]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm/probes/kprobes/core.c
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[karo-tx-linux.git] / arch / arm / probes / kprobes / core.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35
36 #include "../decode-arm.h"
37 #include "../decode-thumb.h"
38 #include "core.h"
39
40 #define MIN_STACK_SIZE(addr)                            \
41         min((unsigned long)MAX_STACK_SIZE,              \
42             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
43
44 #define flush_insns(addr, size)                         \
45         flush_icache_range((unsigned long)(addr),       \
46                            (unsigned long)(addr) +      \
47                            (size))
48
49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
50 #define JPROBE_MAGIC_ADDR               0xffffffff
51
52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
54
55
56 int __kprobes arch_prepare_kprobe(struct kprobe *p)
57 {
58         kprobe_opcode_t insn;
59         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
60         unsigned long addr = (unsigned long)p->addr;
61         bool thumb;
62         kprobe_decode_insn_t *decode_insn;
63         const union decode_action *actions;
64         int is;
65         const struct decode_checker **checkers;
66
67         if (in_exception_text(addr))
68                 return -EINVAL;
69
70 #ifdef CONFIG_THUMB2_KERNEL
71         thumb = true;
72         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
73         insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
74         if (is_wide_instruction(insn)) {
75                 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
76                 insn = __opcode_thumb32_compose(insn, inst2);
77                 decode_insn = thumb32_probes_decode_insn;
78                 actions = kprobes_t32_actions;
79                 checkers = kprobes_t32_checkers;
80         } else {
81                 decode_insn = thumb16_probes_decode_insn;
82                 actions = kprobes_t16_actions;
83                 checkers = kprobes_t16_checkers;
84         }
85 #else /* !CONFIG_THUMB2_KERNEL */
86         thumb = false;
87         if (addr & 0x3)
88                 return -EINVAL;
89         insn = __mem_to_opcode_arm(*p->addr);
90         decode_insn = arm_probes_decode_insn;
91         actions = kprobes_arm_actions;
92         checkers = kprobes_arm_checkers;
93 #endif
94
95         p->opcode = insn;
96         p->ainsn.insn = tmp_insn;
97
98         switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
99         case INSN_REJECTED:     /* not supported */
100                 return -EINVAL;
101
102         case INSN_GOOD:         /* instruction uses slot */
103                 p->ainsn.insn = get_insn_slot();
104                 if (!p->ainsn.insn)
105                         return -ENOMEM;
106                 for (is = 0; is < MAX_INSN_SIZE; ++is)
107                         p->ainsn.insn[is] = tmp_insn[is];
108                 flush_insns(p->ainsn.insn,
109                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
110                 p->ainsn.insn_fn = (probes_insn_fn_t *)
111                                         ((uintptr_t)p->ainsn.insn | thumb);
112                 break;
113
114         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
115                 p->ainsn.insn = NULL;
116                 break;
117         }
118
119         /*
120          * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
121          * 'str r0, [sp, #-68]' should also be prohibited.
122          * See __und_svc.
123          */
124         if ((p->ainsn.stack_space < 0) ||
125                         (p->ainsn.stack_space > MAX_STACK_SIZE))
126                 return -EINVAL;
127
128         return 0;
129 }
130
131 void __kprobes arch_arm_kprobe(struct kprobe *p)
132 {
133         unsigned int brkp;
134         void *addr;
135
136         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
137                 /* Remove any Thumb flag */
138                 addr = (void *)((uintptr_t)p->addr & ~1);
139
140                 if (is_wide_instruction(p->opcode))
141                         brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
142                 else
143                         brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
144         } else {
145                 kprobe_opcode_t insn = p->opcode;
146
147                 addr = p->addr;
148                 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
149
150                 if (insn >= 0xe0000000)
151                         brkp |= 0xe0000000;  /* Unconditional instruction */
152                 else
153                         brkp |= insn & 0xf0000000;  /* Copy condition from insn */
154         }
155
156         patch_text(addr, brkp);
157 }
158
159 /*
160  * The actual disarming is done here on each CPU and synchronized using
161  * stop_machine. This synchronization is necessary on SMP to avoid removing
162  * a probe between the moment the 'Undefined Instruction' exception is raised
163  * and the moment the exception handler reads the faulting instruction from
164  * memory. It is also needed to atomically set the two half-words of a 32-bit
165  * Thumb breakpoint.
166  */
167 struct patch {
168         void *addr;
169         unsigned int insn;
170 };
171
172 static int __kprobes_remove_breakpoint(void *data)
173 {
174         struct patch *p = data;
175         __patch_text(p->addr, p->insn);
176         return 0;
177 }
178
179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
180 {
181         struct patch p = {
182                 .addr = addr,
183                 .insn = insn,
184         };
185         stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
186 }
187
188 void __kprobes arch_disarm_kprobe(struct kprobe *p)
189 {
190         kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
191                         p->opcode);
192 }
193
194 void __kprobes arch_remove_kprobe(struct kprobe *p)
195 {
196         if (p->ainsn.insn) {
197                 free_insn_slot(p->ainsn.insn, 0);
198                 p->ainsn.insn = NULL;
199         }
200 }
201
202 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
203 {
204         kcb->prev_kprobe.kp = kprobe_running();
205         kcb->prev_kprobe.status = kcb->kprobe_status;
206 }
207
208 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
209 {
210         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
211         kcb->kprobe_status = kcb->prev_kprobe.status;
212 }
213
214 static void __kprobes set_current_kprobe(struct kprobe *p)
215 {
216         __this_cpu_write(current_kprobe, p);
217 }
218
219 static void __kprobes
220 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_THUMB2_KERNEL
223         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
224         if (is_wide_instruction(p->opcode))
225                 regs->ARM_pc += 4;
226         else
227                 regs->ARM_pc += 2;
228 #else
229         regs->ARM_pc += 4;
230 #endif
231 }
232
233 static inline void __kprobes
234 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
235 {
236         p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
237 }
238
239 /*
240  * Called with IRQs disabled. IRQs must remain disabled from that point
241  * all the way until processing this kprobe is complete.  The current
242  * kprobes implementation cannot process more than one nested level of
243  * kprobe, and that level is reserved for user kprobe handlers, so we can't
244  * risk encountering a new kprobe in an interrupt handler.
245  */
246 void __kprobes kprobe_handler(struct pt_regs *regs)
247 {
248         struct kprobe *p, *cur;
249         struct kprobe_ctlblk *kcb;
250
251         kcb = get_kprobe_ctlblk();
252         cur = kprobe_running();
253
254 #ifdef CONFIG_THUMB2_KERNEL
255         /*
256          * First look for a probe which was registered using an address with
257          * bit 0 set, this is the usual situation for pointers to Thumb code.
258          * If not found, fallback to looking for one with bit 0 clear.
259          */
260         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
261         if (!p)
262                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
263
264 #else /* ! CONFIG_THUMB2_KERNEL */
265         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
266 #endif
267
268         if (p) {
269                 if (cur) {
270                         /* Kprobe is pending, so we're recursing. */
271                         switch (kcb->kprobe_status) {
272                         case KPROBE_HIT_ACTIVE:
273                         case KPROBE_HIT_SSDONE:
274                                 /* A pre- or post-handler probe got us here. */
275                                 kprobes_inc_nmissed_count(p);
276                                 save_previous_kprobe(kcb);
277                                 set_current_kprobe(p);
278                                 kcb->kprobe_status = KPROBE_REENTER;
279                                 singlestep(p, regs, kcb);
280                                 restore_previous_kprobe(kcb);
281                                 break;
282                         default:
283                                 /* impossible cases */
284                                 BUG();
285                         }
286                 } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
287                         /* Probe hit and conditional execution check ok. */
288                         set_current_kprobe(p);
289                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
290
291                         /*
292                          * If we have no pre-handler or it returned 0, we
293                          * continue with normal processing.  If we have a
294                          * pre-handler and it returned non-zero, it prepped
295                          * for calling the break_handler below on re-entry,
296                          * so get out doing nothing more here.
297                          */
298                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
299                                 kcb->kprobe_status = KPROBE_HIT_SS;
300                                 singlestep(p, regs, kcb);
301                                 if (p->post_handler) {
302                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
303                                         p->post_handler(p, regs, 0);
304                                 }
305                                 reset_current_kprobe();
306                         }
307                 } else {
308                         /*
309                          * Probe hit but conditional execution check failed,
310                          * so just skip the instruction and continue as if
311                          * nothing had happened.
312                          */
313                         singlestep_skip(p, regs);
314                 }
315         } else if (cur) {
316                 /* We probably hit a jprobe.  Call its break handler. */
317                 if (cur->break_handler && cur->break_handler(cur, regs)) {
318                         kcb->kprobe_status = KPROBE_HIT_SS;
319                         singlestep(cur, regs, kcb);
320                         if (cur->post_handler) {
321                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
322                                 cur->post_handler(cur, regs, 0);
323                         }
324                 }
325                 reset_current_kprobe();
326         } else {
327                 /*
328                  * The probe was removed and a race is in progress.
329                  * There is nothing we can do about it.  Let's restart
330                  * the instruction.  By the time we can restart, the
331                  * real instruction will be there.
332                  */
333         }
334 }
335
336 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
337 {
338         unsigned long flags;
339         local_irq_save(flags);
340         kprobe_handler(regs);
341         local_irq_restore(flags);
342         return 0;
343 }
344
345 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
346 {
347         struct kprobe *cur = kprobe_running();
348         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
349
350         switch (kcb->kprobe_status) {
351         case KPROBE_HIT_SS:
352         case KPROBE_REENTER:
353                 /*
354                  * We are here because the instruction being single
355                  * stepped caused a page fault. We reset the current
356                  * kprobe and the PC to point back to the probe address
357                  * and allow the page fault handler to continue as a
358                  * normal page fault.
359                  */
360                 regs->ARM_pc = (long)cur->addr;
361                 if (kcb->kprobe_status == KPROBE_REENTER) {
362                         restore_previous_kprobe(kcb);
363                 } else {
364                         reset_current_kprobe();
365                 }
366                 break;
367
368         case KPROBE_HIT_ACTIVE:
369         case KPROBE_HIT_SSDONE:
370                 /*
371                  * We increment the nmissed count for accounting,
372                  * we can also use npre/npostfault count for accounting
373                  * these specific fault cases.
374                  */
375                 kprobes_inc_nmissed_count(cur);
376
377                 /*
378                  * We come here because instructions in the pre/post
379                  * handler caused the page_fault, this could happen
380                  * if handler tries to access user space by
381                  * copy_from_user(), get_user() etc. Let the
382                  * user-specified handler try to fix it.
383                  */
384                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
385                         return 1;
386                 break;
387
388         default:
389                 break;
390         }
391
392         return 0;
393 }
394
395 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
396                                        unsigned long val, void *data)
397 {
398         /*
399          * notify_die() is currently never called on ARM,
400          * so this callback is currently empty.
401          */
402         return NOTIFY_DONE;
403 }
404
405 /*
406  * When a retprobed function returns, trampoline_handler() is called,
407  * calling the kretprobe's handler. We construct a struct pt_regs to
408  * give a view of registers r0-r11 to the user return-handler.  This is
409  * not a complete pt_regs structure, but that should be plenty sufficient
410  * for kretprobe handlers which should normally be interested in r0 only
411  * anyway.
412  */
413 void __naked __kprobes kretprobe_trampoline(void)
414 {
415         __asm__ __volatile__ (
416                 "stmdb  sp!, {r0 - r11}         \n\t"
417                 "mov    r0, sp                  \n\t"
418                 "bl     trampoline_handler      \n\t"
419                 "mov    lr, r0                  \n\t"
420                 "ldmia  sp!, {r0 - r11}         \n\t"
421 #ifdef CONFIG_THUMB2_KERNEL
422                 "bx     lr                      \n\t"
423 #else
424                 "mov    pc, lr                  \n\t"
425 #endif
426                 : : : "memory");
427 }
428
429 /* Called from kretprobe_trampoline */
430 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
431 {
432         struct kretprobe_instance *ri = NULL;
433         struct hlist_head *head, empty_rp;
434         struct hlist_node *tmp;
435         unsigned long flags, orig_ret_address = 0;
436         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
437
438         INIT_HLIST_HEAD(&empty_rp);
439         kretprobe_hash_lock(current, &head, &flags);
440
441         /*
442          * It is possible to have multiple instances associated with a given
443          * task either because multiple functions in the call path have
444          * a return probe installed on them, and/or more than one return
445          * probe was registered for a target function.
446          *
447          * We can handle this because:
448          *     - instances are always inserted at the head of the list
449          *     - when multiple return probes are registered for the same
450          *       function, the first instance's ret_addr will point to the
451          *       real return address, and all the rest will point to
452          *       kretprobe_trampoline
453          */
454         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
455                 if (ri->task != current)
456                         /* another task is sharing our hash bucket */
457                         continue;
458
459                 if (ri->rp && ri->rp->handler) {
460                         __this_cpu_write(current_kprobe, &ri->rp->kp);
461                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
462                         ri->rp->handler(ri, regs);
463                         __this_cpu_write(current_kprobe, NULL);
464                 }
465
466                 orig_ret_address = (unsigned long)ri->ret_addr;
467                 recycle_rp_inst(ri, &empty_rp);
468
469                 if (orig_ret_address != trampoline_address)
470                         /*
471                          * This is the real return address. Any other
472                          * instances associated with this task are for
473                          * other calls deeper on the call stack
474                          */
475                         break;
476         }
477
478         kretprobe_assert(ri, orig_ret_address, trampoline_address);
479         kretprobe_hash_unlock(current, &flags);
480
481         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
482                 hlist_del(&ri->hlist);
483                 kfree(ri);
484         }
485
486         return (void *)orig_ret_address;
487 }
488
489 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
490                                       struct pt_regs *regs)
491 {
492         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
493
494         /* Replace the return addr with trampoline addr. */
495         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
496 }
497
498 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
499 {
500         struct jprobe *jp = container_of(p, struct jprobe, kp);
501         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
502         long sp_addr = regs->ARM_sp;
503         long cpsr;
504
505         kcb->jprobe_saved_regs = *regs;
506         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
507         regs->ARM_pc = (long)jp->entry;
508
509         cpsr = regs->ARM_cpsr | PSR_I_BIT;
510 #ifdef CONFIG_THUMB2_KERNEL
511         /* Set correct Thumb state in cpsr */
512         if (regs->ARM_pc & 1)
513                 cpsr |= PSR_T_BIT;
514         else
515                 cpsr &= ~PSR_T_BIT;
516 #endif
517         regs->ARM_cpsr = cpsr;
518
519         preempt_disable();
520         return 1;
521 }
522
523 void __kprobes jprobe_return(void)
524 {
525         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
526
527         __asm__ __volatile__ (
528                 /*
529                  * Setup an empty pt_regs. Fill SP and PC fields as
530                  * they're needed by longjmp_break_handler.
531                  *
532                  * We allocate some slack between the original SP and start of
533                  * our fabricated regs. To be precise we want to have worst case
534                  * covered which is STMFD with all 16 regs so we allocate 2 *
535                  * sizeof(struct_pt_regs)).
536                  *
537                  * This is to prevent any simulated instruction from writing
538                  * over the regs when they are accessing the stack.
539                  */
540 #ifdef CONFIG_THUMB2_KERNEL
541                 "sub    r0, %0, %1              \n\t"
542                 "mov    sp, r0                  \n\t"
543 #else
544                 "sub    sp, %0, %1              \n\t"
545 #endif
546                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
547                 "str    %0, [sp, %2]            \n\t"
548                 "str    r0, [sp, %3]            \n\t"
549                 "mov    r0, sp                  \n\t"
550                 "bl     kprobe_handler          \n\t"
551
552                 /*
553                  * Return to the context saved by setjmp_pre_handler
554                  * and restored by longjmp_break_handler.
555                  */
556 #ifdef CONFIG_THUMB2_KERNEL
557                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
558                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
559                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
560                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
561                                                       /* rfe context */
562                 "ldmia  sp, {r0 - r12}          \n\t"
563                 "mov    sp, lr                  \n\t"
564                 "ldr    lr, [sp], #4            \n\t"
565                 "rfeia  sp!                     \n\t"
566 #else
567                 "ldr    r0, [sp, %4]            \n\t"
568                 "msr    cpsr_cxsf, r0           \n\t"
569                 "ldmia  sp, {r0 - pc}           \n\t"
570 #endif
571                 :
572                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
573                   "I" (sizeof(struct pt_regs) * 2),
574                   "J" (offsetof(struct pt_regs, ARM_sp)),
575                   "J" (offsetof(struct pt_regs, ARM_pc)),
576                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
577                   "J" (offsetof(struct pt_regs, ARM_lr))
578                 : "memory", "cc");
579 }
580
581 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
582 {
583         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
584         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
585         long orig_sp = regs->ARM_sp;
586         struct jprobe *jp = container_of(p, struct jprobe, kp);
587
588         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
589                 if (orig_sp != stack_addr) {
590                         struct pt_regs *saved_regs =
591                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
592                         printk("current sp %lx does not match saved sp %lx\n",
593                                orig_sp, stack_addr);
594                         printk("Saved registers for jprobe %p\n", jp);
595                         show_regs(saved_regs);
596                         printk("Current registers\n");
597                         show_regs(regs);
598                         BUG();
599                 }
600                 *regs = kcb->jprobe_saved_regs;
601                 memcpy((void *)stack_addr, kcb->jprobes_stack,
602                        MIN_STACK_SIZE(stack_addr));
603                 preempt_enable_no_resched();
604                 return 1;
605         }
606         return 0;
607 }
608
609 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
610 {
611         return 0;
612 }
613
614 #ifdef CONFIG_THUMB2_KERNEL
615
616 static struct undef_hook kprobes_thumb16_break_hook = {
617         .instr_mask     = 0xffff,
618         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
619         .cpsr_mask      = MODE_MASK,
620         .cpsr_val       = SVC_MODE,
621         .fn             = kprobe_trap_handler,
622 };
623
624 static struct undef_hook kprobes_thumb32_break_hook = {
625         .instr_mask     = 0xffffffff,
626         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
627         .cpsr_mask      = MODE_MASK,
628         .cpsr_val       = SVC_MODE,
629         .fn             = kprobe_trap_handler,
630 };
631
632 #else  /* !CONFIG_THUMB2_KERNEL */
633
634 static struct undef_hook kprobes_arm_break_hook = {
635         .instr_mask     = 0x0fffffff,
636         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
637         .cpsr_mask      = MODE_MASK,
638         .cpsr_val       = SVC_MODE,
639         .fn             = kprobe_trap_handler,
640 };
641
642 #endif /* !CONFIG_THUMB2_KERNEL */
643
644 int __init arch_init_kprobes()
645 {
646         arm_probes_decode_init();
647 #ifdef CONFIG_THUMB2_KERNEL
648         register_undef_hook(&kprobes_thumb16_break_hook);
649         register_undef_hook(&kprobes_thumb32_break_hook);
650 #else
651         register_undef_hook(&kprobes_arm_break_hook);
652 #endif
653         return 0;
654 }