]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm64/kernel/topology.c
Merge tag 'perf-urgent-for-mingo-4.11-20170317' of git://git.kernel.org/pub/scm/linux...
[karo-tx-linux.git] / arch / arm64 / kernel / topology.c
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13
14 #include <linux/acpi.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/cpufreq.h>
26
27 #include <asm/cpu.h>
28 #include <asm/cputype.h>
29 #include <asm/topology.h>
30
31 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
32 static DEFINE_MUTEX(cpu_scale_mutex);
33
34 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
35 {
36         return per_cpu(cpu_scale, cpu);
37 }
38
39 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
40 {
41         per_cpu(cpu_scale, cpu) = capacity;
42 }
43
44 static ssize_t cpu_capacity_show(struct device *dev,
45                                  struct device_attribute *attr,
46                                  char *buf)
47 {
48         struct cpu *cpu = container_of(dev, struct cpu, dev);
49
50         return sprintf(buf, "%lu\n",
51                         arch_scale_cpu_capacity(NULL, cpu->dev.id));
52 }
53
54 static ssize_t cpu_capacity_store(struct device *dev,
55                                   struct device_attribute *attr,
56                                   const char *buf,
57                                   size_t count)
58 {
59         struct cpu *cpu = container_of(dev, struct cpu, dev);
60         int this_cpu = cpu->dev.id, i;
61         unsigned long new_capacity;
62         ssize_t ret;
63
64         if (count) {
65                 ret = kstrtoul(buf, 0, &new_capacity);
66                 if (ret)
67                         return ret;
68                 if (new_capacity > SCHED_CAPACITY_SCALE)
69                         return -EINVAL;
70
71                 mutex_lock(&cpu_scale_mutex);
72                 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
73                         set_capacity_scale(i, new_capacity);
74                 mutex_unlock(&cpu_scale_mutex);
75         }
76
77         return count;
78 }
79
80 static DEVICE_ATTR_RW(cpu_capacity);
81
82 static int register_cpu_capacity_sysctl(void)
83 {
84         int i;
85         struct device *cpu;
86
87         for_each_possible_cpu(i) {
88                 cpu = get_cpu_device(i);
89                 if (!cpu) {
90                         pr_err("%s: too early to get CPU%d device!\n",
91                                __func__, i);
92                         continue;
93                 }
94                 device_create_file(cpu, &dev_attr_cpu_capacity);
95         }
96
97         return 0;
98 }
99 subsys_initcall(register_cpu_capacity_sysctl);
100
101 static u32 capacity_scale;
102 static u32 *raw_capacity;
103 static bool cap_parsing_failed;
104
105 static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
106 {
107         int ret;
108         u32 cpu_capacity;
109
110         if (cap_parsing_failed)
111                 return;
112
113         ret = of_property_read_u32(cpu_node,
114                                    "capacity-dmips-mhz",
115                                    &cpu_capacity);
116         if (!ret) {
117                 if (!raw_capacity) {
118                         raw_capacity = kcalloc(num_possible_cpus(),
119                                                sizeof(*raw_capacity),
120                                                GFP_KERNEL);
121                         if (!raw_capacity) {
122                                 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
123                                 cap_parsing_failed = true;
124                                 return;
125                         }
126                 }
127                 capacity_scale = max(cpu_capacity, capacity_scale);
128                 raw_capacity[cpu] = cpu_capacity;
129                 pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
130                         cpu_node->full_name, raw_capacity[cpu]);
131         } else {
132                 if (raw_capacity) {
133                         pr_err("cpu_capacity: missing %s raw capacity\n",
134                                 cpu_node->full_name);
135                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
136                 }
137                 cap_parsing_failed = true;
138                 kfree(raw_capacity);
139         }
140 }
141
142 static void normalize_cpu_capacity(void)
143 {
144         u64 capacity;
145         int cpu;
146
147         if (!raw_capacity || cap_parsing_failed)
148                 return;
149
150         pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
151         mutex_lock(&cpu_scale_mutex);
152         for_each_possible_cpu(cpu) {
153                 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
154                          cpu, raw_capacity[cpu]);
155                 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
156                         / capacity_scale;
157                 set_capacity_scale(cpu, capacity);
158                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
159                         cpu, arch_scale_cpu_capacity(NULL, cpu));
160         }
161         mutex_unlock(&cpu_scale_mutex);
162 }
163
164 #ifdef CONFIG_CPU_FREQ
165 static cpumask_var_t cpus_to_visit;
166 static bool cap_parsing_done;
167 static void parsing_done_workfn(struct work_struct *work);
168 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
169
170 static int
171 init_cpu_capacity_callback(struct notifier_block *nb,
172                            unsigned long val,
173                            void *data)
174 {
175         struct cpufreq_policy *policy = data;
176         int cpu;
177
178         if (cap_parsing_failed || cap_parsing_done)
179                 return 0;
180
181         switch (val) {
182         case CPUFREQ_NOTIFY:
183                 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
184                                 cpumask_pr_args(policy->related_cpus),
185                                 cpumask_pr_args(cpus_to_visit));
186                 cpumask_andnot(cpus_to_visit,
187                                cpus_to_visit,
188                                policy->related_cpus);
189                 for_each_cpu(cpu, policy->related_cpus) {
190                         raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
191                                             policy->cpuinfo.max_freq / 1000UL;
192                         capacity_scale = max(raw_capacity[cpu], capacity_scale);
193                 }
194                 if (cpumask_empty(cpus_to_visit)) {
195                         normalize_cpu_capacity();
196                         kfree(raw_capacity);
197                         pr_debug("cpu_capacity: parsing done\n");
198                         cap_parsing_done = true;
199                         schedule_work(&parsing_done_work);
200                 }
201         }
202         return 0;
203 }
204
205 static struct notifier_block init_cpu_capacity_notifier = {
206         .notifier_call = init_cpu_capacity_callback,
207 };
208
209 static int __init register_cpufreq_notifier(void)
210 {
211         /*
212          * on ACPI-based systems we need to use the default cpu capacity
213          * until we have the necessary code to parse the cpu capacity, so
214          * skip registering cpufreq notifier.
215          */
216         if (!acpi_disabled || cap_parsing_failed)
217                 return -EINVAL;
218
219         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
220                 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
221                 return -ENOMEM;
222         }
223         cpumask_copy(cpus_to_visit, cpu_possible_mask);
224
225         return cpufreq_register_notifier(&init_cpu_capacity_notifier,
226                                          CPUFREQ_POLICY_NOTIFIER);
227 }
228 core_initcall(register_cpufreq_notifier);
229
230 static void parsing_done_workfn(struct work_struct *work)
231 {
232         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
233                                          CPUFREQ_POLICY_NOTIFIER);
234 }
235
236 #else
237 static int __init free_raw_capacity(void)
238 {
239         kfree(raw_capacity);
240
241         return 0;
242 }
243 core_initcall(free_raw_capacity);
244 #endif
245
246 static int __init get_cpu_for_node(struct device_node *node)
247 {
248         struct device_node *cpu_node;
249         int cpu;
250
251         cpu_node = of_parse_phandle(node, "cpu", 0);
252         if (!cpu_node)
253                 return -1;
254
255         for_each_possible_cpu(cpu) {
256                 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
257                         parse_cpu_capacity(cpu_node, cpu);
258                         of_node_put(cpu_node);
259                         return cpu;
260                 }
261         }
262
263         pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
264
265         of_node_put(cpu_node);
266         return -1;
267 }
268
269 static int __init parse_core(struct device_node *core, int cluster_id,
270                              int core_id)
271 {
272         char name[10];
273         bool leaf = true;
274         int i = 0;
275         int cpu;
276         struct device_node *t;
277
278         do {
279                 snprintf(name, sizeof(name), "thread%d", i);
280                 t = of_get_child_by_name(core, name);
281                 if (t) {
282                         leaf = false;
283                         cpu = get_cpu_for_node(t);
284                         if (cpu >= 0) {
285                                 cpu_topology[cpu].cluster_id = cluster_id;
286                                 cpu_topology[cpu].core_id = core_id;
287                                 cpu_topology[cpu].thread_id = i;
288                         } else {
289                                 pr_err("%s: Can't get CPU for thread\n",
290                                        t->full_name);
291                                 of_node_put(t);
292                                 return -EINVAL;
293                         }
294                         of_node_put(t);
295                 }
296                 i++;
297         } while (t);
298
299         cpu = get_cpu_for_node(core);
300         if (cpu >= 0) {
301                 if (!leaf) {
302                         pr_err("%s: Core has both threads and CPU\n",
303                                core->full_name);
304                         return -EINVAL;
305                 }
306
307                 cpu_topology[cpu].cluster_id = cluster_id;
308                 cpu_topology[cpu].core_id = core_id;
309         } else if (leaf) {
310                 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
311                 return -EINVAL;
312         }
313
314         return 0;
315 }
316
317 static int __init parse_cluster(struct device_node *cluster, int depth)
318 {
319         char name[10];
320         bool leaf = true;
321         bool has_cores = false;
322         struct device_node *c;
323         static int cluster_id __initdata;
324         int core_id = 0;
325         int i, ret;
326
327         /*
328          * First check for child clusters; we currently ignore any
329          * information about the nesting of clusters and present the
330          * scheduler with a flat list of them.
331          */
332         i = 0;
333         do {
334                 snprintf(name, sizeof(name), "cluster%d", i);
335                 c = of_get_child_by_name(cluster, name);
336                 if (c) {
337                         leaf = false;
338                         ret = parse_cluster(c, depth + 1);
339                         of_node_put(c);
340                         if (ret != 0)
341                                 return ret;
342                 }
343                 i++;
344         } while (c);
345
346         /* Now check for cores */
347         i = 0;
348         do {
349                 snprintf(name, sizeof(name), "core%d", i);
350                 c = of_get_child_by_name(cluster, name);
351                 if (c) {
352                         has_cores = true;
353
354                         if (depth == 0) {
355                                 pr_err("%s: cpu-map children should be clusters\n",
356                                        c->full_name);
357                                 of_node_put(c);
358                                 return -EINVAL;
359                         }
360
361                         if (leaf) {
362                                 ret = parse_core(c, cluster_id, core_id++);
363                         } else {
364                                 pr_err("%s: Non-leaf cluster with core %s\n",
365                                        cluster->full_name, name);
366                                 ret = -EINVAL;
367                         }
368
369                         of_node_put(c);
370                         if (ret != 0)
371                                 return ret;
372                 }
373                 i++;
374         } while (c);
375
376         if (leaf && !has_cores)
377                 pr_warn("%s: empty cluster\n", cluster->full_name);
378
379         if (leaf)
380                 cluster_id++;
381
382         return 0;
383 }
384
385 static int __init parse_dt_topology(void)
386 {
387         struct device_node *cn, *map;
388         int ret = 0;
389         int cpu;
390
391         cn = of_find_node_by_path("/cpus");
392         if (!cn) {
393                 pr_err("No CPU information found in DT\n");
394                 return 0;
395         }
396
397         /*
398          * When topology is provided cpu-map is essentially a root
399          * cluster with restricted subnodes.
400          */
401         map = of_get_child_by_name(cn, "cpu-map");
402         if (!map) {
403                 cap_parsing_failed = true;
404                 goto out;
405         }
406
407         ret = parse_cluster(map, 0);
408         if (ret != 0)
409                 goto out_map;
410
411         normalize_cpu_capacity();
412
413         /*
414          * Check that all cores are in the topology; the SMP code will
415          * only mark cores described in the DT as possible.
416          */
417         for_each_possible_cpu(cpu)
418                 if (cpu_topology[cpu].cluster_id == -1)
419                         ret = -EINVAL;
420
421 out_map:
422         of_node_put(map);
423 out:
424         of_node_put(cn);
425         return ret;
426 }
427
428 /*
429  * cpu topology table
430  */
431 struct cpu_topology cpu_topology[NR_CPUS];
432 EXPORT_SYMBOL_GPL(cpu_topology);
433
434 const struct cpumask *cpu_coregroup_mask(int cpu)
435 {
436         return &cpu_topology[cpu].core_sibling;
437 }
438
439 static void update_siblings_masks(unsigned int cpuid)
440 {
441         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
442         int cpu;
443
444         /* update core and thread sibling masks */
445         for_each_possible_cpu(cpu) {
446                 cpu_topo = &cpu_topology[cpu];
447
448                 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
449                         continue;
450
451                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
452                 if (cpu != cpuid)
453                         cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
454
455                 if (cpuid_topo->core_id != cpu_topo->core_id)
456                         continue;
457
458                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
459                 if (cpu != cpuid)
460                         cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
461         }
462 }
463
464 void store_cpu_topology(unsigned int cpuid)
465 {
466         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
467         u64 mpidr;
468
469         if (cpuid_topo->cluster_id != -1)
470                 goto topology_populated;
471
472         mpidr = read_cpuid_mpidr();
473
474         /* Uniprocessor systems can rely on default topology values */
475         if (mpidr & MPIDR_UP_BITMASK)
476                 return;
477
478         /* Create cpu topology mapping based on MPIDR. */
479         if (mpidr & MPIDR_MT_BITMASK) {
480                 /* Multiprocessor system : Multi-threads per core */
481                 cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
482                 cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
483                 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
484                                          MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
485         } else {
486                 /* Multiprocessor system : Single-thread per core */
487                 cpuid_topo->thread_id  = -1;
488                 cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
489                 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
490                                          MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
491                                          MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
492         }
493
494         pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
495                  cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
496                  cpuid_topo->thread_id, mpidr);
497
498 topology_populated:
499         update_siblings_masks(cpuid);
500 }
501
502 static void __init reset_cpu_topology(void)
503 {
504         unsigned int cpu;
505
506         for_each_possible_cpu(cpu) {
507                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
508
509                 cpu_topo->thread_id = -1;
510                 cpu_topo->core_id = 0;
511                 cpu_topo->cluster_id = -1;
512
513                 cpumask_clear(&cpu_topo->core_sibling);
514                 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
515                 cpumask_clear(&cpu_topo->thread_sibling);
516                 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
517         }
518 }
519
520 void __init init_cpu_topology(void)
521 {
522         reset_cpu_topology();
523
524         /*
525          * Discard anything that was parsed if we hit an error so we
526          * don't use partial information.
527          */
528         if (of_have_populated_dt() && parse_dt_topology())
529                 reset_cpu_topology();
530 }