]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm64/kernel/cpufeature.c
arm64: ensure __raw_read_system_reg() is self-consistent
[karo-tx-linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT        \
41                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46                                  COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
55 EXPORT_SYMBOL(cpu_hwcap_keys);
56
57 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
58         {                                               \
59                 .sign = SIGNED,                         \
60                 .visible = VISIBLE,                     \
61                 .strict = STRICT,                       \
62                 .type = TYPE,                           \
63                 .shift = SHIFT,                         \
64                 .width = WIDTH,                         \
65                 .safe_val = SAFE_VAL,                   \
66         }
67
68 /* Define a feature with unsigned values */
69 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
71
72 /* Define a feature with a signed value */
73 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
74         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
75
76 #define ARM64_FTR_END                                   \
77         {                                               \
78                 .width = 0,                             \
79         }
80
81 /* meta feature for alternatives */
82 static bool __maybe_unused
83 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
84
85
86 /*
87  * NOTE: Any changes to the visibility of features should be kept in
88  * sync with the documentation of the CPU feature register ABI.
89  */
90 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
91         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
92         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
93         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
94         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
95         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
96         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
97         ARM64_FTR_END,
98 };
99
100 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
101         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
102         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
103         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
104         /* Linux doesn't care about the EL3 */
105         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
106         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
107         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
108         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
109         ARM64_FTR_END,
110 };
111
112 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
113         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
114         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
115         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
116         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
117         /* Linux shouldn't care about secure memory */
118         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
119         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
121         /*
122          * Differing PARange is fine as long as all peripherals and memory are mapped
123          * within the minimum PARange of all CPUs
124          */
125         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
126         ARM64_FTR_END,
127 };
128
129 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
130         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
136         ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
140         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
144         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
145         ARM64_FTR_END,
146 };
147
148 static const struct arm64_ftr_bits ftr_ctr[] = {
149         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
150         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
151         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
152         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
153         /*
154          * Linux can handle differing I-cache policies. Userspace JITs will
155          * make use of *minLine.
156          * If we have differing I-cache policies, report it as the weakest - AIVIVT.
157          */
158         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT),     /* L1Ip */
159         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
160         ARM64_FTR_END,
161 };
162
163 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
164         .name           = "SYS_CTR_EL0",
165         .ftr_bits       = ftr_ctr
166 };
167
168 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
169         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),        /* InnerShr */
170         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),    /* FCSE */
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),    /* TCM */
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* ShareLvl */
174         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
175         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),     /* PMSA */
176         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),     /* VMSA */
177         ARM64_FTR_END,
178 };
179
180 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
181         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
182         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
186         /*
187          * We can instantiate multiple PMU instances with different levels
188          * of support.
189          */
190         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
193         ARM64_FTR_END,
194 };
195
196 static const struct arm64_ftr_bits ftr_mvfr2[] = {
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* FPMisc */
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* SIMDMisc */
199         ARM64_FTR_END,
200 };
201
202 static const struct arm64_ftr_bits ftr_dczid[] = {
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
204         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
205         ARM64_FTR_END,
206 };
207
208
209 static const struct arm64_ftr_bits ftr_id_isar5[] = {
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
216         ARM64_FTR_END,
217 };
218
219 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* ac2 */
221         ARM64_FTR_END,
222 };
223
224 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* State3 */
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),             /* State2 */
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* State1 */
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* State0 */
229         ARM64_FTR_END,
230 };
231
232 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
234         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
235         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
236         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
241         ARM64_FTR_END,
242 };
243
244 /*
245  * Common ftr bits for a 32bit register with all hidden, strict
246  * attributes, with 4bit feature fields and a default safe value of
247  * 0. Covers the following 32bit registers:
248  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
249  */
250 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
255         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
256         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
257         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
259         ARM64_FTR_END,
260 };
261
262 /* Table for a single 32bit feature value */
263 static const struct arm64_ftr_bits ftr_single32[] = {
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
265         ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_raz[] = {
269         ARM64_FTR_END,
270 };
271
272 #define ARM64_FTR_REG(id, table) {              \
273         .sys_id = id,                           \
274         .reg =  &(struct arm64_ftr_reg){        \
275                 .name = #id,                    \
276                 .ftr_bits = &((table)[0]),      \
277         }}
278
279 static const struct __ftr_reg_entry {
280         u32                     sys_id;
281         struct arm64_ftr_reg    *reg;
282 } arm64_ftr_regs[] = {
283
284         /* Op1 = 0, CRn = 0, CRm = 1 */
285         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
286         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
287         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
288         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
289         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
290         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
291         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
292
293         /* Op1 = 0, CRn = 0, CRm = 2 */
294         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
295         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
296         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
297         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
298         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
299         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
300         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
301
302         /* Op1 = 0, CRn = 0, CRm = 3 */
303         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
304         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
305         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
306
307         /* Op1 = 0, CRn = 0, CRm = 4 */
308         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
309         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
310
311         /* Op1 = 0, CRn = 0, CRm = 5 */
312         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
313         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
314
315         /* Op1 = 0, CRn = 0, CRm = 6 */
316         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
317         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_raz),
318
319         /* Op1 = 0, CRn = 0, CRm = 7 */
320         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
321         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
322         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
323
324         /* Op1 = 3, CRn = 0, CRm = 0 */
325         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
326         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
327
328         /* Op1 = 3, CRn = 14, CRm = 0 */
329         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
330 };
331
332 static int search_cmp_ftr_reg(const void *id, const void *regp)
333 {
334         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
335 }
336
337 /*
338  * get_arm64_ftr_reg - Lookup a feature register entry using its
339  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
340  * ascending order of sys_id , we use binary search to find a matching
341  * entry.
342  *
343  * returns - Upon success,  matching ftr_reg entry for id.
344  *         - NULL on failure. It is upto the caller to decide
345  *           the impact of a failure.
346  */
347 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
348 {
349         const struct __ftr_reg_entry *ret;
350
351         ret = bsearch((const void *)(unsigned long)sys_id,
352                         arm64_ftr_regs,
353                         ARRAY_SIZE(arm64_ftr_regs),
354                         sizeof(arm64_ftr_regs[0]),
355                         search_cmp_ftr_reg);
356         if (ret)
357                 return ret->reg;
358         return NULL;
359 }
360
361 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
362                                s64 ftr_val)
363 {
364         u64 mask = arm64_ftr_mask(ftrp);
365
366         reg &= ~mask;
367         reg |= (ftr_val << ftrp->shift) & mask;
368         return reg;
369 }
370
371 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
372                                 s64 cur)
373 {
374         s64 ret = 0;
375
376         switch (ftrp->type) {
377         case FTR_EXACT:
378                 ret = ftrp->safe_val;
379                 break;
380         case FTR_LOWER_SAFE:
381                 ret = new < cur ? new : cur;
382                 break;
383         case FTR_HIGHER_SAFE:
384                 ret = new > cur ? new : cur;
385                 break;
386         default:
387                 BUG();
388         }
389
390         return ret;
391 }
392
393 static void __init sort_ftr_regs(void)
394 {
395         int i;
396
397         /* Check that the array is sorted so that we can do the binary search */
398         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
399                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
400 }
401
402 /*
403  * Initialise the CPU feature register from Boot CPU values.
404  * Also initiliases the strict_mask for the register.
405  * Any bits that are not covered by an arm64_ftr_bits entry are considered
406  * RES0 for the system-wide value, and must strictly match.
407  */
408 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
409 {
410         u64 val = 0;
411         u64 strict_mask = ~0x0ULL;
412         u64 user_mask = 0;
413         u64 valid_mask = 0;
414
415         const struct arm64_ftr_bits *ftrp;
416         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
417
418         BUG_ON(!reg);
419
420         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
421                 u64 ftr_mask = arm64_ftr_mask(ftrp);
422                 s64 ftr_new = arm64_ftr_value(ftrp, new);
423
424                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
425
426                 valid_mask |= ftr_mask;
427                 if (!ftrp->strict)
428                         strict_mask &= ~ftr_mask;
429                 if (ftrp->visible)
430                         user_mask |= ftr_mask;
431                 else
432                         reg->user_val = arm64_ftr_set_value(ftrp,
433                                                             reg->user_val,
434                                                             ftrp->safe_val);
435         }
436
437         val &= valid_mask;
438
439         reg->sys_val = val;
440         reg->strict_mask = strict_mask;
441         reg->user_mask = user_mask;
442 }
443
444 void __init init_cpu_features(struct cpuinfo_arm64 *info)
445 {
446         /* Before we start using the tables, make sure it is sorted */
447         sort_ftr_regs();
448
449         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
450         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
451         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
452         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
453         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
454         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
455         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
456         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
457         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
458         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
459         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
460         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
461
462         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
463                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
464                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
465                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
466                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
467                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
468                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
469                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
470                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
471                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
472                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
473                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
474                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
475                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
476                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
477                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
478                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
479         }
480
481 }
482
483 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
484 {
485         const struct arm64_ftr_bits *ftrp;
486
487         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
488                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
489                 s64 ftr_new = arm64_ftr_value(ftrp, new);
490
491                 if (ftr_cur == ftr_new)
492                         continue;
493                 /* Find a safe value */
494                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
495                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
496         }
497
498 }
499
500 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
501 {
502         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
503
504         BUG_ON(!regp);
505         update_cpu_ftr_reg(regp, val);
506         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
507                 return 0;
508         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
509                         regp->name, boot, cpu, val);
510         return 1;
511 }
512
513 /*
514  * Update system wide CPU feature registers with the values from a
515  * non-boot CPU. Also performs SANITY checks to make sure that there
516  * aren't any insane variations from that of the boot CPU.
517  */
518 void update_cpu_features(int cpu,
519                          struct cpuinfo_arm64 *info,
520                          struct cpuinfo_arm64 *boot)
521 {
522         int taint = 0;
523
524         /*
525          * The kernel can handle differing I-cache policies, but otherwise
526          * caches should look identical. Userspace JITs will make use of
527          * *minLine.
528          */
529         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
530                                       info->reg_ctr, boot->reg_ctr);
531
532         /*
533          * Userspace may perform DC ZVA instructions. Mismatched block sizes
534          * could result in too much or too little memory being zeroed if a
535          * process is preempted and migrated between CPUs.
536          */
537         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
538                                       info->reg_dczid, boot->reg_dczid);
539
540         /* If different, timekeeping will be broken (especially with KVM) */
541         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
542                                       info->reg_cntfrq, boot->reg_cntfrq);
543
544         /*
545          * The kernel uses self-hosted debug features and expects CPUs to
546          * support identical debug features. We presently need CTX_CMPs, WRPs,
547          * and BRPs to be identical.
548          * ID_AA64DFR1 is currently RES0.
549          */
550         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
551                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
552         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
553                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
554         /*
555          * Even in big.LITTLE, processors should be identical instruction-set
556          * wise.
557          */
558         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
559                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
560         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
561                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
562
563         /*
564          * Differing PARange support is fine as long as all peripherals and
565          * memory are mapped within the minimum PARange of all CPUs.
566          * Linux should not care about secure memory.
567          */
568         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
569                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
570         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
571                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
572         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
573                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
574
575         /*
576          * EL3 is not our concern.
577          * ID_AA64PFR1 is currently RES0.
578          */
579         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
580                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
581         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
582                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
583
584         /*
585          * If we have AArch32, we care about 32-bit features for compat.
586          * If the system doesn't support AArch32, don't update them.
587          */
588         if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
589                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
590
591                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
592                                         info->reg_id_dfr0, boot->reg_id_dfr0);
593                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
594                                         info->reg_id_isar0, boot->reg_id_isar0);
595                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
596                                         info->reg_id_isar1, boot->reg_id_isar1);
597                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
598                                         info->reg_id_isar2, boot->reg_id_isar2);
599                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
600                                         info->reg_id_isar3, boot->reg_id_isar3);
601                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
602                                         info->reg_id_isar4, boot->reg_id_isar4);
603                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
604                                         info->reg_id_isar5, boot->reg_id_isar5);
605
606                 /*
607                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
608                  * ACTLR formats could differ across CPUs and therefore would have to
609                  * be trapped for virtualization anyway.
610                  */
611                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
612                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
613                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
614                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
615                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
616                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
617                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
618                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
619                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
620                                         info->reg_id_pfr0, boot->reg_id_pfr0);
621                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
622                                         info->reg_id_pfr1, boot->reg_id_pfr1);
623                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
624                                         info->reg_mvfr0, boot->reg_mvfr0);
625                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
626                                         info->reg_mvfr1, boot->reg_mvfr1);
627                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
628                                         info->reg_mvfr2, boot->reg_mvfr2);
629         }
630
631         /*
632          * Mismatched CPU features are a recipe for disaster. Don't even
633          * pretend to support them.
634          */
635         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
636                         "Unsupported CPU feature variation.\n");
637 }
638
639 u64 read_system_reg(u32 id)
640 {
641         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
642
643         /* We shouldn't get a request for an unsupported register */
644         BUG_ON(!regp);
645         return regp->sys_val;
646 }
647
648 #define read_sysreg_case(r)     \
649         case r:         return read_sysreg_s(r)
650
651 /*
652  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
653  * Read the system register on the current CPU
654  */
655 static u64 __raw_read_system_reg(u32 sys_id)
656 {
657         switch (sys_id) {
658         read_sysreg_case(SYS_ID_PFR0_EL1);
659         read_sysreg_case(SYS_ID_PFR1_EL1);
660         read_sysreg_case(SYS_ID_DFR0_EL1);
661         read_sysreg_case(SYS_ID_MMFR0_EL1);
662         read_sysreg_case(SYS_ID_MMFR1_EL1);
663         read_sysreg_case(SYS_ID_MMFR2_EL1);
664         read_sysreg_case(SYS_ID_MMFR3_EL1);
665         read_sysreg_case(SYS_ID_ISAR0_EL1);
666         read_sysreg_case(SYS_ID_ISAR1_EL1);
667         read_sysreg_case(SYS_ID_ISAR2_EL1);
668         read_sysreg_case(SYS_ID_ISAR3_EL1);
669         read_sysreg_case(SYS_ID_ISAR4_EL1);
670         read_sysreg_case(SYS_ID_ISAR5_EL1);
671         read_sysreg_case(SYS_MVFR0_EL1);
672         read_sysreg_case(SYS_MVFR1_EL1);
673         read_sysreg_case(SYS_MVFR2_EL1);
674
675         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
676         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
677         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
678         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
679         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
680         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
681         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
682         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
683         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
684
685         read_sysreg_case(SYS_CNTFRQ_EL0);
686         read_sysreg_case(SYS_CTR_EL0);
687         read_sysreg_case(SYS_DCZID_EL0);
688
689         default:
690                 BUG();
691                 return 0;
692         }
693 }
694
695 #include <linux/irqchip/arm-gic-v3.h>
696
697 static bool
698 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
699 {
700         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
701
702         return val >= entry->min_field_value;
703 }
704
705 static bool
706 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
707 {
708         u64 val;
709
710         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
711         if (scope == SCOPE_SYSTEM)
712                 val = read_system_reg(entry->sys_reg);
713         else
714                 val = __raw_read_system_reg(entry->sys_reg);
715
716         return feature_matches(val, entry);
717 }
718
719 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
720 {
721         bool has_sre;
722
723         if (!has_cpuid_feature(entry, scope))
724                 return false;
725
726         has_sre = gic_enable_sre();
727         if (!has_sre)
728                 pr_warn_once("%s present but disabled by higher exception level\n",
729                              entry->desc);
730
731         return has_sre;
732 }
733
734 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
735 {
736         u32 midr = read_cpuid_id();
737
738         /* Cavium ThunderX pass 1.x and 2.x */
739         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
740                 MIDR_CPU_VAR_REV(0, 0),
741                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
742 }
743
744 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
745 {
746         return is_kernel_in_hyp_mode();
747 }
748
749 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
750                            int __unused)
751 {
752         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
753
754         /*
755          * Activate the lower HYP offset only if:
756          * - the idmap doesn't clash with it,
757          * - the kernel is not running at EL2.
758          */
759         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
760 }
761
762 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
763 {
764         u64 pfr0 = read_system_reg(SYS_ID_AA64PFR0_EL1);
765
766         return cpuid_feature_extract_signed_field(pfr0,
767                                         ID_AA64PFR0_FP_SHIFT) < 0;
768 }
769
770 static const struct arm64_cpu_capabilities arm64_features[] = {
771         {
772                 .desc = "GIC system register CPU interface",
773                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
774                 .def_scope = SCOPE_SYSTEM,
775                 .matches = has_useable_gicv3_cpuif,
776                 .sys_reg = SYS_ID_AA64PFR0_EL1,
777                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
778                 .sign = FTR_UNSIGNED,
779                 .min_field_value = 1,
780         },
781 #ifdef CONFIG_ARM64_PAN
782         {
783                 .desc = "Privileged Access Never",
784                 .capability = ARM64_HAS_PAN,
785                 .def_scope = SCOPE_SYSTEM,
786                 .matches = has_cpuid_feature,
787                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
788                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
789                 .sign = FTR_UNSIGNED,
790                 .min_field_value = 1,
791                 .enable = cpu_enable_pan,
792         },
793 #endif /* CONFIG_ARM64_PAN */
794 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
795         {
796                 .desc = "LSE atomic instructions",
797                 .capability = ARM64_HAS_LSE_ATOMICS,
798                 .def_scope = SCOPE_SYSTEM,
799                 .matches = has_cpuid_feature,
800                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
801                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
802                 .sign = FTR_UNSIGNED,
803                 .min_field_value = 2,
804         },
805 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
806         {
807                 .desc = "Software prefetching using PRFM",
808                 .capability = ARM64_HAS_NO_HW_PREFETCH,
809                 .def_scope = SCOPE_SYSTEM,
810                 .matches = has_no_hw_prefetch,
811         },
812 #ifdef CONFIG_ARM64_UAO
813         {
814                 .desc = "User Access Override",
815                 .capability = ARM64_HAS_UAO,
816                 .def_scope = SCOPE_SYSTEM,
817                 .matches = has_cpuid_feature,
818                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
819                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
820                 .min_field_value = 1,
821                 /*
822                  * We rely on stop_machine() calling uao_thread_switch() to set
823                  * UAO immediately after patching.
824                  */
825         },
826 #endif /* CONFIG_ARM64_UAO */
827 #ifdef CONFIG_ARM64_PAN
828         {
829                 .capability = ARM64_ALT_PAN_NOT_UAO,
830                 .def_scope = SCOPE_SYSTEM,
831                 .matches = cpufeature_pan_not_uao,
832         },
833 #endif /* CONFIG_ARM64_PAN */
834         {
835                 .desc = "Virtualization Host Extensions",
836                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
837                 .def_scope = SCOPE_SYSTEM,
838                 .matches = runs_at_el2,
839         },
840         {
841                 .desc = "32-bit EL0 Support",
842                 .capability = ARM64_HAS_32BIT_EL0,
843                 .def_scope = SCOPE_SYSTEM,
844                 .matches = has_cpuid_feature,
845                 .sys_reg = SYS_ID_AA64PFR0_EL1,
846                 .sign = FTR_UNSIGNED,
847                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
848                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
849         },
850         {
851                 .desc = "Reduced HYP mapping offset",
852                 .capability = ARM64_HYP_OFFSET_LOW,
853                 .def_scope = SCOPE_SYSTEM,
854                 .matches = hyp_offset_low,
855         },
856         {
857                 /* FP/SIMD is not implemented */
858                 .capability = ARM64_HAS_NO_FPSIMD,
859                 .def_scope = SCOPE_SYSTEM,
860                 .min_field_value = 0,
861                 .matches = has_no_fpsimd,
862         },
863         {},
864 };
865
866 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
867         {                                                       \
868                 .desc = #cap,                                   \
869                 .def_scope = SCOPE_SYSTEM,                      \
870                 .matches = has_cpuid_feature,                   \
871                 .sys_reg = reg,                                 \
872                 .field_pos = field,                             \
873                 .sign = s,                                      \
874                 .min_field_value = min_value,                   \
875                 .hwcap_type = type,                             \
876                 .hwcap = cap,                                   \
877         }
878
879 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
880         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
881         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
882         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
883         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
884         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
885         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
886         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
887         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
888         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
889         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
890         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
891         {},
892 };
893
894 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
895 #ifdef CONFIG_COMPAT
896         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
897         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
898         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
899         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
900         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
901 #endif
902         {},
903 };
904
905 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
906 {
907         switch (cap->hwcap_type) {
908         case CAP_HWCAP:
909                 elf_hwcap |= cap->hwcap;
910                 break;
911 #ifdef CONFIG_COMPAT
912         case CAP_COMPAT_HWCAP:
913                 compat_elf_hwcap |= (u32)cap->hwcap;
914                 break;
915         case CAP_COMPAT_HWCAP2:
916                 compat_elf_hwcap2 |= (u32)cap->hwcap;
917                 break;
918 #endif
919         default:
920                 WARN_ON(1);
921                 break;
922         }
923 }
924
925 /* Check if we have a particular HWCAP enabled */
926 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
927 {
928         bool rc;
929
930         switch (cap->hwcap_type) {
931         case CAP_HWCAP:
932                 rc = (elf_hwcap & cap->hwcap) != 0;
933                 break;
934 #ifdef CONFIG_COMPAT
935         case CAP_COMPAT_HWCAP:
936                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
937                 break;
938         case CAP_COMPAT_HWCAP2:
939                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
940                 break;
941 #endif
942         default:
943                 WARN_ON(1);
944                 rc = false;
945         }
946
947         return rc;
948 }
949
950 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
951 {
952         /* We support emulation of accesses to CPU ID feature registers */
953         elf_hwcap |= HWCAP_CPUID;
954         for (; hwcaps->matches; hwcaps++)
955                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
956                         cap_set_elf_hwcap(hwcaps);
957 }
958
959 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
960                             const char *info)
961 {
962         for (; caps->matches; caps++) {
963                 if (!caps->matches(caps, caps->def_scope))
964                         continue;
965
966                 if (!cpus_have_cap(caps->capability) && caps->desc)
967                         pr_info("%s %s\n", info, caps->desc);
968                 cpus_set_cap(caps->capability);
969         }
970 }
971
972 /*
973  * Run through the enabled capabilities and enable() it on all active
974  * CPUs
975  */
976 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
977 {
978         for (; caps->matches; caps++)
979                 if (caps->enable && cpus_have_cap(caps->capability))
980                         /*
981                          * Use stop_machine() as it schedules the work allowing
982                          * us to modify PSTATE, instead of on_each_cpu() which
983                          * uses an IPI, giving us a PSTATE that disappears when
984                          * we return.
985                          */
986                         stop_machine(caps->enable, NULL, cpu_online_mask);
987 }
988
989 /*
990  * Flag to indicate if we have computed the system wide
991  * capabilities based on the boot time active CPUs. This
992  * will be used to determine if a new booting CPU should
993  * go through the verification process to make sure that it
994  * supports the system capabilities, without using a hotplug
995  * notifier.
996  */
997 static bool sys_caps_initialised;
998
999 static inline void set_sys_caps_initialised(void)
1000 {
1001         sys_caps_initialised = true;
1002 }
1003
1004 /*
1005  * Check for CPU features that are used in early boot
1006  * based on the Boot CPU value.
1007  */
1008 static void check_early_cpu_features(void)
1009 {
1010         verify_cpu_run_el();
1011         verify_cpu_asid_bits();
1012 }
1013
1014 static void
1015 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1016 {
1017
1018         for (; caps->matches; caps++)
1019                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1020                         pr_crit("CPU%d: missing HWCAP: %s\n",
1021                                         smp_processor_id(), caps->desc);
1022                         cpu_die_early();
1023                 }
1024 }
1025
1026 static void
1027 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1028 {
1029         for (; caps->matches; caps++) {
1030                 if (!cpus_have_cap(caps->capability))
1031                         continue;
1032                 /*
1033                  * If the new CPU misses an advertised feature, we cannot proceed
1034                  * further, park the cpu.
1035                  */
1036                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1037                         pr_crit("CPU%d: missing feature: %s\n",
1038                                         smp_processor_id(), caps->desc);
1039                         cpu_die_early();
1040                 }
1041                 if (caps->enable)
1042                         caps->enable(NULL);
1043         }
1044 }
1045
1046 /*
1047  * Run through the enabled system capabilities and enable() it on this CPU.
1048  * The capabilities were decided based on the available CPUs at the boot time.
1049  * Any new CPU should match the system wide status of the capability. If the
1050  * new CPU doesn't have a capability which the system now has enabled, we
1051  * cannot do anything to fix it up and could cause unexpected failures. So
1052  * we park the CPU.
1053  */
1054 static void verify_local_cpu_capabilities(void)
1055 {
1056         verify_local_cpu_errata_workarounds();
1057         verify_local_cpu_features(arm64_features);
1058         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1059         if (system_supports_32bit_el0())
1060                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1061 }
1062
1063 void check_local_cpu_capabilities(void)
1064 {
1065         /*
1066          * All secondary CPUs should conform to the early CPU features
1067          * in use by the kernel based on boot CPU.
1068          */
1069         check_early_cpu_features();
1070
1071         /*
1072          * If we haven't finalised the system capabilities, this CPU gets
1073          * a chance to update the errata work arounds.
1074          * Otherwise, this CPU should verify that it has all the system
1075          * advertised capabilities.
1076          */
1077         if (!sys_caps_initialised)
1078                 update_cpu_errata_workarounds();
1079         else
1080                 verify_local_cpu_capabilities();
1081 }
1082
1083 static void __init setup_feature_capabilities(void)
1084 {
1085         update_cpu_capabilities(arm64_features, "detected feature:");
1086         enable_cpu_capabilities(arm64_features);
1087 }
1088
1089 /*
1090  * Check if the current CPU has a given feature capability.
1091  * Should be called from non-preemptible context.
1092  */
1093 bool this_cpu_has_cap(unsigned int cap)
1094 {
1095         const struct arm64_cpu_capabilities *caps;
1096
1097         if (WARN_ON(preemptible()))
1098                 return false;
1099
1100         for (caps = arm64_features; caps->desc; caps++)
1101                 if (caps->capability == cap && caps->matches)
1102                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1103
1104         return false;
1105 }
1106
1107 void __init setup_cpu_features(void)
1108 {
1109         u32 cwg;
1110         int cls;
1111
1112         /* Set the CPU feature capabilies */
1113         setup_feature_capabilities();
1114         enable_errata_workarounds();
1115         setup_elf_hwcaps(arm64_elf_hwcaps);
1116
1117         if (system_supports_32bit_el0())
1118                 setup_elf_hwcaps(compat_elf_hwcaps);
1119
1120         /* Advertise that we have computed the system capabilities */
1121         set_sys_caps_initialised();
1122
1123         /*
1124          * Check for sane CTR_EL0.CWG value.
1125          */
1126         cwg = cache_type_cwg();
1127         cls = cache_line_size();
1128         if (!cwg)
1129                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1130                         cls);
1131         if (L1_CACHE_BYTES < cls)
1132                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1133                         L1_CACHE_BYTES, cls);
1134 }
1135
1136 static bool __maybe_unused
1137 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1138 {
1139         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1140 }
1141
1142 /*
1143  * We emulate only the following system register space.
1144  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1145  * See Table C5-6 System instruction encodings for System register accesses,
1146  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1147  */
1148 static inline bool __attribute_const__ is_emulated(u32 id)
1149 {
1150         return (sys_reg_Op0(id) == 0x3 &&
1151                 sys_reg_CRn(id) == 0x0 &&
1152                 sys_reg_Op1(id) == 0x0 &&
1153                 (sys_reg_CRm(id) == 0 ||
1154                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1155 }
1156
1157 /*
1158  * With CRm == 0, reg should be one of :
1159  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1160  */
1161 static inline int emulate_id_reg(u32 id, u64 *valp)
1162 {
1163         switch (id) {
1164         case SYS_MIDR_EL1:
1165                 *valp = read_cpuid_id();
1166                 break;
1167         case SYS_MPIDR_EL1:
1168                 *valp = SYS_MPIDR_SAFE_VAL;
1169                 break;
1170         case SYS_REVIDR_EL1:
1171                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1172                 *valp = 0;
1173                 break;
1174         default:
1175                 return -EINVAL;
1176         }
1177
1178         return 0;
1179 }
1180
1181 static int emulate_sys_reg(u32 id, u64 *valp)
1182 {
1183         struct arm64_ftr_reg *regp;
1184
1185         if (!is_emulated(id))
1186                 return -EINVAL;
1187
1188         if (sys_reg_CRm(id) == 0)
1189                 return emulate_id_reg(id, valp);
1190
1191         regp = get_arm64_ftr_reg(id);
1192         if (regp)
1193                 *valp = arm64_ftr_reg_user_value(regp);
1194         else
1195                 /*
1196                  * The untracked registers are either IMPLEMENTATION DEFINED
1197                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1198                  */
1199                 *valp = 0;
1200         return 0;
1201 }
1202
1203 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1204 {
1205         int rc;
1206         u32 sys_reg, dst;
1207         u64 val;
1208
1209         /*
1210          * sys_reg values are defined as used in mrs/msr instruction.
1211          * shift the imm value to get the encoding.
1212          */
1213         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1214         rc = emulate_sys_reg(sys_reg, &val);
1215         if (!rc) {
1216                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1217                 regs->user_regs.regs[dst] = val;
1218                 regs->pc += 4;
1219         }
1220
1221         return rc;
1222 }
1223
1224 static struct undef_hook mrs_hook = {
1225         .instr_mask = 0xfff00000,
1226         .instr_val  = 0xd5300000,
1227         .pstate_mask = COMPAT_PSR_MODE_MASK,
1228         .pstate_val = PSR_MODE_EL0t,
1229         .fn = emulate_mrs,
1230 };
1231
1232 static int __init enable_mrs_emulation(void)
1233 {
1234         register_undef_hook(&mrs_hook);
1235         return 0;
1236 }
1237
1238 late_initcall(enable_mrs_emulation);