101                 .policy         = "writeback",
102                 .cr_mask        = 0,
103                 .pmd            = PMD_SECT_WB,
104                 .pte            = L_PTE_MT_WRITEBACK,
105                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
106         }, {
107                 .policy         = "writealloc",
108                 .cr_mask        = 0,
109                 .pmd            = PMD_SECT_WBWA,
110                 .pte            = L_PTE_MT_WRITEALLOC,
111                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
112         }
113 };
114
115 #ifdef CONFIG_CPU_CP15
116 /*
117  * These are useful for identifying cache coherency
118  * problems by allowing the cache or the cache and
119  * writebuffer to be turned off.  (Note: the write
120  * buffer should not be on and the cache off).
121  */
122 static int __init early_cachepolicy(char *p)
123 {
124         int i;
125
126         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
127                 int len = strlen(cache_policies[i].policy);
128
129                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
130                         cachepolicy = i;
131                         cr_alignment &= ~cache_policies[i].cr_mask;
132                         cr_no_alignment &= ~cache_policies[i].cr_mask;
133                         break;
134                 }
135         }
136         if (i == ARRAY_SIZE(cache_policies))
137                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
138         /*
139          * This restriction is partly to do with the way we boot; it is
140          * unpredictable to have memory mapped using two different sets of
141          * memory attributes (shared, type, and cache attribs).  We can not
142          * change these attributes once the initial assembly has setup the
143          * page tables.
144          */
145         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
146                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
147                 cachepolicy = CPOLICY_WRITEBACK;
148         }
149         flush_cache_all();
150         set_cr(cr_alignment);
151         return 0;
152 }
153 early_param("cachepolicy", early_cachepolicy);
154
155 static int __init early_nocache(char *__unused)
156 {
157         char *p = "buffered";
158         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
159         early_cachepolicy(p);
160         return 0;
161 }
162 early_param("nocache", early_nocache);
163
164 static int __init early_nowrite(char *__unused)
165 {
166         char *p = "uncached";
167         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
168         early_cachepolicy(p);
169         return 0;
170 }
171 early_param("nowb", early_nowrite);
172
173 #ifndef CONFIG_ARM_LPAE
174 static int __init early_ecc(char *p)
175 {
176         if (memcmp(p, "on", 2) == 0)
177                 ecc_mask = PMD_PROTECTION;
178         else if (memcmp(p, "off", 3) == 0)
179                 ecc_mask = 0;
180         return 0;
181 }
182 early_param("ecc", early_ecc);
183 #endif
184
185 static int __init noalign_setup(char *__unused)
186 {
187         cr_alignment &= ~CR_A;
188         cr_no_alignment &= ~CR_A;
189         set_cr(cr_alignment);
190         return 1;
191 }
192 __setup("noalign", noalign_setup);
193
194 #ifndef CONFIG_SMP
195 void adjust_cr(unsigned long mask, unsigned long set)
196 {
197         unsigned long flags;
198
199         mask &= ~CR_A;
200
201         set &= mask;
202
203         local_irq_save(flags);
204
205         cr_no_alignment = (cr_no_alignment & ~mask) | set;
206         cr_alignment = (cr_alignment & ~mask) | set;
207
208         set_cr((get_cr() & ~mask) | set);
209
210         local_irq_restore(flags);
211 }
212 #endif
213
214 #else /* ifdef CONFIG_CPU_CP15 */
215
216 static int __init early_cachepolicy(char *p)
217 {
218         pr_warning("cachepolicy kernel parameter not supported without cp15\n");
219 }
220 early_param("cachepolicy", early_cachepolicy);
221
222 static int __init noalign_setup(char *__unused)
223 {
224         pr_warning("noalign kernel parameter not supported without cp15\n");
225 }
226 __setup("noalign", noalign_setup);
227
228 #endif /* ifdef CONFIG_CPU_CP15 / else */
229
230 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
231 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
232
233 static struct mem_type mem_types[] = {
234         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
235                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
236                                   L_PTE_SHARED,
237                 .prot_l1        = PMD_TYPE_TABLE,
238                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
239                 .domain         = DOMAIN_IO,
240         },
241         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
242                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
243                 .prot_l1        = PMD_TYPE_TABLE,
244                 .prot_sect      = PROT_SECT_DEVICE,
245                 .domain         = DOMAIN_IO,
246         },
247         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
248                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
249                 .prot_l1        = PMD_TYPE_TABLE,
250                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
251                 .domain         = DOMAIN_IO,
252         },
253         [MT_DEVICE_WC] = {      /* ioremap_wc */
254                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
255                 .prot_l1        = PMD_TYPE_TABLE,
256                 .prot_sect      = PROT_SECT_DEVICE,
257                 .domain         = DOMAIN_IO,
258         },
259         [MT_UNCACHED] = {
260                 .prot_pte       = PROT_PTE_DEVICE,
261                 .prot_l1        = PMD_TYPE_TABLE,
262                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
263                 .domain         = DOMAIN_IO,
264         },
265         [MT_CACHECLEAN] = {
266                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267                 .domain    = DOMAIN_KERNEL,
268         },
269 #ifndef CONFIG_ARM_LPAE
270         [MT_MINICLEAN] = {
271                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
272                 .domain    = DOMAIN_KERNEL,
273         },
274 #endif
275         [MT_LOW_VECTORS] = {
276                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
277                                 L_PTE_RDONLY,
278                 .prot_l1   = PMD_TYPE_TABLE,
279                 .domain    = DOMAIN_USER,
280         },
281         [MT_HIGH_VECTORS] = {
282                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283                                 L_PTE_USER | L_PTE_RDONLY,
284                 .prot_l1   = PMD_TYPE_TABLE,
285                 .domain    = DOMAIN_USER,
286         },
287         [MT_MEMORY] = {
288                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
289                 .prot_l1   = PMD_TYPE_TABLE,
290                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
291                 .domain    = DOMAIN_KERNEL,
292         },
293         [MT_ROM] = {
294                 .prot_sect = PMD_TYPE_SECT,
295                 .domain    = DOMAIN_KERNEL,
296         },
297         [MT_MEMORY_NONCACHED] = {
298                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299                                 L_PTE_MT_BUFFERABLE,
300                 .prot_l1   = PMD_TYPE_TABLE,
301                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302                 .domain    = DOMAIN_KERNEL,
303         },
304         [MT_MEMORY_DTCM] = {
305                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
306                                 L_PTE_XN,
307                 .prot_l1   = PMD_TYPE_TABLE,
308                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
309                 .domain    = DOMAIN_KERNEL,
310         },
311         [MT_MEMORY_ITCM] = {
312                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
313                 .prot_l1   = PMD_TYPE_TABLE,
314                 .domain    = DOMAIN_KERNEL,
315         },
316         [MT_MEMORY_SO] = {
317                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
318                                 L_PTE_MT_UNCACHED | L_PTE_XN,
319                 .prot_l1   = PMD_TYPE_TABLE,
320                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
321                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
322                 .domain    = DOMAIN_KERNEL,
323         },
324         [MT_MEMORY_DMA_READY] = {
325                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
326                 .prot_l1   = PMD_TYPE_TABLE,
327                 .domain    = DOMAIN_KERNEL,
328         },
329 };
330
331 const struct mem_type *get_mem_type(unsigned int type)
332 {
333         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
334 }
335 EXPORT_SYMBOL(get_mem_type);
336
337 /*
338  * Adjust the PMD section entries according to the CPU in use.
339  */
340 static void __init build_mem_type_table(void)
341 {
342         struct cachepolicy *cp;
343         unsigned int cr = get_cr();
344         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
345         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
346         int cpu_arch = cpu_architecture();
347         int i;
348
349         if (cpu_arch < CPU_ARCH_ARMv6) {
350 #if defined(CONFIG_CPU_DCACHE_DISABLE)
351                 if (cachepolicy > CPOLICY_BUFFERED)
352                         cachepolicy = CPOLICY_BUFFERED;
353 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
354                 if (cachepolicy > CPOLICY_WRITETHROUGH)
355                         cachepolicy = CPOLICY_WRITETHROUGH;
356 #endif
357         }
358         if (cpu_arch < CPU_ARCH_ARMv5) {
359                 if (cachepolicy >= CPOLICY_WRITEALLOC)
360                         cachepolicy = CPOLICY_WRITEBACK;
361                 ecc_mask = 0;
362         }
363         if (is_smp())
364                 cachepolicy = CPOLICY_WRITEALLOC;
365
366         /*
367          * Strip out features not present on earlier architectures.
368          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
369          * without extended page tables don't have the 'Shared' bit.
370          */
371         if (cpu_arch < CPU_ARCH_ARMv5)
372                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
373                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
374         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
375                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
376                         mem_types[i].prot_sect &= ~PMD_SECT_S;
377
378         /*
379          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
380          * "update-able on write" bit on ARM610).  However, Xscale and
381          * Xscale3 require this bit to be cleared.
382          */
383         if (cpu_is_xscale() || cpu_is_xsc3()) {
384                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
385                         mem_types[i].prot_sect &= ~PMD_BIT4;
386                         mem_types[i].prot_l1 &= ~PMD_BIT4;
387                 }
388         } else if (cpu_arch < CPU_ARCH_ARMv6) {
389                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
390                         if (mem_types[i].prot_l1)
391                                 mem_types[i].prot_l1 |= PMD_BIT4;
392                         if (mem_types[i].prot_sect)
393                                 mem_types[i].prot_sect |= PMD_BIT4;
394                 }
395         }
396
397         /*
398          * Mark the device areas according to the CPU/architecture.
399          */
400         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
401                 if (!cpu_is_xsc3()) {
402                         /*
403                          * Mark device regions on ARMv6+ as execute-never
404                          * to prevent speculative instruction fetches.
405                          */
406                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
407                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
408                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
409                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
410                 }
411                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
412                         /*
413                          * For ARMv7 with TEX remapping,
414                          * - shared device is SXCB=1100
415                          * - nonshared device is SXCB=0100
416                          * - write combine device mem is SXCB=0001
417                          * (Uncached Normal memory)
418                          */
419                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
420                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
421                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
422                 } else if (cpu_is_xsc3()) {
423                         /*
424                          * For Xscale3,
425                          * - shared device is TEXCB=00101
426                          * - nonshared device is TEXCB=01000
427                          * - write combine device mem is TEXCB=00100
428                          * (Inner/Outer Uncacheable in xsc3 parlance)
429                          */
430                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
431                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
432                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
433                 } else {
434                         /*
435                          * For ARMv6 and ARMv7 without TEX remapping,
436                          * - shared device is TEXCB=00001
437                          * - nonshared device is TEXCB=01000
438                          * - write combine device mem is TEXCB=00100
439                          * (Uncached Normal in ARMv6 parlance).
440                          */
441                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
442                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
443                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
444                 }
445         } else {
446                 /*
447                  * On others, write combining is "Uncached/Buffered"
448                  */
449                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
450         }
451
452         /*
453          * Now deal with the memory-type mappings
454          */
455         cp = &cache_policies[cachepolicy];
456         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
457         s2_pgprot = cp->pte_s2;
458         hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
459
460         /*
461          * ARMv6 and above have extended page tables.
462          */
463         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
464 #ifndef CONFIG_ARM_LPAE
465                 /*
466                  * Mark cache clean areas and XIP ROM read only
467                  * from SVC mode and no access from userspace.
468                  */
469                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
470                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
471                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
472 #endif
473
474                 if (is_smp()) {
475                         /*
476                          * Mark memory with the "shared" attribute
477                          * for SMP systems
478                          */
479                         user_pgprot |= L_PTE_SHARED;
480                         kern_pgprot |= L_PTE_SHARED;
481                         vecs_pgprot |= L_PTE_SHARED;
482                         s2_pgprot |= L_PTE_SHARED;
483                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
484                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
485                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
486                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
487                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
488                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
489                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
490                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
491                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
492                 }
493         }
494
495         /*
496          * Non-cacheable Normal - intended for memory areas that must
497          * not cause dirty cache line writebacks when used
498          */
499         if (cpu_arch >= CPU_ARCH_ARMv6) {
500                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
501                         /* Non-cacheable Normal is XCB = 001 */
502                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
503                                 PMD_SECT_BUFFERED;
504                 } else {
505                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
506                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
507                                 PMD_SECT_TEX(1);
508                 }
509         } else {
510                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
511         }
512
513 #ifdef CONFIG_ARM_LPAE
514         /*
515          * Do not generate access flag faults for the kernel mappings.
516          */
517         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
518                 mem_types[i].prot_pte |= PTE_EXT_AF;
519                 if (mem_types[i].prot_sect)
520                         mem_types[i].prot_sect |= PMD_SECT_AF;
521         }
522         kern_pgprot |= PTE_EXT_AF;
523         vecs_pgprot |= PTE_EXT_AF;
524 #endif
525
526         for (i = 0; i < 16; i++) {
527                 pteval_t v = pgprot_val(protection_map[i]);
528                 protection_map[i] = __pgprot(v | user_pgprot);
529         }
530
531         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
532         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
533
534         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
535         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
536                                  L_PTE_DIRTY | kern_pgprot);
537         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
538         pgprot_s2_device  = __pgprot(s2_device_pgprot);
539         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
540
541         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
542         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
543         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
544         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
545         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
546         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
547         mem_types[MT_ROM].prot_sect |= cp->pmd;
548
549         switch (cp->pmd) {
550         case PMD_SECT_WT:
551                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
552                 break;
553         case PMD_SECT_WB:
554         case PMD_SECT_WBWA:
555                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
556                 break;
557         }
558         printk("Memory policy: ECC %sabled, Data cache %s\n",
559                 ecc_mask ? "en" : "dis", cp->policy);
560
561         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
562                 struct mem_type *t = &mem_types[i];
563                 if (t->prot_l1)
564                         t->prot_l1 |= PMD_DOMAIN(t->domain);
565                 if (t->prot_sect)
566                         t->prot_sect |= PMD_DOMAIN(t->domain);
567         }
568 }
569
570 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
571 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
572                               unsigned long size, pgprot_t vma_prot)
573 {
574         if (!pfn_valid(pfn))
575                 return pgprot_noncached(vma_prot);
576         else if (file->f_flags & O_SYNC)
577                 return pgprot_writecombine(vma_prot);
578         return vma_prot;
579 }
580 EXPORT_SYMBOL(phys_mem_access_prot);
581 #endif
582
583 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
584
585 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
586 {
587         void *ptr = __va(memblock_alloc(sz, align));
588         memset(ptr, 0, sz);
589         return ptr;
590 }
591
592 static void __init *early_alloc(unsigned long sz)
593 {
594         return early_alloc_aligned(sz, sz);
595 }
596
597 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
598 {
599         if (pmd_none(*pmd)) {
600                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
601                 __pmd_populate(pmd, __pa(pte), prot);
602         }
603         BUG_ON(pmd_bad(*pmd));
604         return pte_offset_kernel(pmd, addr);
605 }
606
607 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
608                                   unsigned long end, unsigned long pfn,
609                                   const struct mem_type *type)
610 {
611         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
612         do {
613                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
614                 pfn++;
615         } while (pte++, addr += PAGE_SIZE, addr != end);
616 }
617
618 static void __init map_init_section(pmd_t *pmd, unsigned long addr,
619                         unsigned long end, phys_addr_t phys,
620                         const struct mem_type *type)
621 {
622 #ifndef CONFIG_ARM_LPAE
623         /*
624          * In classic MMU format, puds and pmds are folded in to
625          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
626          * group of L1 entries making up one logical pointer to
627          * an L2 table (2MB), where as PMDs refer to the individual
628          * L1 entries (1MB). Hence increment to get the correct
629          * offset for odd 1MB sections.
630          * (See arch/arm/include/asm/pgtable-2level.h)
631          */
632         if (addr & SECTION_SIZE)
633                 pmd++;
634 #endif
635         do {
636                 *pmd = __pmd(phys | type->prot_sect);
637                 phys += SECTION_SIZE;
638         } while (pmd++, addr += SECTION_SIZE, addr != end);
639
640         flush_pmd_entry(pmd);
641 }
642
643 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
644                                       unsigned long end, phys_addr_t phys,
645                                       const struct mem_type *type)
646 {
647         pmd_t *pmd = pmd_offset(pud, addr);
648         unsigned long next;
649
650         do {
651                 /*
652                  * With LPAE, we must loop over to map
653                  * all the pmds for the given range.
654                  */
655                 next = pmd_addr_end(addr, end);
656
657                 /*
658                  * Try a section mapping - addr, next and phys must all be
659                  * aligned to a section boundary.
660                  */
661                 if (type->prot_sect &&
662                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
663                         map_init_section(pmd, addr, next, phys, type);
664                 } else {
665                         alloc_init_pte(pmd, addr, next,
666                                                 __phys_to_pfn(phys), type);
667                 }
668
669                 phys += next - addr;
670
671         } while (pmd++, addr = next, addr != end);
672 }
673
674 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
675         unsigned long end, unsigned long phys, const struct mem_type *type)
676 {
677         pud_t *pud = pud_offset(pgd, addr);
678         unsigned long next;
679
680         do {
681                 next = pud_addr_end(addr, end);
682                 alloc_init_pmd(pud, addr, next, phys, type);
683                 phys += next - addr;
684         } while (pud++, addr = next, addr != end);
685 }
686
687 #ifndef CONFIG_ARM_LPAE
688 static void __init create_36bit_mapping(struct map_desc *md,
689                                         const struct mem_type *type)
690 {
691         unsigned long addr, length, end;
692         phys_addr_t phys;
693         pgd_t *pgd;
694
695         addr = md->virtual;
696         phys = __pfn_to_phys(md->pfn);
697         length = PAGE_ALIGN(md->length);
698
699         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
700                 printk(KERN_ERR "MM: CPU does not support supersection "
701                        "mapping for 0x%08llx at 0x%08lx\n",
702                        (long long)__pfn_to_phys((u64)md->pfn), addr);
703                 return;
704         }
705
706         /* N.B. ARMv6 supersections are only defined to work with domain 0.
707          *      Since domain assignments can in fact be arbitrary, the
708          *      'domain == 0' check below is required to insure that ARMv6
709          *      supersections are only allocated for domain 0 regardless
710          *      of the actual domain assignments in use.
711          */
712         if (type->domain) {
713                 printk(KERN_ERR "MM: invalid domain in supersection "
714                        "mapping for 0x%08llx at 0x%08lx\n",
715                        (long long)__pfn_to_phys((u64)md->pfn), addr);
716                 return;
717         }
718
719         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
720                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
721                        " at 0x%08lx invalid alignment\n",
722                        (long long)__pfn_to_phys((u64)md->pfn), addr);
723                 return;
724         }
725
726         /*
727          * Shift bits [35:32] of address into bits [23:20] of PMD
728          * (See ARMv6 spec).
729          */
730         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
731
732         pgd = pgd_offset_k(addr);
733         end = addr + length;
734         do {
735                 pud_t *pud = pud_offset(pgd, addr);
736                 pmd_t *pmd = pmd_offset(pud, addr);
737                 int i;
738
739                 for (i = 0; i < 16; i++)
740                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
741
742                 addr += SUPERSECTION_SIZE;
743                 phys += SUPERSECTION_SIZE;
744                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
745         } while (addr != end);
746 }
747 #endif  /* !CONFIG_ARM_LPAE */
748
749 /*
750  * Create the page directory entries and any necessary
751  * page tables for the mapping specified by `md'.  We
752  * are able to cope here with varying sizes and address
753  * offsets, and we take full advantage of sections and
754  * supersections.
755  */
756 static void __init create_mapping(struct map_desc *md)
757 {
758         unsigned long addr, length, end;
759         phys_addr_t phys;
760         const struct mem_type *type;
761         pgd_t *pgd;
762
763         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
764                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
765                        " at 0x%08lx in user region\n",
766                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
767                 return;
768         }
769
770         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
771             md->virtual >= PAGE_OFFSET &&
772             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
773                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
774                        " at 0x%08lx out of vmalloc space\n",
775                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
776         }
777
778         type = &mem_types[md->type];
779
780 #ifndef CONFIG_ARM_LPAE
781         /*
782          * Catch 36-bit addresses
783          */
784         if (md->pfn >= 0x100000) {
785                 create_36bit_mapping(md, type);
786                 return;
787         }
788 #endif
789
790         addr = md->virtual & PAGE_MASK;
791         phys = __pfn_to_phys(md->pfn);
792         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
793
794         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
795                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
796                        "be mapped using pages, ignoring.\n",
797                        (long long)__pfn_to_phys(md->pfn), addr);
798                 return;
799         }
800
801         pgd = pgd_offset_k(addr);
802         end = addr + length;
803         do {
804                 unsigned long next = pgd_addr_end(addr, end);
805
806                 alloc_init_pud(pgd, addr, next, phys, type);
807
808                 phys += next - addr;
809                 addr = next;
810         } while (pgd++, addr != end);
811 }
812
813 /*
814  * Create the architecture specific mappings
815  */
816 void __init iotable_init(struct map_desc *io_desc, int nr)
817 {
818         struct map_desc *md;
819         struct vm_struct *vm;
820         struct static_vm *svm;
821
822         if (!nr)
823                 return;
824
825         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
826
827         for (md = io_desc; nr; md++, nr--) {
828                 create_mapping(md);
829
830                 vm = &svm->vm;
831                 vm->addr = (void *)(md->virtual & PAGE_MASK);
832                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
833                 vm->phys_addr = __pfn_to_phys(md->pfn);
834                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
835                 vm->flags |= VM_ARM_MTYPE(md->type);
836                 vm->caller = iotable_init;
837                 add_static_vm_early(svm++);
838         }
839 }
840
841 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
842                                   void *caller)
843 {
844         struct vm_struct *vm;
845         struct static_vm *svm;
846
847         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
848
849         vm = &svm->vm;
850         vm->addr = (void *)addr;
851         vm->size = size;
852         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
853         vm->caller = caller;
854         add_static_vm_early(svm);
855 }
856
857 #ifndef CONFIG_ARM_LPAE
858
859 /*
860  * The Linux PMD is made of two consecutive section entries covering 2MB
861  * (see definition in include/asm/pgtable-2level.h).  However a call to
862  * create_mapping() may optimize static mappings by using individual
863  * 1MB section mappings.  This leaves the actual PMD potentially half
864  * initialized if the top or bottom section entry isn't used, leaving it
865  * open to problems if a subsequent ioremap() or vmalloc() tries to use
866  * the virtual space left free by that unused section entry.
867  *
868  * Let's avoid the issue by inserting dummy vm entries covering the unused
869  * PMD halves once the static mappings are in place.
870  */
871
872 static void __init pmd_empty_section_gap(unsigned long addr)
873 {
874         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
875 }
876
877 static void __init fill_pmd_gaps(void)
878 {
879         struct static_vm *svm;
880         struct vm_struct *vm;
881         unsigned long addr, next = 0;
882         pmd_t *pmd;
883
884         list_for_each_entry(svm, &static_vmlist, list) {
885                 vm = &svm->vm;
886                 addr = (unsigned long)vm->addr;
887                 if (addr < next)
888                         continue;
889
890                 /*
891                  * Check if this vm starts on an odd section boundary.
892                  * If so and the first section entry for this PMD is free
893                  * then we block the corresponding virtual address.
894                  */
895                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
896                         pmd = pmd_off_k(addr);
897                         if (pmd_none(*pmd))
898                                 pmd_empty_section_gap(addr & PMD_MASK);
899                 }
900
901                 /*
902                  * Then check if this vm ends on an odd section boundary.
903                  * If so and the second section entry for this PMD is empty
904                  * then we block the corresponding virtual address.
905                  */
906                 addr += vm->size;
907                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
908                         pmd = pmd_off_k(addr) + 1;
909                         if (pmd_none(*pmd))
910                                 pmd_empty_section_gap(addr);
911                 }
912
913                 /* no need to look at any vm entry until we hit the next PMD */
914                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
915         }
916 }
917
918 #else
919 #define fill_pmd_gaps() do { } while (0)
920 #endif
921
922 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
923 static void __init pci_reserve_io(void)
924 {
925         struct static_vm *svm;
926
927         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
928         if (svm)
929                 return;
930
931         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
932 }
933 #else
934 #define pci_reserve_io() do { } while (0)
935 #endif
936
937 #ifdef CONFIG_DEBUG_LL
938 void __init debug_ll_io_init(void)
939 {
940         struct map_desc map;
941
942         debug_ll_addr(&map.pfn, &map.virtual);
943         if (!map.pfn || !map.virtual)
944                 return;
945         map.pfn = __phys_to_pfn(map.pfn);
946         map.virtual &= PAGE_MASK;
947         map.length = PAGE_SIZE;
948         map.type = MT_DEVICE;
949         create_mapping(&map);
950 }
951 #endif
952
953 static void * __initdata vmalloc_min =
954         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
955
956 /*
957  * vmalloc=size forces the vmalloc area to be exactly 'size'
958  * bytes. This can be used to increase (or decrease) the vmalloc
959  * area - the default is 240m.
960  */
961 static int __init early_vmalloc(char *arg)
962 {
963         unsigned long vmalloc_reserve = memparse(arg, NULL);
964
965         if (vmalloc_reserve < SZ_16M) {
966                 vmalloc_reserve = SZ_16M;
967                 printk(KERN_WARNING
968                         "vmalloc area too small, limiting to %luMB\n",
969                         vmalloc_reserve >> 20);
970         }
971
972         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
973                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
974                 printk(KERN_WARNING
975                         "vmalloc area is too big, limiting to %luMB\n",
976                         vmalloc_reserve >> 20);
977         }
978
979         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
980         return 0;
981 }
982 early_param("vmalloc", early_vmalloc);
983
984 phys_addr_t arm_lowmem_limit __initdata = 0;
985
986 void __init sanity_check_meminfo(void)
987 {
988         int i, j, highmem = 0;
989
990         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
991                 struct membank *bank = &meminfo.bank[j];
992                 *bank = meminfo.bank[i];
993
994                 if (bank->start > ULONG_MAX)
995                         highmem = 1;
996
997 #ifdef CONFIG_HIGHMEM
998                 if (__va(bank->start) >= vmalloc_min ||
999                     __va(bank->start) < (void *)PAGE_OFFSET)
1000                         highmem = 1;
1001
1002                 bank->highmem = highmem;
1003
1004                 /*
1005                  * Split those memory banks which are partially overlapping
1006                  * the vmalloc area greatly simplifying things later.
1007                  */
1008                 if (!highmem && __va(bank->start) < vmalloc_min &&
1009                     bank->size > vmalloc_min - __va(bank->start)) {
1010                         if (meminfo.nr_banks >= NR_BANKS) {
1011                                 printk(KERN_CRIT "NR_BANKS too low, "
1012                                                  "ignoring high memory\n");
1013                         } else {
1014                                 memmove(bank + 1, bank,
1015                                         (meminfo.nr_banks - i) * sizeof(*bank));
1016                                 meminfo.nr_banks++;
1017                                 i++;
1018                                 bank[1].size -= vmalloc_min - __va(bank->start);
1019                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
1020                                 bank[1].highmem = highmem = 1;
1021                                 j++;
1022                         }
1023                         bank->size = vmalloc_min - __va(bank->start);
1024                 }
1025 #else
1026                 bank->highmem = highmem;
1027
1028                 /*
1029                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1030                  */
1031                 if (highmem) {
1032                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1033                                "(!CONFIG_HIGHMEM).\n",
1034                                (unsigned long long)bank->start,
1035                                (unsigned long long)bank->start + bank->size - 1);
1036                         continue;
1037                 }
1038
1039                 /*
1040                  * Check whether this memory bank would entirely overlap
1041                  * the vmalloc area.
1042                  */
1043                 if (__va(bank->start) >= vmalloc_min ||
1044                     __va(bank->start) < (void *)PAGE_OFFSET) {
1045                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1046                                "(vmalloc region overlap).\n",
1047                                (unsigned long long)bank->start,
1048                                (unsigned long long)bank->start + bank->size - 1);
1049                         continue;
1050                 }
1051
1052                 /*
1053                  * Check whether this memory bank would partially overlap
1054                  * the vmalloc area.
1055                  */
1056                 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1057                     __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1058                         unsigned long newsize = vmalloc_min - __va(bank->start);
1059                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1060                                "to -%.8llx (vmalloc region overlap).\n",
1061                                (unsigned long long)bank->start,
1062                                (unsigned long long)bank->start + bank->size - 1,
1063                                (unsigned long long)bank->start + newsize - 1);
1064                         bank->size = newsize;
1065                 }
1066 #endif
1067                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1068                         arm_lowmem_limit = bank->start + bank->size;
1069
1070                 j++;
1071         }
1072 #ifdef CONFIG_HIGHMEM
1073         if (highmem) {
1074                 const char *reason = NULL;
1075
1076                 if (cache_is_vipt_aliasing()) {
1077                         /*
1078                          * Interactions between kmap and other mappings
1079                          * make highmem support with aliasing VIPT caches
1080                          * rather difficult.
1081                          */
1082                         reason = "with VIPT aliasing cache";
1083                 }
1084                 if (reason) {
1085                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1086                                 reason);
1087                         while (j > 0 && meminfo.bank[j - 1].highmem)
1088                                 j--;
1089                 }
1090         }
1091 #endif
1092         meminfo.nr_banks = j;
1093         high_memory = __va(arm_lowmem_limit - 1) + 1;
1094         memblock_set_current_limit(arm_lowmem_limit);
1095 }
1096
1097 static inline void prepare_page_table(void)
1098 {
1099         unsigned long addr;
1100         phys_addr_t end;
1101
1102         /*
1103          * Clear out all the mappings below the kernel image.
1104          */
1105         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1106                 pmd_clear(pmd_off_k(addr));
1107
1108 #ifdef CONFIG_XIP_KERNEL
1109         /* The XIP kernel is mapped in the module area -- skip over it */
1110         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1111 #endif
1112         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1113                 pmd_clear(pmd_off_k(addr));
1114
1115         /*
1116          * Find the end of the first block of lowmem.
1117          */
1118         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1119         if (end >= arm_lowmem_limit)
1120                 end = arm_lowmem_limit;
1121
1122         /*
1123          * Clear out all the kernel space mappings, except for the first
1124          * memory bank, up to the vmalloc region.
1125          */
1126         for (addr = __phys_to_virt(end);
1127              addr < VMALLOC_START; addr += PMD_SIZE)
1128                 pmd_clear(pmd_off_k(addr));
1129 }
1130
1131 #ifdef CONFIG_ARM_LPAE
1132 /* the first page is reserved for pgd */
1133 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1134                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1135 #else
1136 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1137 #endif
1138
1139 /*
1140  * Reserve the special regions of memory
1141  */
1142 void __init arm_mm_memblock_reserve(void)
1143 {
1144         /*
1145          * Reserve the page tables.  These are already in use,
1146          * and can only be in node 0.
1147          */
1148         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1149
1150 #ifdef CONFIG_SA1111
1151         /*
1152          * Because of the SA1111 DMA bug, we want to preserve our
1153          * precious DMA-able memory...
1154          */
1155         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1156 #endif
1157 }
1158
1159 /*
1160  * Set up the device mappings.  Since we clear out the page tables for all
1161  * mappings above VMALLOC_START, we will remove any debug device mappings.
1162  * This means you have to be careful how you debug this function, or any
1163  * called function.  This means you can't use any function or debugging
1164  * method which may touch any device, otherwise the kernel _will_ crash.
1165  */
1166 static void __init devicemaps_init(struct machine_desc *mdesc)
1167 {
1168         struct map_desc map;
1169         unsigned long addr;
1170         void *vectors;
1171
1172         /*
1173          * Allocate the vector page early.
1174          */
1175         vectors = early_alloc(PAGE_SIZE);
1176
1177         early_trap_init(vectors);
1178
1179         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1180                 pmd_clear(pmd_off_k(addr));
1181
1182         /*
1183          * Map the kernel if it is XIP.
1184          * It is always first in the modulearea.
1185          */
1186 #ifdef CONFIG_XIP_KERNEL
1187         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1188         map.virtual = MODULES_VADDR;
1189         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1190         map.type = MT_ROM;
1191         create_mapping(&map);
1192 #endif
1193
1194         /*
1195          * Map the cache flushing regions.
1196          */
1197 #ifdef FLUSH_BASE
1198         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1199         map.virtual = FLUSH_BASE;
1200         map.length = SZ_1M;
1201         map.type = MT_CACHECLEAN;
1202         create_mapping(&map);
1203 #endif
1204 #ifdef FLUSH_BASE_MINICACHE
1205         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1206         map.virtual = FLUSH_BASE_MINICACHE;
1207         map.length = SZ_1M;
1208         map.type = MT_MINICLEAN;
1209         create_mapping(&map);
1210 #endif
1211
1212         /*
1213          * Create a mapping for the machine vectors at the high-vectors
1214          * location (0xffff0000).  If we aren't using high-vectors, also
1215          * create a mapping at the low-vectors virtual address.
1216          */
1217         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1218         map.virtual = 0xffff0000;
1219         map.length = PAGE_SIZE;
1220         map.type = MT_HIGH_VECTORS;
1221         create_mapping(&map);
1222
1223         if (!vectors_high()) {
1224                 map.virtual = 0;
1225                 map.type = MT_LOW_VECTORS;
1226                 create_mapping(&map);
1227         }
1228
1229         /*
1230          * Ask the machine support to map in the statically mapped devices.
1231          */
1232         if (mdesc->map_io)
1233                 mdesc->map_io();
1234         fill_pmd_gaps();
1235
1236         /* Reserve fixed i/o space in VMALLOC region */
1237         pci_reserve_io();
1238
1239         /*
1240          * Finally flush the caches and tlb to ensure that we're in a
1241          * consistent state wrt the writebuffer.  This also ensures that
1242          * any write-allocated cache lines in the vector page are written
1243          * back.  After this point, we can start to touch devices again.
1244          */
1245         local_flush_tlb_all();
1246         flush_cache_all();
1247 }
1248
1249 static void __init kmap_init(void)
1250 {
1251 #ifdef CONFIG_HIGHMEM
1252         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1253                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1254 #endif
1255 }
1256
1257 static void __init map_lowmem(void)
1258 {
1259         struct memblock_region *reg;
1260
1261         /* Map all the lowmem memory banks. */
1262         for_each_memblock(memory, reg) {
1263                 phys_addr_t start = reg->base;
1264                 phys_addr_t end = start + reg->size;
1265                 struct map_desc map;
1266
1267                 if (end > arm_lowmem_limit)
1268                         end = arm_lowmem_limit;
1269                 if (start >= end)
1270                         break;
1271
1272                 map.pfn = __phys_to_pfn(start);
1273                 map.virtual = __phys_to_virt(start);
1274                 map.length = end - start;
1275                 map.type = MT_MEMORY;
1276
1277                 create_mapping(&map);
1278         }
1279 }
1280
1281 /*
1282  * paging_init() sets up the page tables, initialises the zone memory
1283  * maps, and sets up the zero page, bad page and bad page tables.
1284  */
1285 void __init paging_init(struct machine_desc *mdesc)
1286 {
1287         void *zero_page;
1288
1289         memblock_set_current_limit(arm_lowmem_limit);
1290
1291         build_mem_type_table();
1292         prepare_page_table();
1293         map_lowmem();
1294         dma_contiguous_remap();
1295         devicemaps_init(mdesc);
1296         kmap_init();
1297
1298         top_pmd = pmd_off_k(0xffff0000);
1299
1300         /* allocate the zero page. */
1301         zero_page = early_alloc(PAGE_SIZE);
1302
1303         bootmem_init();
1304
1305         empty_zero_page = virt_to_page(zero_page);
1306         __flush_dcache_page(NULL, empty_zero_page);
1307 }