2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 * empty_zero_page is a special page that is used for
34 * zero-initialized data and COW.
36 struct page *empty_zero_page;
37 EXPORT_SYMBOL(empty_zero_page);
40 * The pmd table for the upper-most set of pages.
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
51 static unsigned int ecc_mask __initdata = 0;
53 pgprot_t pgprot_kernel;
55 EXPORT_SYMBOL(pgprot_user);
56 EXPORT_SYMBOL(pgprot_kernel);
59 const char policy[16];
65 static struct cachepolicy cache_policies[] __initdata = {
69 .pmd = PMD_SECT_UNCACHED,
70 .pte = L_PTE_MT_UNCACHED,
74 .pmd = PMD_SECT_BUFFERED,
75 .pte = L_PTE_MT_BUFFERABLE,
77 .policy = "writethrough",
80 .pte = L_PTE_MT_WRITETHROUGH,
82 .policy = "writeback",
85 .pte = L_PTE_MT_WRITEBACK,
87 .policy = "writealloc",
90 .pte = L_PTE_MT_WRITEALLOC,
95 * These are useful for identifying cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off. (Note: the write
98 * buffer should not be on and the cache off).
100 static void __init early_cachepolicy(char **p)
104 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
105 int len = strlen(cache_policies[i].policy);
107 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
109 cr_alignment &= ~cache_policies[i].cr_mask;
110 cr_no_alignment &= ~cache_policies[i].cr_mask;
115 if (i == ARRAY_SIZE(cache_policies))
116 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
117 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
118 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
119 cachepolicy = CPOLICY_WRITEBACK;
122 set_cr(cr_alignment);
124 __early_param("cachepolicy=", early_cachepolicy);
126 static void __init early_nocache(char **__unused)
128 char *p = "buffered";
129 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
130 early_cachepolicy(&p);
132 __early_param("nocache", early_nocache);
134 static void __init early_nowrite(char **__unused)
136 char *p = "uncached";
137 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
138 early_cachepolicy(&p);
140 __early_param("nowb", early_nowrite);
142 static void __init early_ecc(char **p)
144 if (memcmp(*p, "on", 2) == 0) {
145 ecc_mask = PMD_PROTECTION;
147 } else if (memcmp(*p, "off", 3) == 0) {
152 __early_param("ecc=", early_ecc);
154 static int __init noalign_setup(char *__unused)
156 cr_alignment &= ~CR_A;
157 cr_no_alignment &= ~CR_A;
158 set_cr(cr_alignment);
161 __setup("noalign", noalign_setup);
164 void adjust_cr(unsigned long mask, unsigned long set)
172 local_irq_save(flags);
174 cr_no_alignment = (cr_no_alignment & ~mask) | set;
175 cr_alignment = (cr_alignment & ~mask) | set;
177 set_cr((get_cr() & ~mask) | set);
179 local_irq_restore(flags);
183 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
186 static struct mem_type mem_types[] = {
187 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
188 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
190 .prot_l1 = PMD_TYPE_TABLE,
191 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
194 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
196 .prot_l1 = PMD_TYPE_TABLE,
197 .prot_sect = PROT_SECT_DEVICE,
200 [MT_DEVICE_CACHED] = { /* ioremap_cached */
201 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
202 .prot_l1 = PMD_TYPE_TABLE,
203 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
206 [MT_DEVICE_WC] = { /* ioremap_wc */
207 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
208 .prot_l1 = PMD_TYPE_TABLE,
209 .prot_sect = PROT_SECT_DEVICE,
213 .prot_pte = PROT_PTE_DEVICE,
214 .prot_l1 = PMD_TYPE_TABLE,
215 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
219 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
220 .domain = DOMAIN_KERNEL,
223 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
224 .domain = DOMAIN_KERNEL,
227 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
229 .prot_l1 = PMD_TYPE_TABLE,
230 .domain = DOMAIN_USER,
232 [MT_HIGH_VECTORS] = {
233 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
234 L_PTE_USER | L_PTE_EXEC,
235 .prot_l1 = PMD_TYPE_TABLE,
236 .domain = DOMAIN_USER,
239 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
240 .domain = DOMAIN_KERNEL,
243 .prot_sect = PMD_TYPE_SECT,
244 .domain = DOMAIN_KERNEL,
248 const struct mem_type *get_mem_type(unsigned int type)
250 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
254 * Adjust the PMD section entries according to the CPU in use.
256 static void __init build_mem_type_table(void)
258 struct cachepolicy *cp;
259 unsigned int cr = get_cr();
260 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
261 int cpu_arch = cpu_architecture();
264 if (cpu_arch < CPU_ARCH_ARMv6) {
265 #if defined(CONFIG_CPU_DCACHE_DISABLE)
266 if (cachepolicy > CPOLICY_BUFFERED)
267 cachepolicy = CPOLICY_BUFFERED;
268 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
269 if (cachepolicy > CPOLICY_WRITETHROUGH)
270 cachepolicy = CPOLICY_WRITETHROUGH;
273 if (cpu_arch < CPU_ARCH_ARMv5) {
274 if (cachepolicy >= CPOLICY_WRITEALLOC)
275 cachepolicy = CPOLICY_WRITEBACK;
279 cachepolicy = CPOLICY_WRITEALLOC;
283 * Strip out features not present on earlier architectures.
284 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
285 * without extended page tables don't have the 'Shared' bit.
287 if (cpu_arch < CPU_ARCH_ARMv5)
288 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
289 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
290 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
291 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
292 mem_types[i].prot_sect &= ~PMD_SECT_S;
295 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
296 * "update-able on write" bit on ARM610). However, Xscale and
297 * Xscale3 require this bit to be cleared.
299 if (cpu_is_xscale() || cpu_is_xsc3()) {
300 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
301 mem_types[i].prot_sect &= ~PMD_BIT4;
302 mem_types[i].prot_l1 &= ~PMD_BIT4;
304 } else if (cpu_arch < CPU_ARCH_ARMv6) {
305 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
306 if (mem_types[i].prot_l1)
307 mem_types[i].prot_l1 |= PMD_BIT4;
308 if (mem_types[i].prot_sect)
309 mem_types[i].prot_sect |= PMD_BIT4;
314 * Mark the device areas according to the CPU/architecture.
316 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
317 if (!cpu_is_xsc3()) {
319 * Mark device regions on ARMv6+ as execute-never
320 * to prevent speculative instruction fetches.
322 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
323 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
324 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
325 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
327 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
329 * For ARMv7 with TEX remapping,
330 * - shared device is SXCB=1100
331 * - nonshared device is SXCB=0100
332 * - write combine device mem is SXCB=0001
333 * (Uncached Normal memory)
335 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
336 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
337 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
338 } else if (cpu_is_xsc3()) {
341 * - shared device is TEXCB=00101
342 * - nonshared device is TEXCB=01000
343 * - write combine device mem is TEXCB=00100
344 * (Inner/Outer Uncacheable in xsc3 parlance)
346 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
347 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
348 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
351 * For ARMv6 and ARMv7 without TEX remapping,
352 * - shared device is TEXCB=00001
353 * - nonshared device is TEXCB=01000
354 * - write combine device mem is TEXCB=00100
355 * (Uncached Normal in ARMv6 parlance).
357 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
358 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
359 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
363 * On others, write combining is "Uncached/Buffered"
365 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
369 * Now deal with the memory-type mappings
371 cp = &cache_policies[cachepolicy];
372 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
376 * Only use write-through for non-SMP systems
378 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
379 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
383 * Enable CPU-specific coherency if supported.
384 * (Only available on XSC3 at the moment.)
386 if (arch_is_coherent() && cpu_is_xsc3())
387 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
390 * ARMv6 and above have extended page tables.
392 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
394 * Mark cache clean areas and XIP ROM read only
395 * from SVC mode and no access from userspace.
397 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
398 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
399 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
403 * Mark memory with the "shared" attribute for SMP systems
405 user_pgprot |= L_PTE_SHARED;
406 kern_pgprot |= L_PTE_SHARED;
407 vecs_pgprot |= L_PTE_SHARED;
408 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
412 for (i = 0; i < 16; i++) {
413 unsigned long v = pgprot_val(protection_map[i]);
414 protection_map[i] = __pgprot(v | user_pgprot);
417 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
418 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
420 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
421 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
422 L_PTE_DIRTY | L_PTE_WRITE |
423 L_PTE_EXEC | kern_pgprot);
425 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
426 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
427 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
428 mem_types[MT_ROM].prot_sect |= cp->pmd;
432 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
436 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
439 printk("Memory policy: ECC %sabled, Data cache %s\n",
440 ecc_mask ? "en" : "dis", cp->policy);
442 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
443 struct mem_type *t = &mem_types[i];
445 t->prot_l1 |= PMD_DOMAIN(t->domain);
447 t->prot_sect |= PMD_DOMAIN(t->domain);
451 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
453 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
454 unsigned long end, unsigned long pfn,
455 const struct mem_type *type)
459 if (pmd_none(*pmd)) {
460 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
461 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
464 pte = pte_offset_kernel(pmd, addr);
466 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
468 } while (pte++, addr += PAGE_SIZE, addr != end);
471 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
472 unsigned long end, unsigned long phys,
473 const struct mem_type *type)
475 pmd_t *pmd = pmd_offset(pgd, addr);
478 * Try a section mapping - end, addr and phys must all be aligned
479 * to a section boundary. Note that PMDs refer to the individual
480 * L1 entries, whereas PGDs refer to a group of L1 entries making
481 * up one logical pointer to an L2 table.
483 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
486 if (addr & SECTION_SIZE)
490 *pmd = __pmd(phys | type->prot_sect);
491 phys += SECTION_SIZE;
492 } while (pmd++, addr += SECTION_SIZE, addr != end);
497 * No need to loop; pte's aren't interested in the
498 * individual L1 entries.
500 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
504 static void __init create_36bit_mapping(struct map_desc *md,
505 const struct mem_type *type)
507 unsigned long phys, addr, length, end;
511 phys = (unsigned long)__pfn_to_phys(md->pfn);
512 length = PAGE_ALIGN(md->length);
514 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
515 printk(KERN_ERR "MM: CPU does not support supersection "
516 "mapping for 0x%08llx at 0x%08lx\n",
517 __pfn_to_phys((u64)md->pfn), addr);
521 /* N.B. ARMv6 supersections are only defined to work with domain 0.
522 * Since domain assignments can in fact be arbitrary, the
523 * 'domain == 0' check below is required to insure that ARMv6
524 * supersections are only allocated for domain 0 regardless
525 * of the actual domain assignments in use.
528 printk(KERN_ERR "MM: invalid domain in supersection "
529 "mapping for 0x%08llx at 0x%08lx\n",
530 __pfn_to_phys((u64)md->pfn), addr);
534 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
535 printk(KERN_ERR "MM: cannot create mapping for "
536 "0x%08llx at 0x%08lx invalid alignment\n",
537 __pfn_to_phys((u64)md->pfn), addr);
542 * Shift bits [35:32] of address into bits [23:20] of PMD
545 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
547 pgd = pgd_offset_k(addr);
550 pmd_t *pmd = pmd_offset(pgd, addr);
553 for (i = 0; i < 16; i++)
554 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
556 addr += SUPERSECTION_SIZE;
557 phys += SUPERSECTION_SIZE;
558 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
559 } while (addr != end);
563 * Create the page directory entries and any necessary
564 * page tables for the mapping specified by `md'. We
565 * are able to cope here with varying sizes and address
566 * offsets, and we take full advantage of sections and
569 void __init create_mapping(struct map_desc *md)
571 unsigned long phys, addr, length, end;
572 const struct mem_type *type;
575 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
576 printk(KERN_WARNING "BUG: not creating mapping for "
577 "0x%08llx at 0x%08lx in user region\n",
578 __pfn_to_phys((u64)md->pfn), md->virtual);
582 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
583 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
584 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
585 "overlaps vmalloc space\n",
586 __pfn_to_phys((u64)md->pfn), md->virtual);
589 type = &mem_types[md->type];
592 * Catch 36-bit addresses
594 if (md->pfn >= 0x100000) {
595 create_36bit_mapping(md, type);
599 addr = md->virtual & PAGE_MASK;
600 phys = (unsigned long)__pfn_to_phys(md->pfn);
601 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
603 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
604 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
605 "be mapped using pages, ignoring.\n",
606 __pfn_to_phys(md->pfn), addr);
610 pgd = pgd_offset_k(addr);
613 unsigned long next = pgd_addr_end(addr, end);
615 alloc_init_section(pgd, addr, next, phys, type);
619 } while (pgd++, addr != end);
623 * Create the architecture specific mappings
625 void __init iotable_init(struct map_desc *io_desc, int nr)
629 for (i = 0; i < nr; i++)
630 create_mapping(io_desc + i);
633 static unsigned long __initdata vmalloc_reserve = SZ_128M;
636 * vmalloc=size forces the vmalloc area to be exactly 'size'
637 * bytes. This can be used to increase (or decrease) the vmalloc
638 * area - the default is 128m.
640 static void __init early_vmalloc(char **arg)
642 vmalloc_reserve = memparse(*arg, arg);
644 if (vmalloc_reserve < SZ_16M) {
645 vmalloc_reserve = SZ_16M;
647 "vmalloc area too small, limiting to %luMB\n",
648 vmalloc_reserve >> 20);
651 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
652 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
654 "vmalloc area is too big, limiting to %luMB\n",
655 vmalloc_reserve >> 20);
658 __early_param("vmalloc=", early_vmalloc);
660 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
662 static void __init sanity_check_meminfo(void)
666 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
667 struct membank *bank = &meminfo.bank[j];
668 *bank = meminfo.bank[i];
670 #ifdef CONFIG_HIGHMEM
672 * Split those memory banks which are partially overlapping
673 * the vmalloc area greatly simplifying things later.
675 if (__va(bank->start) < VMALLOC_MIN &&
676 bank->size > VMALLOC_MIN - __va(bank->start)) {
677 if (meminfo.nr_banks >= NR_BANKS) {
678 printk(KERN_CRIT "NR_BANKS too low, "
679 "ignoring high memory\n");
681 memmove(bank + 1, bank,
682 (meminfo.nr_banks - i) * sizeof(*bank));
685 bank[1].size -= VMALLOC_MIN - __va(bank->start);
686 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
689 bank->size = VMALLOC_MIN - __va(bank->start);
693 * Check whether this memory bank would entirely overlap
696 if (__va(bank->start) >= VMALLOC_MIN ||
697 __va(bank->start) < PAGE_OFFSET) {
698 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
699 "(vmalloc region overlap).\n",
700 bank->start, bank->start + bank->size - 1);
705 * Check whether this memory bank would partially overlap
708 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
709 __va(bank->start + bank->size) < __va(bank->start)) {
710 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
711 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
712 "to -%.8lx (vmalloc region overlap).\n",
713 bank->start, bank->start + bank->size - 1,
714 bank->start + newsize - 1);
715 bank->size = newsize;
720 meminfo.nr_banks = j;
723 static inline void prepare_page_table(void)
728 * Clear out all the mappings below the kernel image.
730 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
731 pmd_clear(pmd_off_k(addr));
733 #ifdef CONFIG_XIP_KERNEL
734 /* The XIP kernel is mapped in the module area -- skip over it */
735 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
737 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
738 pmd_clear(pmd_off_k(addr));
741 * Clear out all the kernel space mappings, except for the first
742 * memory bank, up to the end of the vmalloc region.
744 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
745 addr < VMALLOC_END; addr += PGDIR_SIZE)
746 pmd_clear(pmd_off_k(addr));
750 * Reserve the various regions of node 0
752 void __init reserve_node_zero(pg_data_t *pgdat)
754 unsigned long res_size = 0;
757 * Register the kernel text and data with bootmem.
758 * Note that this can only be in node 0.
760 #ifdef CONFIG_XIP_KERNEL
761 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
764 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
769 * Reserve the page tables. These are already in use,
770 * and can only be in node 0.
772 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
773 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
776 * Hmm... This should go elsewhere, but we really really need to
777 * stop things allocating the low memory; ideally we need a better
778 * implementation of GFP_DMA which does not assume that DMA-able
779 * memory starts at zero.
781 if (machine_is_integrator() || machine_is_cintegrator())
782 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
785 * These should likewise go elsewhere. They pre-reserve the
786 * screen memory region at the start of main system memory.
788 if (machine_is_edb7211())
789 res_size = 0x00020000;
790 if (machine_is_p720t())
791 res_size = 0x00014000;
793 /* H1940 and RX3715 need to reserve this for suspend */
795 if (machine_is_h1940() || machine_is_rx3715()) {
796 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
798 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
804 * Because of the SA1111 DMA bug, we want to preserve our
805 * precious DMA-able memory...
807 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
810 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
815 * Set up device the mappings. Since we clear out the page tables for all
816 * mappings above VMALLOC_END, we will remove any debug device mappings.
817 * This means you have to be careful how you debug this function, or any
818 * called function. This means you can't use any function or debugging
819 * method which may touch any device, otherwise the kernel _will_ crash.
821 static void __init devicemaps_init(struct machine_desc *mdesc)
828 * Allocate the vector page early.
830 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
832 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
833 pmd_clear(pmd_off_k(addr));
836 * Map the kernel if it is XIP.
837 * It is always first in the modulearea.
839 #ifdef CONFIG_XIP_KERNEL
840 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
841 map.virtual = MODULES_VADDR;
842 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
844 create_mapping(&map);
848 * Map the cache flushing regions.
851 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
852 map.virtual = FLUSH_BASE;
854 map.type = MT_CACHECLEAN;
855 create_mapping(&map);
857 #ifdef FLUSH_BASE_MINICACHE
858 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
859 map.virtual = FLUSH_BASE_MINICACHE;
861 map.type = MT_MINICLEAN;
862 create_mapping(&map);
866 * Create a mapping for the machine vectors at the high-vectors
867 * location (0xffff0000). If we aren't using high-vectors, also
868 * create a mapping at the low-vectors virtual address.
870 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
871 map.virtual = 0xffff0000;
872 map.length = PAGE_SIZE;
873 map.type = MT_HIGH_VECTORS;
874 create_mapping(&map);
876 if (!vectors_high()) {
878 map.type = MT_LOW_VECTORS;
879 create_mapping(&map);
883 * Ask the machine support to map in the statically mapped devices.
889 * Finally flush the caches and tlb to ensure that we're in a
890 * consistent state wrt the writebuffer. This also ensures that
891 * any write-allocated cache lines in the vector page are written
892 * back. After this point, we can start to touch devices again.
894 local_flush_tlb_all();
899 * paging_init() sets up the page tables, initialises the zone memory
900 * maps, and sets up the zero page, bad page and bad page tables.
902 void __init paging_init(struct machine_desc *mdesc)
906 build_mem_type_table();
907 sanity_check_meminfo();
908 prepare_page_table();
910 devicemaps_init(mdesc);
912 top_pmd = pmd_off_k(0xffff0000);
915 * allocate the zero page. Note that this always succeeds and
916 * returns a zeroed result.
918 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
919 empty_zero_page = virt_to_page(zero_page);
920 flush_dcache_page(empty_zero_page);
924 * In order to soft-boot, we need to insert a 1:1 mapping in place of
925 * the user-mode pages. This will then ensure that we have predictable
926 * results when turning the mmu off
928 void setup_mm_for_reboot(char mode)
930 unsigned long base_pmdval;
934 if (current->mm && current->mm->pgd)
935 pgd = current->mm->pgd;
939 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
940 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
941 base_pmdval |= PMD_BIT4;
943 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
944 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
947 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
948 pmd[0] = __pmd(pmdval);
949 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
950 flush_pmd_entry(pmd);