]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/mm/mmu.c
Merge branch 'kvm-arm-fixes' of git://github.com/columbia/linux-kvm-arm into devel...
[karo-tx-linux.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37
38 /*
39  * empty_zero_page is a special page that is used for
40  * zero-initialized data and COW.
41  */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44
45 /*
46  * The pmd table for the upper-most set of pages.
47  */
48 pmd_t *top_pmd;
49
50 #define CPOLICY_UNCACHED        0
51 #define CPOLICY_BUFFERED        1
52 #define CPOLICY_WRITETHROUGH    2
53 #define CPOLICY_WRITEBACK       3
54 #define CPOLICY_WRITEALLOC      4
55
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60 pgprot_t pgprot_hyp_device;
61 pgprot_t pgprot_s2;
62 pgprot_t pgprot_s2_device;
63
64 EXPORT_SYMBOL(pgprot_user);
65 EXPORT_SYMBOL(pgprot_kernel);
66
67 struct cachepolicy {
68         const char      policy[16];
69         unsigned int    cr_mask;
70         pmdval_t        pmd;
71         pteval_t        pte;
72         pteval_t        pte_s2;
73 };
74
75 #ifdef CONFIG_ARM_LPAE
76 #define s2_policy(policy)       policy
77 #else
78 #define s2_policy(policy)       0
79 #endif
80
81 static struct cachepolicy cache_policies[] __initdata = {
82         {
83                 .policy         = "uncached",
84                 .cr_mask        = CR_W|CR_C,
85                 .pmd            = PMD_SECT_UNCACHED,
86                 .pte            = L_PTE_MT_UNCACHED,
87                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
88         }, {
89                 .policy         = "buffered",
90                 .cr_mask        = CR_C,
91                 .pmd            = PMD_SECT_BUFFERED,
92                 .pte            = L_PTE_MT_BUFFERABLE,
93                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
94         }, {
95                 .policy         = "writethrough",
96                 .cr_mask        = 0,
97                 .pmd            = PMD_SECT_WT,
98                 .pte            = L_PTE_MT_WRITETHROUGH,
99                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
100         }, {
101                 .policy         = "writeback",
102                 .cr_mask        = 0,
103                 .pmd            = PMD_SECT_WB,
104                 .pte            = L_PTE_MT_WRITEBACK,
105                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
106         }, {
107                 .policy         = "writealloc",
108                 .cr_mask        = 0,
109                 .pmd            = PMD_SECT_WBWA,
110                 .pte            = L_PTE_MT_WRITEALLOC,
111                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
112         }
113 };
114
115 #ifdef CONFIG_CPU_CP15
116 /*
117  * These are useful for identifying cache coherency
118  * problems by allowing the cache or the cache and
119  * writebuffer to be turned off.  (Note: the write
120  * buffer should not be on and the cache off).
121  */
122 static int __init early_cachepolicy(char *p)
123 {
124         int i;
125
126         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
127                 int len = strlen(cache_policies[i].policy);
128
129                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
130                         cachepolicy = i;
131                         cr_alignment &= ~cache_policies[i].cr_mask;
132                         cr_no_alignment &= ~cache_policies[i].cr_mask;
133                         break;
134                 }
135         }
136         if (i == ARRAY_SIZE(cache_policies))
137                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
138         /*
139          * This restriction is partly to do with the way we boot; it is
140          * unpredictable to have memory mapped using two different sets of
141          * memory attributes (shared, type, and cache attribs).  We can not
142          * change these attributes once the initial assembly has setup the
143          * page tables.
144          */
145         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
146                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
147                 cachepolicy = CPOLICY_WRITEBACK;
148         }
149         flush_cache_all();
150         set_cr(cr_alignment);
151         return 0;
152 }
153 early_param("cachepolicy", early_cachepolicy);
154
155 static int __init early_nocache(char *__unused)
156 {
157         char *p = "buffered";
158         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
159         early_cachepolicy(p);
160         return 0;
161 }
162 early_param("nocache", early_nocache);
163
164 static int __init early_nowrite(char *__unused)
165 {
166         char *p = "uncached";
167         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
168         early_cachepolicy(p);
169         return 0;
170 }
171 early_param("nowb", early_nowrite);
172
173 #ifndef CONFIG_ARM_LPAE
174 static int __init early_ecc(char *p)
175 {
176         if (memcmp(p, "on", 2) == 0)
177                 ecc_mask = PMD_PROTECTION;
178         else if (memcmp(p, "off", 3) == 0)
179                 ecc_mask = 0;
180         return 0;
181 }
182 early_param("ecc", early_ecc);
183 #endif
184
185 static int __init noalign_setup(char *__unused)
186 {
187         cr_alignment &= ~CR_A;
188         cr_no_alignment &= ~CR_A;
189         set_cr(cr_alignment);
190         return 1;
191 }
192 __setup("noalign", noalign_setup);
193
194 #ifndef CONFIG_SMP
195 void adjust_cr(unsigned long mask, unsigned long set)
196 {
197         unsigned long flags;
198
199         mask &= ~CR_A;
200
201         set &= mask;
202
203         local_irq_save(flags);
204
205         cr_no_alignment = (cr_no_alignment & ~mask) | set;
206         cr_alignment = (cr_alignment & ~mask) | set;
207
208         set_cr((get_cr() & ~mask) | set);
209
210         local_irq_restore(flags);
211 }
212 #endif
213
214 #else /* ifdef CONFIG_CPU_CP15 */
215
216 static int __init early_cachepolicy(char *p)
217 {
218         pr_warning("cachepolicy kernel parameter not supported without cp15\n");
219 }
220 early_param("cachepolicy", early_cachepolicy);
221
222 static int __init noalign_setup(char *__unused)
223 {
224         pr_warning("noalign kernel parameter not supported without cp15\n");
225 }
226 __setup("noalign", noalign_setup);
227
228 #endif /* ifdef CONFIG_CPU_CP15 / else */
229
230 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
231 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
232
233 static struct mem_type mem_types[] = {
234         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
235                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
236                                   L_PTE_SHARED,
237                 .prot_l1        = PMD_TYPE_TABLE,
238                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
239                 .domain         = DOMAIN_IO,
240         },
241         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
242                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
243                 .prot_l1        = PMD_TYPE_TABLE,
244                 .prot_sect      = PROT_SECT_DEVICE,
245                 .domain         = DOMAIN_IO,
246         },
247         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
248                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
249                 .prot_l1        = PMD_TYPE_TABLE,
250                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
251                 .domain         = DOMAIN_IO,
252         },
253         [MT_DEVICE_WC] = {      /* ioremap_wc */
254                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
255                 .prot_l1        = PMD_TYPE_TABLE,
256                 .prot_sect      = PROT_SECT_DEVICE,
257                 .domain         = DOMAIN_IO,
258         },
259         [MT_UNCACHED] = {
260                 .prot_pte       = PROT_PTE_DEVICE,
261                 .prot_l1        = PMD_TYPE_TABLE,
262                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
263                 .domain         = DOMAIN_IO,
264         },
265         [MT_CACHECLEAN] = {
266                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267                 .domain    = DOMAIN_KERNEL,
268         },
269 #ifndef CONFIG_ARM_LPAE
270         [MT_MINICLEAN] = {
271                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
272                 .domain    = DOMAIN_KERNEL,
273         },
274 #endif
275         [MT_LOW_VECTORS] = {
276                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
277                                 L_PTE_RDONLY,
278                 .prot_l1   = PMD_TYPE_TABLE,
279                 .domain    = DOMAIN_USER,
280         },
281         [MT_HIGH_VECTORS] = {
282                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283                                 L_PTE_USER | L_PTE_RDONLY,
284                 .prot_l1   = PMD_TYPE_TABLE,
285                 .domain    = DOMAIN_USER,
286         },
287         [MT_MEMORY] = {
288                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
289                 .prot_l1   = PMD_TYPE_TABLE,
290                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
291                 .domain    = DOMAIN_KERNEL,
292         },
293         [MT_ROM] = {
294                 .prot_sect = PMD_TYPE_SECT,
295                 .domain    = DOMAIN_KERNEL,
296         },
297         [MT_MEMORY_NONCACHED] = {
298                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299                                 L_PTE_MT_BUFFERABLE,
300                 .prot_l1   = PMD_TYPE_TABLE,
301                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302                 .domain    = DOMAIN_KERNEL,
303         },
304         [MT_MEMORY_DTCM] = {
305                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
306                                 L_PTE_XN,
307                 .prot_l1   = PMD_TYPE_TABLE,
308                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
309                 .domain    = DOMAIN_KERNEL,
310         },
311         [MT_MEMORY_ITCM] = {
312                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
313                 .prot_l1   = PMD_TYPE_TABLE,
314                 .domain    = DOMAIN_KERNEL,
315         },
316         [MT_MEMORY_SO] = {
317                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
318                                 L_PTE_MT_UNCACHED | L_PTE_XN,
319                 .prot_l1   = PMD_TYPE_TABLE,
320                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
321                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
322                 .domain    = DOMAIN_KERNEL,
323         },
324         [MT_MEMORY_DMA_READY] = {
325                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
326                 .prot_l1   = PMD_TYPE_TABLE,
327                 .domain    = DOMAIN_KERNEL,
328         },
329 };
330
331 const struct mem_type *get_mem_type(unsigned int type)
332 {
333         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
334 }
335 EXPORT_SYMBOL(get_mem_type);
336
337 /*
338  * Adjust the PMD section entries according to the CPU in use.
339  */
340 static void __init build_mem_type_table(void)
341 {
342         struct cachepolicy *cp;
343         unsigned int cr = get_cr();
344         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
345         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
346         int cpu_arch = cpu_architecture();
347         int i;
348
349         if (cpu_arch < CPU_ARCH_ARMv6) {
350 #if defined(CONFIG_CPU_DCACHE_DISABLE)
351                 if (cachepolicy > CPOLICY_BUFFERED)
352                         cachepolicy = CPOLICY_BUFFERED;
353 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
354                 if (cachepolicy > CPOLICY_WRITETHROUGH)
355                         cachepolicy = CPOLICY_WRITETHROUGH;
356 #endif
357         }
358         if (cpu_arch < CPU_ARCH_ARMv5) {
359                 if (cachepolicy >= CPOLICY_WRITEALLOC)
360                         cachepolicy = CPOLICY_WRITEBACK;
361                 ecc_mask = 0;
362         }
363         if (is_smp())
364                 cachepolicy = CPOLICY_WRITEALLOC;
365
366         /*
367          * Strip out features not present on earlier architectures.
368          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
369          * without extended page tables don't have the 'Shared' bit.
370          */
371         if (cpu_arch < CPU_ARCH_ARMv5)
372                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
373                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
374         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
375                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
376                         mem_types[i].prot_sect &= ~PMD_SECT_S;
377
378         /*
379          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
380          * "update-able on write" bit on ARM610).  However, Xscale and
381          * Xscale3 require this bit to be cleared.
382          */
383         if (cpu_is_xscale() || cpu_is_xsc3()) {
384                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
385                         mem_types[i].prot_sect &= ~PMD_BIT4;
386                         mem_types[i].prot_l1 &= ~PMD_BIT4;
387                 }
388         } else if (cpu_arch < CPU_ARCH_ARMv6) {
389                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
390                         if (mem_types[i].prot_l1)
391                                 mem_types[i].prot_l1 |= PMD_BIT4;
392                         if (mem_types[i].prot_sect)
393                                 mem_types[i].prot_sect |= PMD_BIT4;
394                 }
395         }
396
397         /*
398          * Mark the device areas according to the CPU/architecture.
399          */
400         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
401                 if (!cpu_is_xsc3()) {
402                         /*
403                          * Mark device regions on ARMv6+ as execute-never
404                          * to prevent speculative instruction fetches.
405                          */
406                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
407                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
408                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
409                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
410                 }
411                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
412                         /*
413                          * For ARMv7 with TEX remapping,
414                          * - shared device is SXCB=1100
415                          * - nonshared device is SXCB=0100
416                          * - write combine device mem is SXCB=0001
417                          * (Uncached Normal memory)
418                          */
419                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
420                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
421                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
422                 } else if (cpu_is_xsc3()) {
423                         /*
424                          * For Xscale3,
425                          * - shared device is TEXCB=00101
426                          * - nonshared device is TEXCB=01000
427                          * - write combine device mem is TEXCB=00100
428                          * (Inner/Outer Uncacheable in xsc3 parlance)
429                          */
430                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
431                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
432                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
433                 } else {
434                         /*
435                          * For ARMv6 and ARMv7 without TEX remapping,
436                          * - shared device is TEXCB=00001
437                          * - nonshared device is TEXCB=01000
438                          * - write combine device mem is TEXCB=00100
439                          * (Uncached Normal in ARMv6 parlance).
440                          */
441                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
442                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
443                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
444                 }
445         } else {
446                 /*
447                  * On others, write combining is "Uncached/Buffered"
448                  */
449                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
450         }
451
452         /*
453          * Now deal with the memory-type mappings
454          */
455         cp = &cache_policies[cachepolicy];
456         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
457         s2_pgprot = cp->pte_s2;
458         hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
459
460         /*
461          * ARMv6 and above have extended page tables.
462          */
463         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
464 #ifndef CONFIG_ARM_LPAE
465                 /*
466                  * Mark cache clean areas and XIP ROM read only
467                  * from SVC mode and no access from userspace.
468                  */
469                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
470                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
471                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
472 #endif
473
474                 if (is_smp()) {
475                         /*
476                          * Mark memory with the "shared" attribute
477                          * for SMP systems
478                          */
479                         user_pgprot |= L_PTE_SHARED;
480                         kern_pgprot |= L_PTE_SHARED;
481                         vecs_pgprot |= L_PTE_SHARED;
482                         s2_pgprot |= L_PTE_SHARED;
483                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
484                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
485                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
486                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
487                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
488                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
489                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
490                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
491                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
492                 }
493         }
494
495         /*
496          * Non-cacheable Normal - intended for memory areas that must
497          * not cause dirty cache line writebacks when used
498          */
499         if (cpu_arch >= CPU_ARCH_ARMv6) {
500                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
501                         /* Non-cacheable Normal is XCB = 001 */
502                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
503                                 PMD_SECT_BUFFERED;
504                 } else {
505                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
506                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
507                                 PMD_SECT_TEX(1);
508                 }
509         } else {
510                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
511         }
512
513 #ifdef CONFIG_ARM_LPAE
514         /*
515          * Do not generate access flag faults for the kernel mappings.
516          */
517         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
518                 mem_types[i].prot_pte |= PTE_EXT_AF;
519                 if (mem_types[i].prot_sect)
520                         mem_types[i].prot_sect |= PMD_SECT_AF;
521         }
522         kern_pgprot |= PTE_EXT_AF;
523         vecs_pgprot |= PTE_EXT_AF;
524 #endif
525
526         for (i = 0; i < 16; i++) {
527                 pteval_t v = pgprot_val(protection_map[i]);
528                 protection_map[i] = __pgprot(v | user_pgprot);
529         }
530
531         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
532         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
533
534         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
535         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
536                                  L_PTE_DIRTY | kern_pgprot);
537         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
538         pgprot_s2_device  = __pgprot(s2_device_pgprot);
539         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
540
541         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
542         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
543         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
544         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
545         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
546         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
547         mem_types[MT_ROM].prot_sect |= cp->pmd;
548
549         switch (cp->pmd) {
550         case PMD_SECT_WT:
551                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
552                 break;
553         case PMD_SECT_WB:
554         case PMD_SECT_WBWA:
555                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
556                 break;
557         }
558         printk("Memory policy: ECC %sabled, Data cache %s\n",
559                 ecc_mask ? "en" : "dis", cp->policy);
560
561         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
562                 struct mem_type *t = &mem_types[i];
563                 if (t->prot_l1)
564                         t->prot_l1 |= PMD_DOMAIN(t->domain);
565                 if (t->prot_sect)
566                         t->prot_sect |= PMD_DOMAIN(t->domain);
567         }
568 }
569
570 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
571 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
572                               unsigned long size, pgprot_t vma_prot)
573 {
574         if (!pfn_valid(pfn))
575                 return pgprot_noncached(vma_prot);
576         else if (file->f_flags & O_SYNC)
577                 return pgprot_writecombine(vma_prot);
578         return vma_prot;
579 }
580 EXPORT_SYMBOL(phys_mem_access_prot);
581 #endif
582
583 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
584
585 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
586 {
587         void *ptr = __va(memblock_alloc(sz, align));
588         memset(ptr, 0, sz);
589         return ptr;
590 }
591
592 static void __init *early_alloc(unsigned long sz)
593 {
594         return early_alloc_aligned(sz, sz);
595 }
596
597 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
598 {
599         if (pmd_none(*pmd)) {
600                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
601                 __pmd_populate(pmd, __pa(pte), prot);
602         }
603         BUG_ON(pmd_bad(*pmd));
604         return pte_offset_kernel(pmd, addr);
605 }
606
607 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
608                                   unsigned long end, unsigned long pfn,
609                                   const struct mem_type *type)
610 {
611         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
612         do {
613                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
614                 pfn++;
615         } while (pte++, addr += PAGE_SIZE, addr != end);
616 }
617
618 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
619                                       unsigned long end, phys_addr_t phys,
620                                       const struct mem_type *type)
621 {
622         pmd_t *pmd = pmd_offset(pud, addr);
623
624         /*
625          * Try a section mapping - end, addr and phys must all be aligned
626          * to a section boundary.  Note that PMDs refer to the individual
627          * L1 entries, whereas PGDs refer to a group of L1 entries making
628          * up one logical pointer to an L2 table.
629          */
630         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
631                 pmd_t *p = pmd;
632
633 #ifndef CONFIG_ARM_LPAE
634                 if (addr & SECTION_SIZE)
635                         pmd++;
636 #endif
637
638                 do {
639                         *pmd = __pmd(phys | type->prot_sect);
640                         phys += SECTION_SIZE;
641                 } while (pmd++, addr += SECTION_SIZE, addr != end);
642
643                 flush_pmd_entry(p);
644         } else {
645                 /*
646                  * No need to loop; pte's aren't interested in the
647                  * individual L1 entries.
648                  */
649                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
650         }
651 }
652
653 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
654         unsigned long end, unsigned long phys, const struct mem_type *type)
655 {
656         pud_t *pud = pud_offset(pgd, addr);
657         unsigned long next;
658
659         do {
660                 next = pud_addr_end(addr, end);
661                 alloc_init_section(pud, addr, next, phys, type);
662                 phys += next - addr;
663         } while (pud++, addr = next, addr != end);
664 }
665
666 #ifndef CONFIG_ARM_LPAE
667 static void __init create_36bit_mapping(struct map_desc *md,
668                                         const struct mem_type *type)
669 {
670         unsigned long addr, length, end;
671         phys_addr_t phys;
672         pgd_t *pgd;
673
674         addr = md->virtual;
675         phys = __pfn_to_phys(md->pfn);
676         length = PAGE_ALIGN(md->length);
677
678         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
679                 printk(KERN_ERR "MM: CPU does not support supersection "
680                        "mapping for 0x%08llx at 0x%08lx\n",
681                        (long long)__pfn_to_phys((u64)md->pfn), addr);
682                 return;
683         }
684
685         /* N.B. ARMv6 supersections are only defined to work with domain 0.
686          *      Since domain assignments can in fact be arbitrary, the
687          *      'domain == 0' check below is required to insure that ARMv6
688          *      supersections are only allocated for domain 0 regardless
689          *      of the actual domain assignments in use.
690          */
691         if (type->domain) {
692                 printk(KERN_ERR "MM: invalid domain in supersection "
693                        "mapping for 0x%08llx at 0x%08lx\n",
694                        (long long)__pfn_to_phys((u64)md->pfn), addr);
695                 return;
696         }
697
698         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
699                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
700                        " at 0x%08lx invalid alignment\n",
701                        (long long)__pfn_to_phys((u64)md->pfn), addr);
702                 return;
703         }
704
705         /*
706          * Shift bits [35:32] of address into bits [23:20] of PMD
707          * (See ARMv6 spec).
708          */
709         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
710
711         pgd = pgd_offset_k(addr);
712         end = addr + length;
713         do {
714                 pud_t *pud = pud_offset(pgd, addr);
715                 pmd_t *pmd = pmd_offset(pud, addr);
716                 int i;
717
718                 for (i = 0; i < 16; i++)
719                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
720
721                 addr += SUPERSECTION_SIZE;
722                 phys += SUPERSECTION_SIZE;
723                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
724         } while (addr != end);
725 }
726 #endif  /* !CONFIG_ARM_LPAE */
727
728 /*
729  * Create the page directory entries and any necessary
730  * page tables for the mapping specified by `md'.  We
731  * are able to cope here with varying sizes and address
732  * offsets, and we take full advantage of sections and
733  * supersections.
734  */
735 static void __init create_mapping(struct map_desc *md)
736 {
737         unsigned long addr, length, end;
738         phys_addr_t phys;
739         const struct mem_type *type;
740         pgd_t *pgd;
741
742         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
743                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
744                        " at 0x%08lx in user region\n",
745                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
746                 return;
747         }
748
749         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
750             md->virtual >= PAGE_OFFSET &&
751             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
752                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
753                        " at 0x%08lx out of vmalloc space\n",
754                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
755         }
756
757         type = &mem_types[md->type];
758
759 #ifndef CONFIG_ARM_LPAE
760         /*
761          * Catch 36-bit addresses
762          */
763         if (md->pfn >= 0x100000) {
764                 create_36bit_mapping(md, type);
765                 return;
766         }
767 #endif
768
769         addr = md->virtual & PAGE_MASK;
770         phys = __pfn_to_phys(md->pfn);
771         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
772
773         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
774                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
775                        "be mapped using pages, ignoring.\n",
776                        (long long)__pfn_to_phys(md->pfn), addr);
777                 return;
778         }
779
780         pgd = pgd_offset_k(addr);
781         end = addr + length;
782         do {
783                 unsigned long next = pgd_addr_end(addr, end);
784
785                 alloc_init_pud(pgd, addr, next, phys, type);
786
787                 phys += next - addr;
788                 addr = next;
789         } while (pgd++, addr != end);
790 }
791
792 /*
793  * Create the architecture specific mappings
794  */
795 void __init iotable_init(struct map_desc *io_desc, int nr)
796 {
797         struct map_desc *md;
798         struct vm_struct *vm;
799         struct static_vm *svm;
800
801         if (!nr)
802                 return;
803
804         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
805
806         for (md = io_desc; nr; md++, nr--) {
807                 create_mapping(md);
808
809                 vm = &svm->vm;
810                 vm->addr = (void *)(md->virtual & PAGE_MASK);
811                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
812                 vm->phys_addr = __pfn_to_phys(md->pfn);
813                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
814                 vm->flags |= VM_ARM_MTYPE(md->type);
815                 vm->caller = iotable_init;
816                 add_static_vm_early(svm++);
817         }
818 }
819
820 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
821                                   void *caller)
822 {
823         struct vm_struct *vm;
824         struct static_vm *svm;
825
826         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
827
828         vm = &svm->vm;
829         vm->addr = (void *)addr;
830         vm->size = size;
831         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
832         vm->caller = caller;
833         add_static_vm_early(svm);
834 }
835
836 #ifndef CONFIG_ARM_LPAE
837
838 /*
839  * The Linux PMD is made of two consecutive section entries covering 2MB
840  * (see definition in include/asm/pgtable-2level.h).  However a call to
841  * create_mapping() may optimize static mappings by using individual
842  * 1MB section mappings.  This leaves the actual PMD potentially half
843  * initialized if the top or bottom section entry isn't used, leaving it
844  * open to problems if a subsequent ioremap() or vmalloc() tries to use
845  * the virtual space left free by that unused section entry.
846  *
847  * Let's avoid the issue by inserting dummy vm entries covering the unused
848  * PMD halves once the static mappings are in place.
849  */
850
851 static void __init pmd_empty_section_gap(unsigned long addr)
852 {
853         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
854 }
855
856 static void __init fill_pmd_gaps(void)
857 {
858         struct static_vm *svm;
859         struct vm_struct *vm;
860         unsigned long addr, next = 0;
861         pmd_t *pmd;
862
863         list_for_each_entry(svm, &static_vmlist, list) {
864                 vm = &svm->vm;
865                 addr = (unsigned long)vm->addr;
866                 if (addr < next)
867                         continue;
868
869                 /*
870                  * Check if this vm starts on an odd section boundary.
871                  * If so and the first section entry for this PMD is free
872                  * then we block the corresponding virtual address.
873                  */
874                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
875                         pmd = pmd_off_k(addr);
876                         if (pmd_none(*pmd))
877                                 pmd_empty_section_gap(addr & PMD_MASK);
878                 }
879
880                 /*
881                  * Then check if this vm ends on an odd section boundary.
882                  * If so and the second section entry for this PMD is empty
883                  * then we block the corresponding virtual address.
884                  */
885                 addr += vm->size;
886                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
887                         pmd = pmd_off_k(addr) + 1;
888                         if (pmd_none(*pmd))
889                                 pmd_empty_section_gap(addr);
890                 }
891
892                 /* no need to look at any vm entry until we hit the next PMD */
893                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
894         }
895 }
896
897 #else
898 #define fill_pmd_gaps() do { } while (0)
899 #endif
900
901 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
902 static void __init pci_reserve_io(void)
903 {
904         struct static_vm *svm;
905
906         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
907         if (svm)
908                 return;
909
910         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
911 }
912 #else
913 #define pci_reserve_io() do { } while (0)
914 #endif
915
916 #ifdef CONFIG_DEBUG_LL
917 void __init debug_ll_io_init(void)
918 {
919         struct map_desc map;
920
921         debug_ll_addr(&map.pfn, &map.virtual);
922         if (!map.pfn || !map.virtual)
923                 return;
924         map.pfn = __phys_to_pfn(map.pfn);
925         map.virtual &= PAGE_MASK;
926         map.length = PAGE_SIZE;
927         map.type = MT_DEVICE;
928         create_mapping(&map);
929 }
930 #endif
931
932 static void * __initdata vmalloc_min =
933         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
934
935 /*
936  * vmalloc=size forces the vmalloc area to be exactly 'size'
937  * bytes. This can be used to increase (or decrease) the vmalloc
938  * area - the default is 240m.
939  */
940 static int __init early_vmalloc(char *arg)
941 {
942         unsigned long vmalloc_reserve = memparse(arg, NULL);
943
944         if (vmalloc_reserve < SZ_16M) {
945                 vmalloc_reserve = SZ_16M;
946                 printk(KERN_WARNING
947                         "vmalloc area too small, limiting to %luMB\n",
948                         vmalloc_reserve >> 20);
949         }
950
951         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
952                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
953                 printk(KERN_WARNING
954                         "vmalloc area is too big, limiting to %luMB\n",
955                         vmalloc_reserve >> 20);
956         }
957
958         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
959         return 0;
960 }
961 early_param("vmalloc", early_vmalloc);
962
963 phys_addr_t arm_lowmem_limit __initdata = 0;
964
965 void __init sanity_check_meminfo(void)
966 {
967         int i, j, highmem = 0;
968
969         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
970                 struct membank *bank = &meminfo.bank[j];
971                 *bank = meminfo.bank[i];
972
973                 if (bank->start > ULONG_MAX)
974                         highmem = 1;
975
976 #ifdef CONFIG_HIGHMEM
977                 if (__va(bank->start) >= vmalloc_min ||
978                     __va(bank->start) < (void *)PAGE_OFFSET)
979                         highmem = 1;
980
981                 bank->highmem = highmem;
982
983                 /*
984                  * Split those memory banks which are partially overlapping
985                  * the vmalloc area greatly simplifying things later.
986                  */
987                 if (!highmem && __va(bank->start) < vmalloc_min &&
988                     bank->size > vmalloc_min - __va(bank->start)) {
989                         if (meminfo.nr_banks >= NR_BANKS) {
990                                 printk(KERN_CRIT "NR_BANKS too low, "
991                                                  "ignoring high memory\n");
992                         } else {
993                                 memmove(bank + 1, bank,
994                                         (meminfo.nr_banks - i) * sizeof(*bank));
995                                 meminfo.nr_banks++;
996                                 i++;
997                                 bank[1].size -= vmalloc_min - __va(bank->start);
998                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
999                                 bank[1].highmem = highmem = 1;
1000                                 j++;
1001                         }
1002                         bank->size = vmalloc_min - __va(bank->start);
1003                 }
1004 #else
1005                 bank->highmem = highmem;
1006
1007                 /*
1008                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1009                  */
1010                 if (highmem) {
1011                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1012                                "(!CONFIG_HIGHMEM).\n",
1013                                (unsigned long long)bank->start,
1014                                (unsigned long long)bank->start + bank->size - 1);
1015                         continue;
1016                 }
1017
1018                 /*
1019                  * Check whether this memory bank would entirely overlap
1020                  * the vmalloc area.
1021                  */
1022                 if (__va(bank->start) >= vmalloc_min ||
1023                     __va(bank->start) < (void *)PAGE_OFFSET) {
1024                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1025                                "(vmalloc region overlap).\n",
1026                                (unsigned long long)bank->start,
1027                                (unsigned long long)bank->start + bank->size - 1);
1028                         continue;
1029                 }
1030
1031                 /*
1032                  * Check whether this memory bank would partially overlap
1033                  * the vmalloc area.
1034                  */
1035                 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1036                     __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1037                         unsigned long newsize = vmalloc_min - __va(bank->start);
1038                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1039                                "to -%.8llx (vmalloc region overlap).\n",
1040                                (unsigned long long)bank->start,
1041                                (unsigned long long)bank->start + bank->size - 1,
1042                                (unsigned long long)bank->start + newsize - 1);
1043                         bank->size = newsize;
1044                 }
1045 #endif
1046                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1047                         arm_lowmem_limit = bank->start + bank->size;
1048
1049                 j++;
1050         }
1051 #ifdef CONFIG_HIGHMEM
1052         if (highmem) {
1053                 const char *reason = NULL;
1054
1055                 if (cache_is_vipt_aliasing()) {
1056                         /*
1057                          * Interactions between kmap and other mappings
1058                          * make highmem support with aliasing VIPT caches
1059                          * rather difficult.
1060                          */
1061                         reason = "with VIPT aliasing cache";
1062                 }
1063                 if (reason) {
1064                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1065                                 reason);
1066                         while (j > 0 && meminfo.bank[j - 1].highmem)
1067                                 j--;
1068                 }
1069         }
1070 #endif
1071         meminfo.nr_banks = j;
1072         high_memory = __va(arm_lowmem_limit - 1) + 1;
1073         memblock_set_current_limit(arm_lowmem_limit);
1074 }
1075
1076 static inline void prepare_page_table(void)
1077 {
1078         unsigned long addr;
1079         phys_addr_t end;
1080
1081         /*
1082          * Clear out all the mappings below the kernel image.
1083          */
1084         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1085                 pmd_clear(pmd_off_k(addr));
1086
1087 #ifdef CONFIG_XIP_KERNEL
1088         /* The XIP kernel is mapped in the module area -- skip over it */
1089         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1090 #endif
1091         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1092                 pmd_clear(pmd_off_k(addr));
1093
1094         /*
1095          * Find the end of the first block of lowmem.
1096          */
1097         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1098         if (end >= arm_lowmem_limit)
1099                 end = arm_lowmem_limit;
1100
1101         /*
1102          * Clear out all the kernel space mappings, except for the first
1103          * memory bank, up to the vmalloc region.
1104          */
1105         for (addr = __phys_to_virt(end);
1106              addr < VMALLOC_START; addr += PMD_SIZE)
1107                 pmd_clear(pmd_off_k(addr));
1108 }
1109
1110 #ifdef CONFIG_ARM_LPAE
1111 /* the first page is reserved for pgd */
1112 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1113                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1114 #else
1115 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1116 #endif
1117
1118 /*
1119  * Reserve the special regions of memory
1120  */
1121 void __init arm_mm_memblock_reserve(void)
1122 {
1123         /*
1124          * Reserve the page tables.  These are already in use,
1125          * and can only be in node 0.
1126          */
1127         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1128
1129 #ifdef CONFIG_SA1111
1130         /*
1131          * Because of the SA1111 DMA bug, we want to preserve our
1132          * precious DMA-able memory...
1133          */
1134         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1135 #endif
1136 }
1137
1138 /*
1139  * Set up the device mappings.  Since we clear out the page tables for all
1140  * mappings above VMALLOC_START, we will remove any debug device mappings.
1141  * This means you have to be careful how you debug this function, or any
1142  * called function.  This means you can't use any function or debugging
1143  * method which may touch any device, otherwise the kernel _will_ crash.
1144  */
1145 static void __init devicemaps_init(struct machine_desc *mdesc)
1146 {
1147         struct map_desc map;
1148         unsigned long addr;
1149         void *vectors;
1150
1151         /*
1152          * Allocate the vector page early.
1153          */
1154         vectors = early_alloc(PAGE_SIZE);
1155
1156         early_trap_init(vectors);
1157
1158         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1159                 pmd_clear(pmd_off_k(addr));
1160
1161         /*
1162          * Map the kernel if it is XIP.
1163          * It is always first in the modulearea.
1164          */
1165 #ifdef CONFIG_XIP_KERNEL
1166         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1167         map.virtual = MODULES_VADDR;
1168         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1169         map.type = MT_ROM;
1170         create_mapping(&map);
1171 #endif
1172
1173         /*
1174          * Map the cache flushing regions.
1175          */
1176 #ifdef FLUSH_BASE
1177         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1178         map.virtual = FLUSH_BASE;
1179         map.length = SZ_1M;
1180         map.type = MT_CACHECLEAN;
1181         create_mapping(&map);
1182 #endif
1183 #ifdef FLUSH_BASE_MINICACHE
1184         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1185         map.virtual = FLUSH_BASE_MINICACHE;
1186         map.length = SZ_1M;
1187         map.type = MT_MINICLEAN;
1188         create_mapping(&map);
1189 #endif
1190
1191         /*
1192          * Create a mapping for the machine vectors at the high-vectors
1193          * location (0xffff0000).  If we aren't using high-vectors, also
1194          * create a mapping at the low-vectors virtual address.
1195          */
1196         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1197         map.virtual = 0xffff0000;
1198         map.length = PAGE_SIZE;
1199         map.type = MT_HIGH_VECTORS;
1200         create_mapping(&map);
1201
1202         if (!vectors_high()) {
1203                 map.virtual = 0;
1204                 map.type = MT_LOW_VECTORS;
1205                 create_mapping(&map);
1206         }
1207
1208         /*
1209          * Ask the machine support to map in the statically mapped devices.
1210          */
1211         if (mdesc->map_io)
1212                 mdesc->map_io();
1213         fill_pmd_gaps();
1214
1215         /* Reserve fixed i/o space in VMALLOC region */
1216         pci_reserve_io();
1217
1218         /*
1219          * Finally flush the caches and tlb to ensure that we're in a
1220          * consistent state wrt the writebuffer.  This also ensures that
1221          * any write-allocated cache lines in the vector page are written
1222          * back.  After this point, we can start to touch devices again.
1223          */
1224         local_flush_tlb_all();
1225         flush_cache_all();
1226 }
1227
1228 static void __init kmap_init(void)
1229 {
1230 #ifdef CONFIG_HIGHMEM
1231         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1232                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1233 #endif
1234 }
1235
1236 static void __init map_lowmem(void)
1237 {
1238         struct memblock_region *reg;
1239
1240         /* Map all the lowmem memory banks. */
1241         for_each_memblock(memory, reg) {
1242                 phys_addr_t start = reg->base;
1243                 phys_addr_t end = start + reg->size;
1244                 struct map_desc map;
1245
1246                 if (end > arm_lowmem_limit)
1247                         end = arm_lowmem_limit;
1248                 if (start >= end)
1249                         break;
1250
1251                 map.pfn = __phys_to_pfn(start);
1252                 map.virtual = __phys_to_virt(start);
1253                 map.length = end - start;
1254                 map.type = MT_MEMORY;
1255
1256                 create_mapping(&map);
1257         }
1258 }
1259
1260 /*
1261  * paging_init() sets up the page tables, initialises the zone memory
1262  * maps, and sets up the zero page, bad page and bad page tables.
1263  */
1264 void __init paging_init(struct machine_desc *mdesc)
1265 {
1266         void *zero_page;
1267
1268         memblock_set_current_limit(arm_lowmem_limit);
1269
1270         build_mem_type_table();
1271         prepare_page_table();
1272         map_lowmem();
1273         dma_contiguous_remap();
1274         devicemaps_init(mdesc);
1275         kmap_init();
1276
1277         top_pmd = pmd_off_k(0xffff0000);
1278
1279         /* allocate the zero page. */
1280         zero_page = early_alloc(PAGE_SIZE);
1281
1282         bootmem_init();
1283
1284         empty_zero_page = virt_to_page(zero_page);
1285         __flush_dcache_page(NULL, empty_zero_page);
1286 }