2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
25 #include <asm/highmem.h>
27 #include <asm/mach/arch.h>
28 #include <asm/mach/map.h>
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
42 * The pmd table for the upper-most set of pages.
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_kernel;
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
61 const char policy[16];
67 static struct cachepolicy cache_policies[] __initdata = {
71 .pmd = PMD_SECT_UNCACHED,
72 .pte = L_PTE_MT_UNCACHED,
76 .pmd = PMD_SECT_BUFFERED,
77 .pte = L_PTE_MT_BUFFERABLE,
79 .policy = "writethrough",
82 .pte = L_PTE_MT_WRITETHROUGH,
84 .policy = "writeback",
87 .pte = L_PTE_MT_WRITEBACK,
89 .policy = "writealloc",
92 .pte = L_PTE_MT_WRITEALLOC,
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
102 static void __init early_cachepolicy(char **p)
106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 int len = strlen(cache_policies[i].policy);
109 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111 cr_alignment &= ~cache_policies[i].cr_mask;
112 cr_no_alignment &= ~cache_policies[i].cr_mask;
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
120 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
121 cachepolicy = CPOLICY_WRITEBACK;
124 set_cr(cr_alignment);
126 __early_param("cachepolicy=", early_cachepolicy);
128 static void __init early_nocache(char **__unused)
130 char *p = "buffered";
131 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
132 early_cachepolicy(&p);
134 __early_param("nocache", early_nocache);
136 static void __init early_nowrite(char **__unused)
138 char *p = "uncached";
139 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(&p);
142 __early_param("nowb", early_nowrite);
144 static void __init early_ecc(char **p)
146 if (memcmp(*p, "on", 2) == 0) {
147 ecc_mask = PMD_PROTECTION;
149 } else if (memcmp(*p, "off", 3) == 0) {
154 __early_param("ecc=", early_ecc);
156 static int __init noalign_setup(char *__unused)
158 cr_alignment &= ~CR_A;
159 cr_no_alignment &= ~CR_A;
160 set_cr(cr_alignment);
163 __setup("noalign", noalign_setup);
166 void adjust_cr(unsigned long mask, unsigned long set)
174 local_irq_save(flags);
176 cr_no_alignment = (cr_no_alignment & ~mask) | set;
177 cr_alignment = (cr_alignment & ~mask) | set;
179 set_cr((get_cr() & ~mask) | set);
181 local_irq_restore(flags);
185 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
186 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
188 static struct mem_type mem_types[] = {
189 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
190 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
192 .prot_l1 = PMD_TYPE_TABLE,
193 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
196 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
197 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
198 .prot_l1 = PMD_TYPE_TABLE,
199 .prot_sect = PROT_SECT_DEVICE,
202 [MT_DEVICE_CACHED] = { /* ioremap_cached */
203 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204 .prot_l1 = PMD_TYPE_TABLE,
205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
208 [MT_DEVICE_WC] = { /* ioremap_wc */
209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
210 .prot_l1 = PMD_TYPE_TABLE,
211 .prot_sect = PROT_SECT_DEVICE,
215 .prot_pte = PROT_PTE_DEVICE,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222 .domain = DOMAIN_KERNEL,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226 .domain = DOMAIN_KERNEL,
229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
231 .prot_l1 = PMD_TYPE_TABLE,
232 .domain = DOMAIN_USER,
234 [MT_HIGH_VECTORS] = {
235 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236 L_PTE_USER | L_PTE_EXEC,
237 .prot_l1 = PMD_TYPE_TABLE,
238 .domain = DOMAIN_USER,
241 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242 .domain = DOMAIN_KERNEL,
245 .prot_sect = PMD_TYPE_SECT,
246 .domain = DOMAIN_KERNEL,
248 [MT_MEMORY_NONCACHED] = {
249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 .domain = DOMAIN_KERNEL,
254 const struct mem_type *get_mem_type(unsigned int type)
256 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
260 * Adjust the PMD section entries according to the CPU in use.
262 static void __init build_mem_type_table(void)
264 struct cachepolicy *cp;
265 unsigned int cr = get_cr();
266 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
267 int cpu_arch = cpu_architecture();
270 if (cpu_arch < CPU_ARCH_ARMv6) {
271 #if defined(CONFIG_CPU_DCACHE_DISABLE)
272 if (cachepolicy > CPOLICY_BUFFERED)
273 cachepolicy = CPOLICY_BUFFERED;
274 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
275 if (cachepolicy > CPOLICY_WRITETHROUGH)
276 cachepolicy = CPOLICY_WRITETHROUGH;
279 if (cpu_arch < CPU_ARCH_ARMv5) {
280 if (cachepolicy >= CPOLICY_WRITEALLOC)
281 cachepolicy = CPOLICY_WRITEBACK;
285 cachepolicy = CPOLICY_WRITEALLOC;
289 * Strip out features not present on earlier architectures.
290 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
291 * without extended page tables don't have the 'Shared' bit.
293 if (cpu_arch < CPU_ARCH_ARMv5)
294 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
295 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
296 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
297 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
298 mem_types[i].prot_sect &= ~PMD_SECT_S;
301 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
302 * "update-able on write" bit on ARM610). However, Xscale and
303 * Xscale3 require this bit to be cleared.
305 if (cpu_is_xscale() || cpu_is_xsc3()) {
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
307 mem_types[i].prot_sect &= ~PMD_BIT4;
308 mem_types[i].prot_l1 &= ~PMD_BIT4;
310 } else if (cpu_arch < CPU_ARCH_ARMv6) {
311 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
312 if (mem_types[i].prot_l1)
313 mem_types[i].prot_l1 |= PMD_BIT4;
314 if (mem_types[i].prot_sect)
315 mem_types[i].prot_sect |= PMD_BIT4;
320 * Mark the device areas according to the CPU/architecture.
322 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
323 if (!cpu_is_xsc3()) {
325 * Mark device regions on ARMv6+ as execute-never
326 * to prevent speculative instruction fetches.
328 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
329 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
330 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
331 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
333 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
335 * For ARMv7 with TEX remapping,
336 * - shared device is SXCB=1100
337 * - nonshared device is SXCB=0100
338 * - write combine device mem is SXCB=0001
339 * (Uncached Normal memory)
341 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
342 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
343 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
344 } else if (cpu_is_xsc3()) {
347 * - shared device is TEXCB=00101
348 * - nonshared device is TEXCB=01000
349 * - write combine device mem is TEXCB=00100
350 * (Inner/Outer Uncacheable in xsc3 parlance)
352 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
353 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
354 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
357 * For ARMv6 and ARMv7 without TEX remapping,
358 * - shared device is TEXCB=00001
359 * - nonshared device is TEXCB=01000
360 * - write combine device mem is TEXCB=00100
361 * (Uncached Normal in ARMv6 parlance).
363 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
364 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
365 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
369 * On others, write combining is "Uncached/Buffered"
371 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
375 * Now deal with the memory-type mappings
377 cp = &cache_policies[cachepolicy];
378 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
382 * Only use write-through for non-SMP systems
384 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
385 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
389 * Enable CPU-specific coherency if supported.
390 * (Only available on XSC3 at the moment.)
392 if (arch_is_coherent() && cpu_is_xsc3())
393 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
396 * ARMv6 and above have extended page tables.
398 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
400 * Mark cache clean areas and XIP ROM read only
401 * from SVC mode and no access from userspace.
403 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
404 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
405 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
409 * Mark memory with the "shared" attribute for SMP systems
411 user_pgprot |= L_PTE_SHARED;
412 kern_pgprot |= L_PTE_SHARED;
413 vecs_pgprot |= L_PTE_SHARED;
414 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
415 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
420 * Non-cacheable Normal - intended for memory areas that must
421 * not cause dirty cache line writebacks when used
423 if (cpu_arch >= CPU_ARCH_ARMv6) {
424 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
425 /* Non-cacheable Normal is XCB = 001 */
426 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
429 /* For both ARMv6 and non-TEX-remapping ARMv7 */
430 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
434 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
437 for (i = 0; i < 16; i++) {
438 unsigned long v = pgprot_val(protection_map[i]);
439 protection_map[i] = __pgprot(v | user_pgprot);
442 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
443 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
445 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
446 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
447 L_PTE_DIRTY | L_PTE_WRITE |
448 L_PTE_EXEC | kern_pgprot);
450 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
451 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
452 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
453 mem_types[MT_ROM].prot_sect |= cp->pmd;
457 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
461 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
464 printk("Memory policy: ECC %sabled, Data cache %s\n",
465 ecc_mask ? "en" : "dis", cp->policy);
467 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
468 struct mem_type *t = &mem_types[i];
470 t->prot_l1 |= PMD_DOMAIN(t->domain);
472 t->prot_sect |= PMD_DOMAIN(t->domain);
476 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
478 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
479 unsigned long end, unsigned long pfn,
480 const struct mem_type *type)
484 if (pmd_none(*pmd)) {
485 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
486 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
489 pte = pte_offset_kernel(pmd, addr);
491 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
493 } while (pte++, addr += PAGE_SIZE, addr != end);
496 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
497 unsigned long end, unsigned long phys,
498 const struct mem_type *type)
500 pmd_t *pmd = pmd_offset(pgd, addr);
503 * Try a section mapping - end, addr and phys must all be aligned
504 * to a section boundary. Note that PMDs refer to the individual
505 * L1 entries, whereas PGDs refer to a group of L1 entries making
506 * up one logical pointer to an L2 table.
508 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
511 if (addr & SECTION_SIZE)
515 *pmd = __pmd(phys | type->prot_sect);
516 phys += SECTION_SIZE;
517 } while (pmd++, addr += SECTION_SIZE, addr != end);
522 * No need to loop; pte's aren't interested in the
523 * individual L1 entries.
525 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
529 static void __init create_36bit_mapping(struct map_desc *md,
530 const struct mem_type *type)
532 unsigned long phys, addr, length, end;
536 phys = (unsigned long)__pfn_to_phys(md->pfn);
537 length = PAGE_ALIGN(md->length);
539 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
540 printk(KERN_ERR "MM: CPU does not support supersection "
541 "mapping for 0x%08llx at 0x%08lx\n",
542 __pfn_to_phys((u64)md->pfn), addr);
546 /* N.B. ARMv6 supersections are only defined to work with domain 0.
547 * Since domain assignments can in fact be arbitrary, the
548 * 'domain == 0' check below is required to insure that ARMv6
549 * supersections are only allocated for domain 0 regardless
550 * of the actual domain assignments in use.
553 printk(KERN_ERR "MM: invalid domain in supersection "
554 "mapping for 0x%08llx at 0x%08lx\n",
555 __pfn_to_phys((u64)md->pfn), addr);
559 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
560 printk(KERN_ERR "MM: cannot create mapping for "
561 "0x%08llx at 0x%08lx invalid alignment\n",
562 __pfn_to_phys((u64)md->pfn), addr);
567 * Shift bits [35:32] of address into bits [23:20] of PMD
570 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
572 pgd = pgd_offset_k(addr);
575 pmd_t *pmd = pmd_offset(pgd, addr);
578 for (i = 0; i < 16; i++)
579 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
581 addr += SUPERSECTION_SIZE;
582 phys += SUPERSECTION_SIZE;
583 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
584 } while (addr != end);
588 * Create the page directory entries and any necessary
589 * page tables for the mapping specified by `md'. We
590 * are able to cope here with varying sizes and address
591 * offsets, and we take full advantage of sections and
594 void __init create_mapping(struct map_desc *md)
596 unsigned long phys, addr, length, end;
597 const struct mem_type *type;
600 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
601 printk(KERN_WARNING "BUG: not creating mapping for "
602 "0x%08llx at 0x%08lx in user region\n",
603 __pfn_to_phys((u64)md->pfn), md->virtual);
607 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
608 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
609 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
610 "overlaps vmalloc space\n",
611 __pfn_to_phys((u64)md->pfn), md->virtual);
614 type = &mem_types[md->type];
617 * Catch 36-bit addresses
619 if (md->pfn >= 0x100000) {
620 create_36bit_mapping(md, type);
624 addr = md->virtual & PAGE_MASK;
625 phys = (unsigned long)__pfn_to_phys(md->pfn);
626 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
628 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
629 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
630 "be mapped using pages, ignoring.\n",
631 __pfn_to_phys(md->pfn), addr);
635 pgd = pgd_offset_k(addr);
638 unsigned long next = pgd_addr_end(addr, end);
640 alloc_init_section(pgd, addr, next, phys, type);
644 } while (pgd++, addr != end);
648 * Create the architecture specific mappings
650 void __init iotable_init(struct map_desc *io_desc, int nr)
654 for (i = 0; i < nr; i++)
655 create_mapping(io_desc + i);
658 static unsigned long __initdata vmalloc_reserve = SZ_128M;
661 * vmalloc=size forces the vmalloc area to be exactly 'size'
662 * bytes. This can be used to increase (or decrease) the vmalloc
663 * area - the default is 128m.
665 static void __init early_vmalloc(char **arg)
667 vmalloc_reserve = memparse(*arg, arg);
669 if (vmalloc_reserve < SZ_16M) {
670 vmalloc_reserve = SZ_16M;
672 "vmalloc area too small, limiting to %luMB\n",
673 vmalloc_reserve >> 20);
676 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
677 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
679 "vmalloc area is too big, limiting to %luMB\n",
680 vmalloc_reserve >> 20);
683 __early_param("vmalloc=", early_vmalloc);
685 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
687 static void __init sanity_check_meminfo(void)
691 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
692 struct membank *bank = &meminfo.bank[j];
693 *bank = meminfo.bank[i];
695 #ifdef CONFIG_HIGHMEM
697 * Split those memory banks which are partially overlapping
698 * the vmalloc area greatly simplifying things later.
700 if (__va(bank->start) < VMALLOC_MIN &&
701 bank->size > VMALLOC_MIN - __va(bank->start)) {
702 if (meminfo.nr_banks >= NR_BANKS) {
703 printk(KERN_CRIT "NR_BANKS too low, "
704 "ignoring high memory\n");
705 } else if (cache_is_vipt_aliasing()) {
706 printk(KERN_CRIT "HIGHMEM is not yet supported "
707 "with VIPT aliasing cache, "
708 "ignoring high memory\n");
710 memmove(bank + 1, bank,
711 (meminfo.nr_banks - i) * sizeof(*bank));
714 bank[1].size -= VMALLOC_MIN - __va(bank->start);
715 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
718 bank->size = VMALLOC_MIN - __va(bank->start);
722 * Check whether this memory bank would entirely overlap
725 if (__va(bank->start) >= VMALLOC_MIN ||
726 __va(bank->start) < (void *)PAGE_OFFSET) {
727 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
728 "(vmalloc region overlap).\n",
729 bank->start, bank->start + bank->size - 1);
734 * Check whether this memory bank would partially overlap
737 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
738 __va(bank->start + bank->size) < __va(bank->start)) {
739 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
740 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
741 "to -%.8lx (vmalloc region overlap).\n",
742 bank->start, bank->start + bank->size - 1,
743 bank->start + newsize - 1);
744 bank->size = newsize;
749 meminfo.nr_banks = j;
752 static inline void prepare_page_table(void)
757 * Clear out all the mappings below the kernel image.
759 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
760 pmd_clear(pmd_off_k(addr));
762 #ifdef CONFIG_XIP_KERNEL
763 /* The XIP kernel is mapped in the module area -- skip over it */
764 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
766 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
767 pmd_clear(pmd_off_k(addr));
770 * Clear out all the kernel space mappings, except for the first
771 * memory bank, up to the end of the vmalloc region.
773 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
774 addr < VMALLOC_END; addr += PGDIR_SIZE)
775 pmd_clear(pmd_off_k(addr));
779 * Reserve the various regions of node 0
781 void __init reserve_node_zero(pg_data_t *pgdat)
783 unsigned long res_size = 0;
786 * Register the kernel text and data with bootmem.
787 * Note that this can only be in node 0.
789 #ifdef CONFIG_XIP_KERNEL
790 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
793 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
798 * Reserve the page tables. These are already in use,
799 * and can only be in node 0.
801 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
802 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
805 * Hmm... This should go elsewhere, but we really really need to
806 * stop things allocating the low memory; ideally we need a better
807 * implementation of GFP_DMA which does not assume that DMA-able
808 * memory starts at zero.
810 if (machine_is_integrator() || machine_is_cintegrator())
811 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
814 * These should likewise go elsewhere. They pre-reserve the
815 * screen memory region at the start of main system memory.
817 if (machine_is_edb7211())
818 res_size = 0x00020000;
819 if (machine_is_p720t())
820 res_size = 0x00014000;
822 /* H1940 and RX3715 need to reserve this for suspend */
824 if (machine_is_h1940() || machine_is_rx3715()) {
825 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
827 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
833 * Because of the SA1111 DMA bug, we want to preserve our
834 * precious DMA-able memory...
836 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
839 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
844 * Set up device the mappings. Since we clear out the page tables for all
845 * mappings above VMALLOC_END, we will remove any debug device mappings.
846 * This means you have to be careful how you debug this function, or any
847 * called function. This means you can't use any function or debugging
848 * method which may touch any device, otherwise the kernel _will_ crash.
850 static void __init devicemaps_init(struct machine_desc *mdesc)
857 * Allocate the vector page early.
859 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
861 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
862 pmd_clear(pmd_off_k(addr));
865 * Map the kernel if it is XIP.
866 * It is always first in the modulearea.
868 #ifdef CONFIG_XIP_KERNEL
869 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
870 map.virtual = MODULES_VADDR;
871 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
873 create_mapping(&map);
877 * Map the cache flushing regions.
880 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
881 map.virtual = FLUSH_BASE;
883 map.type = MT_CACHECLEAN;
884 create_mapping(&map);
886 #ifdef FLUSH_BASE_MINICACHE
887 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
888 map.virtual = FLUSH_BASE_MINICACHE;
890 map.type = MT_MINICLEAN;
891 create_mapping(&map);
895 * Create a mapping for the machine vectors at the high-vectors
896 * location (0xffff0000). If we aren't using high-vectors, also
897 * create a mapping at the low-vectors virtual address.
899 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
900 map.virtual = 0xffff0000;
901 map.length = PAGE_SIZE;
902 map.type = MT_HIGH_VECTORS;
903 create_mapping(&map);
905 if (!vectors_high()) {
907 map.type = MT_LOW_VECTORS;
908 create_mapping(&map);
912 * Ask the machine support to map in the statically mapped devices.
918 * Finally flush the caches and tlb to ensure that we're in a
919 * consistent state wrt the writebuffer. This also ensures that
920 * any write-allocated cache lines in the vector page are written
921 * back. After this point, we can start to touch devices again.
923 local_flush_tlb_all();
927 static void __init kmap_init(void)
929 #ifdef CONFIG_HIGHMEM
930 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
931 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
932 BUG_ON(!pmd_none(*pmd) || !pte);
933 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
934 pkmap_page_table = pte + PTRS_PER_PTE;
939 * paging_init() sets up the page tables, initialises the zone memory
940 * maps, and sets up the zero page, bad page and bad page tables.
942 void __init paging_init(struct machine_desc *mdesc)
946 build_mem_type_table();
947 sanity_check_meminfo();
948 prepare_page_table();
950 devicemaps_init(mdesc);
953 top_pmd = pmd_off_k(0xffff0000);
956 * allocate the zero page. Note that this always succeeds and
957 * returns a zeroed result.
959 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
960 empty_zero_page = virt_to_page(zero_page);
961 flush_dcache_page(empty_zero_page);
965 * In order to soft-boot, we need to insert a 1:1 mapping in place of
966 * the user-mode pages. This will then ensure that we have predictable
967 * results when turning the mmu off
969 void setup_mm_for_reboot(char mode)
971 unsigned long base_pmdval;
975 if (current->mm && current->mm->pgd)
976 pgd = current->mm->pgd;
980 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
981 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
982 base_pmdval |= PMD_BIT4;
984 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
985 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
988 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
989 pmd[0] = __pmd(pmdval);
990 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
991 flush_pmd_entry(pmd);