]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
scsi: qedi: Remove WARN_ON from clear task context.
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48  * All of this file is extremly similar to the ARM coproc.c, but the
49  * types are different. My gut feeling is that it should be pretty
50  * easy to merge, but that would be an ABI breakage -- again. VFP
51  * would also need to be abstracted.
52  *
53  * For AArch32, we only take care of what is being trapped. Anything
54  * that has to do with init and userspace access has to go via the
55  * 64bit interface.
56  */
57
58 static bool read_from_write_only(struct kvm_vcpu *vcpu,
59                                  const struct sys_reg_params *params)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
68 static u32 cache_levels;
69
70 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
71 #define CSSELR_MAX 12
72
73 /* Which cache CCSIDR represents depends on CSSELR value. */
74 static u32 get_ccsidr(u32 csselr)
75 {
76         u32 ccsidr;
77
78         /* Make sure noone else changes CSSELR during this! */
79         local_irq_disable();
80         write_sysreg(csselr, csselr_el1);
81         isb();
82         ccsidr = read_sysreg(ccsidr_el1);
83         local_irq_enable();
84
85         return ccsidr;
86 }
87
88 /*
89  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
90  */
91 static bool access_dcsw(struct kvm_vcpu *vcpu,
92                         struct sys_reg_params *p,
93                         const struct sys_reg_desc *r)
94 {
95         if (!p->is_write)
96                 return read_from_write_only(vcpu, p);
97
98         kvm_set_way_flush(vcpu);
99         return true;
100 }
101
102 /*
103  * Generic accessor for VM registers. Only called as long as HCR_TVM
104  * is set. If the guest enables the MMU, we stop trapping the VM
105  * sys_regs and leave it in complete control of the caches.
106  */
107 static bool access_vm_reg(struct kvm_vcpu *vcpu,
108                           struct sys_reg_params *p,
109                           const struct sys_reg_desc *r)
110 {
111         bool was_enabled = vcpu_has_cache_enabled(vcpu);
112
113         BUG_ON(!p->is_write);
114
115         if (!p->is_aarch32) {
116                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
117         } else {
118                 if (!p->is_32bit)
119                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
120                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
121         }
122
123         kvm_toggle_cache(vcpu, was_enabled);
124         return true;
125 }
126
127 /*
128  * Trap handler for the GICv3 SGI generation system register.
129  * Forward the request to the VGIC emulation.
130  * The cp15_64 code makes sure this automatically works
131  * for both AArch64 and AArch32 accesses.
132  */
133 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
134                            struct sys_reg_params *p,
135                            const struct sys_reg_desc *r)
136 {
137         if (!p->is_write)
138                 return read_from_write_only(vcpu, p);
139
140         vgic_v3_dispatch_sgi(vcpu, p->regval);
141
142         return true;
143 }
144
145 static bool access_gic_sre(struct kvm_vcpu *vcpu,
146                            struct sys_reg_params *p,
147                            const struct sys_reg_desc *r)
148 {
149         if (p->is_write)
150                 return ignore_write(vcpu, p);
151
152         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
153         return true;
154 }
155
156 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
157                         struct sys_reg_params *p,
158                         const struct sys_reg_desc *r)
159 {
160         if (p->is_write)
161                 return ignore_write(vcpu, p);
162         else
163                 return read_zero(vcpu, p);
164 }
165
166 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
167                            struct sys_reg_params *p,
168                            const struct sys_reg_desc *r)
169 {
170         if (p->is_write) {
171                 return ignore_write(vcpu, p);
172         } else {
173                 p->regval = (1 << 3);
174                 return true;
175         }
176 }
177
178 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
179                                    struct sys_reg_params *p,
180                                    const struct sys_reg_desc *r)
181 {
182         if (p->is_write) {
183                 return ignore_write(vcpu, p);
184         } else {
185                 p->regval = read_sysreg(dbgauthstatus_el1);
186                 return true;
187         }
188 }
189
190 /*
191  * We want to avoid world-switching all the DBG registers all the
192  * time:
193  * 
194  * - If we've touched any debug register, it is likely that we're
195  *   going to touch more of them. It then makes sense to disable the
196  *   traps and start doing the save/restore dance
197  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
198  *   then mandatory to save/restore the registers, as the guest
199  *   depends on them.
200  * 
201  * For this, we use a DIRTY bit, indicating the guest has modified the
202  * debug registers, used as follow:
203  *
204  * On guest entry:
205  * - If the dirty bit is set (because we're coming back from trapping),
206  *   disable the traps, save host registers, restore guest registers.
207  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
208  *   set the dirty bit, disable the traps, save host registers,
209  *   restore guest registers.
210  * - Otherwise, enable the traps
211  *
212  * On guest exit:
213  * - If the dirty bit is set, save guest registers, restore host
214  *   registers and clear the dirty bit. This ensure that the host can
215  *   now use the debug registers.
216  */
217 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
218                             struct sys_reg_params *p,
219                             const struct sys_reg_desc *r)
220 {
221         if (p->is_write) {
222                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
223                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
224         } else {
225                 p->regval = vcpu_sys_reg(vcpu, r->reg);
226         }
227
228         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
229
230         return true;
231 }
232
233 /*
234  * reg_to_dbg/dbg_to_reg
235  *
236  * A 32 bit write to a debug register leave top bits alone
237  * A 32 bit read from a debug register only returns the bottom bits
238  *
239  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
240  * hyp.S code switches between host and guest values in future.
241  */
242 static void reg_to_dbg(struct kvm_vcpu *vcpu,
243                        struct sys_reg_params *p,
244                        u64 *dbg_reg)
245 {
246         u64 val = p->regval;
247
248         if (p->is_32bit) {
249                 val &= 0xffffffffUL;
250                 val |= ((*dbg_reg >> 32) << 32);
251         }
252
253         *dbg_reg = val;
254         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
255 }
256
257 static void dbg_to_reg(struct kvm_vcpu *vcpu,
258                        struct sys_reg_params *p,
259                        u64 *dbg_reg)
260 {
261         p->regval = *dbg_reg;
262         if (p->is_32bit)
263                 p->regval &= 0xffffffffUL;
264 }
265
266 static bool trap_bvr(struct kvm_vcpu *vcpu,
267                      struct sys_reg_params *p,
268                      const struct sys_reg_desc *rd)
269 {
270         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
271
272         if (p->is_write)
273                 reg_to_dbg(vcpu, p, dbg_reg);
274         else
275                 dbg_to_reg(vcpu, p, dbg_reg);
276
277         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
278
279         return true;
280 }
281
282 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
283                 const struct kvm_one_reg *reg, void __user *uaddr)
284 {
285         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
286
287         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
288                 return -EFAULT;
289         return 0;
290 }
291
292 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
293         const struct kvm_one_reg *reg, void __user *uaddr)
294 {
295         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
296
297         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
298                 return -EFAULT;
299         return 0;
300 }
301
302 static void reset_bvr(struct kvm_vcpu *vcpu,
303                       const struct sys_reg_desc *rd)
304 {
305         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
306 }
307
308 static bool trap_bcr(struct kvm_vcpu *vcpu,
309                      struct sys_reg_params *p,
310                      const struct sys_reg_desc *rd)
311 {
312         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
313
314         if (p->is_write)
315                 reg_to_dbg(vcpu, p, dbg_reg);
316         else
317                 dbg_to_reg(vcpu, p, dbg_reg);
318
319         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
320
321         return true;
322 }
323
324 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
325                 const struct kvm_one_reg *reg, void __user *uaddr)
326 {
327         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
328
329         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
330                 return -EFAULT;
331
332         return 0;
333 }
334
335 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
336         const struct kvm_one_reg *reg, void __user *uaddr)
337 {
338         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
339
340         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
341                 return -EFAULT;
342         return 0;
343 }
344
345 static void reset_bcr(struct kvm_vcpu *vcpu,
346                       const struct sys_reg_desc *rd)
347 {
348         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
349 }
350
351 static bool trap_wvr(struct kvm_vcpu *vcpu,
352                      struct sys_reg_params *p,
353                      const struct sys_reg_desc *rd)
354 {
355         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
356
357         if (p->is_write)
358                 reg_to_dbg(vcpu, p, dbg_reg);
359         else
360                 dbg_to_reg(vcpu, p, dbg_reg);
361
362         trace_trap_reg(__func__, rd->reg, p->is_write,
363                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
364
365         return true;
366 }
367
368 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
369                 const struct kvm_one_reg *reg, void __user *uaddr)
370 {
371         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
372
373         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
374                 return -EFAULT;
375         return 0;
376 }
377
378 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
379         const struct kvm_one_reg *reg, void __user *uaddr)
380 {
381         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
382
383         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
384                 return -EFAULT;
385         return 0;
386 }
387
388 static void reset_wvr(struct kvm_vcpu *vcpu,
389                       const struct sys_reg_desc *rd)
390 {
391         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
392 }
393
394 static bool trap_wcr(struct kvm_vcpu *vcpu,
395                      struct sys_reg_params *p,
396                      const struct sys_reg_desc *rd)
397 {
398         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
399
400         if (p->is_write)
401                 reg_to_dbg(vcpu, p, dbg_reg);
402         else
403                 dbg_to_reg(vcpu, p, dbg_reg);
404
405         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
406
407         return true;
408 }
409
410 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411                 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
414
415         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416                 return -EFAULT;
417         return 0;
418 }
419
420 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421         const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
424
425         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426                 return -EFAULT;
427         return 0;
428 }
429
430 static void reset_wcr(struct kvm_vcpu *vcpu,
431                       const struct sys_reg_desc *rd)
432 {
433         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
434 }
435
436 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
437 {
438         vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
439 }
440
441 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
442 {
443         u64 mpidr;
444
445         /*
446          * Map the vcpu_id into the first three affinity level fields of
447          * the MPIDR. We limit the number of VCPUs in level 0 due to a
448          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
449          * of the GICv3 to be able to address each CPU directly when
450          * sending IPIs.
451          */
452         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
453         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
454         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
455         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
456 }
457
458 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
459 {
460         u64 pmcr, val;
461
462         pmcr = read_sysreg(pmcr_el0);
463         /*
464          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
465          * except PMCR.E resetting to zero.
466          */
467         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
468                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
469         vcpu_sys_reg(vcpu, PMCR_EL0) = val;
470 }
471
472 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
473 {
474         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
475         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
476
477         if (!enabled)
478                 kvm_inject_undefined(vcpu);
479
480         return !enabled;
481 }
482
483 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
484 {
485         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
486 }
487
488 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
489 {
490         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
491 }
492
493 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
494 {
495         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
496 }
497
498 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
499 {
500         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
501 }
502
503 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
504                         const struct sys_reg_desc *r)
505 {
506         u64 val;
507
508         if (!kvm_arm_pmu_v3_ready(vcpu))
509                 return trap_raz_wi(vcpu, p, r);
510
511         if (pmu_access_el0_disabled(vcpu))
512                 return false;
513
514         if (p->is_write) {
515                 /* Only update writeable bits of PMCR */
516                 val = vcpu_sys_reg(vcpu, PMCR_EL0);
517                 val &= ~ARMV8_PMU_PMCR_MASK;
518                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
519                 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
520                 kvm_pmu_handle_pmcr(vcpu, val);
521         } else {
522                 /* PMCR.P & PMCR.C are RAZ */
523                 val = vcpu_sys_reg(vcpu, PMCR_EL0)
524                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
525                 p->regval = val;
526         }
527
528         return true;
529 }
530
531 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
532                           const struct sys_reg_desc *r)
533 {
534         if (!kvm_arm_pmu_v3_ready(vcpu))
535                 return trap_raz_wi(vcpu, p, r);
536
537         if (pmu_access_event_counter_el0_disabled(vcpu))
538                 return false;
539
540         if (p->is_write)
541                 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
542         else
543                 /* return PMSELR.SEL field */
544                 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
545                             & ARMV8_PMU_COUNTER_MASK;
546
547         return true;
548 }
549
550 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
551                           const struct sys_reg_desc *r)
552 {
553         u64 pmceid;
554
555         if (!kvm_arm_pmu_v3_ready(vcpu))
556                 return trap_raz_wi(vcpu, p, r);
557
558         BUG_ON(p->is_write);
559
560         if (pmu_access_el0_disabled(vcpu))
561                 return false;
562
563         if (!(p->Op2 & 1))
564                 pmceid = read_sysreg(pmceid0_el0);
565         else
566                 pmceid = read_sysreg(pmceid1_el0);
567
568         p->regval = pmceid;
569
570         return true;
571 }
572
573 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
574 {
575         u64 pmcr, val;
576
577         pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
578         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
579         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
580                 kvm_inject_undefined(vcpu);
581                 return false;
582         }
583
584         return true;
585 }
586
587 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
588                               struct sys_reg_params *p,
589                               const struct sys_reg_desc *r)
590 {
591         u64 idx;
592
593         if (!kvm_arm_pmu_v3_ready(vcpu))
594                 return trap_raz_wi(vcpu, p, r);
595
596         if (r->CRn == 9 && r->CRm == 13) {
597                 if (r->Op2 == 2) {
598                         /* PMXEVCNTR_EL0 */
599                         if (pmu_access_event_counter_el0_disabled(vcpu))
600                                 return false;
601
602                         idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
603                               & ARMV8_PMU_COUNTER_MASK;
604                 } else if (r->Op2 == 0) {
605                         /* PMCCNTR_EL0 */
606                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
607                                 return false;
608
609                         idx = ARMV8_PMU_CYCLE_IDX;
610                 } else {
611                         return false;
612                 }
613         } else if (r->CRn == 0 && r->CRm == 9) {
614                 /* PMCCNTR */
615                 if (pmu_access_event_counter_el0_disabled(vcpu))
616                         return false;
617
618                 idx = ARMV8_PMU_CYCLE_IDX;
619         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
620                 /* PMEVCNTRn_EL0 */
621                 if (pmu_access_event_counter_el0_disabled(vcpu))
622                         return false;
623
624                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
625         } else {
626                 return false;
627         }
628
629         if (!pmu_counter_idx_valid(vcpu, idx))
630                 return false;
631
632         if (p->is_write) {
633                 if (pmu_access_el0_disabled(vcpu))
634                         return false;
635
636                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
637         } else {
638                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
639         }
640
641         return true;
642 }
643
644 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
645                                const struct sys_reg_desc *r)
646 {
647         u64 idx, reg;
648
649         if (!kvm_arm_pmu_v3_ready(vcpu))
650                 return trap_raz_wi(vcpu, p, r);
651
652         if (pmu_access_el0_disabled(vcpu))
653                 return false;
654
655         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
656                 /* PMXEVTYPER_EL0 */
657                 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
658                 reg = PMEVTYPER0_EL0 + idx;
659         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
660                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
661                 if (idx == ARMV8_PMU_CYCLE_IDX)
662                         reg = PMCCFILTR_EL0;
663                 else
664                         /* PMEVTYPERn_EL0 */
665                         reg = PMEVTYPER0_EL0 + idx;
666         } else {
667                 BUG();
668         }
669
670         if (!pmu_counter_idx_valid(vcpu, idx))
671                 return false;
672
673         if (p->is_write) {
674                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
675                 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
676         } else {
677                 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
678         }
679
680         return true;
681 }
682
683 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
684                            const struct sys_reg_desc *r)
685 {
686         u64 val, mask;
687
688         if (!kvm_arm_pmu_v3_ready(vcpu))
689                 return trap_raz_wi(vcpu, p, r);
690
691         if (pmu_access_el0_disabled(vcpu))
692                 return false;
693
694         mask = kvm_pmu_valid_counter_mask(vcpu);
695         if (p->is_write) {
696                 val = p->regval & mask;
697                 if (r->Op2 & 0x1) {
698                         /* accessing PMCNTENSET_EL0 */
699                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
700                         kvm_pmu_enable_counter(vcpu, val);
701                 } else {
702                         /* accessing PMCNTENCLR_EL0 */
703                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
704                         kvm_pmu_disable_counter(vcpu, val);
705                 }
706         } else {
707                 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
708         }
709
710         return true;
711 }
712
713 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
714                            const struct sys_reg_desc *r)
715 {
716         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
717
718         if (!kvm_arm_pmu_v3_ready(vcpu))
719                 return trap_raz_wi(vcpu, p, r);
720
721         if (!vcpu_mode_priv(vcpu)) {
722                 kvm_inject_undefined(vcpu);
723                 return false;
724         }
725
726         if (p->is_write) {
727                 u64 val = p->regval & mask;
728
729                 if (r->Op2 & 0x1)
730                         /* accessing PMINTENSET_EL1 */
731                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
732                 else
733                         /* accessing PMINTENCLR_EL1 */
734                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
735         } else {
736                 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
737         }
738
739         return true;
740 }
741
742 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
743                          const struct sys_reg_desc *r)
744 {
745         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
746
747         if (!kvm_arm_pmu_v3_ready(vcpu))
748                 return trap_raz_wi(vcpu, p, r);
749
750         if (pmu_access_el0_disabled(vcpu))
751                 return false;
752
753         if (p->is_write) {
754                 if (r->CRm & 0x2)
755                         /* accessing PMOVSSET_EL0 */
756                         kvm_pmu_overflow_set(vcpu, p->regval & mask);
757                 else
758                         /* accessing PMOVSCLR_EL0 */
759                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
760         } else {
761                 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
762         }
763
764         return true;
765 }
766
767 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
768                            const struct sys_reg_desc *r)
769 {
770         u64 mask;
771
772         if (!kvm_arm_pmu_v3_ready(vcpu))
773                 return trap_raz_wi(vcpu, p, r);
774
775         if (!p->is_write)
776                 return read_from_write_only(vcpu, p);
777
778         if (pmu_write_swinc_el0_disabled(vcpu))
779                 return false;
780
781         mask = kvm_pmu_valid_counter_mask(vcpu);
782         kvm_pmu_software_increment(vcpu, p->regval & mask);
783         return true;
784 }
785
786 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
787                              const struct sys_reg_desc *r)
788 {
789         if (!kvm_arm_pmu_v3_ready(vcpu))
790                 return trap_raz_wi(vcpu, p, r);
791
792         if (p->is_write) {
793                 if (!vcpu_mode_priv(vcpu)) {
794                         kvm_inject_undefined(vcpu);
795                         return false;
796                 }
797
798                 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
799                                                     & ARMV8_PMU_USERENR_MASK;
800         } else {
801                 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
802                             & ARMV8_PMU_USERENR_MASK;
803         }
804
805         return true;
806 }
807
808 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
809 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
810         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
811           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
812         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
813           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
814         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
815           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
816         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
817           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
818
819 /* Macro to expand the PMEVCNTRn_EL0 register */
820 #define PMU_PMEVCNTR_EL0(n)                                             \
821         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
822           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
823
824 /* Macro to expand the PMEVTYPERn_EL0 register */
825 #define PMU_PMEVTYPER_EL0(n)                                            \
826         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
827           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
828
829 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
830                 struct sys_reg_params *p,
831                 const struct sys_reg_desc *r)
832 {
833         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
834         u64 now = kvm_phys_timer_read();
835
836         if (p->is_write)
837                 ptimer->cnt_cval = p->regval + now;
838         else
839                 p->regval = ptimer->cnt_cval - now;
840
841         return true;
842 }
843
844 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
845                 struct sys_reg_params *p,
846                 const struct sys_reg_desc *r)
847 {
848         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
849
850         if (p->is_write) {
851                 /* ISTATUS bit is read-only */
852                 ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
853         } else {
854                 u64 now = kvm_phys_timer_read();
855
856                 p->regval = ptimer->cnt_ctl;
857                 /*
858                  * Set ISTATUS bit if it's expired.
859                  * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
860                  * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
861                  * regardless of ENABLE bit for our implementation convenience.
862                  */
863                 if (ptimer->cnt_cval <= now)
864                         p->regval |= ARCH_TIMER_CTRL_IT_STAT;
865         }
866
867         return true;
868 }
869
870 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
871                 struct sys_reg_params *p,
872                 const struct sys_reg_desc *r)
873 {
874         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
875
876         if (p->is_write)
877                 ptimer->cnt_cval = p->regval;
878         else
879                 p->regval = ptimer->cnt_cval;
880
881         return true;
882 }
883
884 /*
885  * Architected system registers.
886  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
887  *
888  * Debug handling: We do trap most, if not all debug related system
889  * registers. The implementation is good enough to ensure that a guest
890  * can use these with minimal performance degradation. The drawback is
891  * that we don't implement any of the external debug, none of the
892  * OSlock protocol. This should be revisited if we ever encounter a
893  * more demanding guest...
894  */
895 static const struct sys_reg_desc sys_reg_descs[] = {
896         { SYS_DESC(SYS_DC_ISW), access_dcsw },
897         { SYS_DESC(SYS_DC_CSW), access_dcsw },
898         { SYS_DESC(SYS_DC_CISW), access_dcsw },
899
900         DBG_BCR_BVR_WCR_WVR_EL1(0),
901         DBG_BCR_BVR_WCR_WVR_EL1(1),
902         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
903         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
904         DBG_BCR_BVR_WCR_WVR_EL1(2),
905         DBG_BCR_BVR_WCR_WVR_EL1(3),
906         DBG_BCR_BVR_WCR_WVR_EL1(4),
907         DBG_BCR_BVR_WCR_WVR_EL1(5),
908         DBG_BCR_BVR_WCR_WVR_EL1(6),
909         DBG_BCR_BVR_WCR_WVR_EL1(7),
910         DBG_BCR_BVR_WCR_WVR_EL1(8),
911         DBG_BCR_BVR_WCR_WVR_EL1(9),
912         DBG_BCR_BVR_WCR_WVR_EL1(10),
913         DBG_BCR_BVR_WCR_WVR_EL1(11),
914         DBG_BCR_BVR_WCR_WVR_EL1(12),
915         DBG_BCR_BVR_WCR_WVR_EL1(13),
916         DBG_BCR_BVR_WCR_WVR_EL1(14),
917         DBG_BCR_BVR_WCR_WVR_EL1(15),
918
919         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
920         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
921         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
922         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
923         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
924         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
925         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
926         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
927
928         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
929         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
930         // DBGDTR[TR]X_EL0 share the same encoding
931         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
932
933         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
934
935         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
936         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
937         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
938         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
939         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
940         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
941
942         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
943         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
944         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
945         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
946         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
947
948         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
949         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
950
951         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
952         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
953
954         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
955
956         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
957         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
958
959         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
960         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
961
962         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
963
964         { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
965
966         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
967         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
968         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
969         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
970         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
971         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
972         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
973         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
974         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
975         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
976         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
977         /*
978          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
979          * in 32bit mode. Here we choose to reset it as zero for consistency.
980          */
981         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
982         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
983
984         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
985         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
986
987         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
988         { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
989         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
990
991         /* PMEVCNTRn_EL0 */
992         PMU_PMEVCNTR_EL0(0),
993         PMU_PMEVCNTR_EL0(1),
994         PMU_PMEVCNTR_EL0(2),
995         PMU_PMEVCNTR_EL0(3),
996         PMU_PMEVCNTR_EL0(4),
997         PMU_PMEVCNTR_EL0(5),
998         PMU_PMEVCNTR_EL0(6),
999         PMU_PMEVCNTR_EL0(7),
1000         PMU_PMEVCNTR_EL0(8),
1001         PMU_PMEVCNTR_EL0(9),
1002         PMU_PMEVCNTR_EL0(10),
1003         PMU_PMEVCNTR_EL0(11),
1004         PMU_PMEVCNTR_EL0(12),
1005         PMU_PMEVCNTR_EL0(13),
1006         PMU_PMEVCNTR_EL0(14),
1007         PMU_PMEVCNTR_EL0(15),
1008         PMU_PMEVCNTR_EL0(16),
1009         PMU_PMEVCNTR_EL0(17),
1010         PMU_PMEVCNTR_EL0(18),
1011         PMU_PMEVCNTR_EL0(19),
1012         PMU_PMEVCNTR_EL0(20),
1013         PMU_PMEVCNTR_EL0(21),
1014         PMU_PMEVCNTR_EL0(22),
1015         PMU_PMEVCNTR_EL0(23),
1016         PMU_PMEVCNTR_EL0(24),
1017         PMU_PMEVCNTR_EL0(25),
1018         PMU_PMEVCNTR_EL0(26),
1019         PMU_PMEVCNTR_EL0(27),
1020         PMU_PMEVCNTR_EL0(28),
1021         PMU_PMEVCNTR_EL0(29),
1022         PMU_PMEVCNTR_EL0(30),
1023         /* PMEVTYPERn_EL0 */
1024         PMU_PMEVTYPER_EL0(0),
1025         PMU_PMEVTYPER_EL0(1),
1026         PMU_PMEVTYPER_EL0(2),
1027         PMU_PMEVTYPER_EL0(3),
1028         PMU_PMEVTYPER_EL0(4),
1029         PMU_PMEVTYPER_EL0(5),
1030         PMU_PMEVTYPER_EL0(6),
1031         PMU_PMEVTYPER_EL0(7),
1032         PMU_PMEVTYPER_EL0(8),
1033         PMU_PMEVTYPER_EL0(9),
1034         PMU_PMEVTYPER_EL0(10),
1035         PMU_PMEVTYPER_EL0(11),
1036         PMU_PMEVTYPER_EL0(12),
1037         PMU_PMEVTYPER_EL0(13),
1038         PMU_PMEVTYPER_EL0(14),
1039         PMU_PMEVTYPER_EL0(15),
1040         PMU_PMEVTYPER_EL0(16),
1041         PMU_PMEVTYPER_EL0(17),
1042         PMU_PMEVTYPER_EL0(18),
1043         PMU_PMEVTYPER_EL0(19),
1044         PMU_PMEVTYPER_EL0(20),
1045         PMU_PMEVTYPER_EL0(21),
1046         PMU_PMEVTYPER_EL0(22),
1047         PMU_PMEVTYPER_EL0(23),
1048         PMU_PMEVTYPER_EL0(24),
1049         PMU_PMEVTYPER_EL0(25),
1050         PMU_PMEVTYPER_EL0(26),
1051         PMU_PMEVTYPER_EL0(27),
1052         PMU_PMEVTYPER_EL0(28),
1053         PMU_PMEVTYPER_EL0(29),
1054         PMU_PMEVTYPER_EL0(30),
1055         /*
1056          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1057          * in 32bit mode. Here we choose to reset it as zero for consistency.
1058          */
1059         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1060
1061         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1062         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1063         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1064 };
1065
1066 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1067                         struct sys_reg_params *p,
1068                         const struct sys_reg_desc *r)
1069 {
1070         if (p->is_write) {
1071                 return ignore_write(vcpu, p);
1072         } else {
1073                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1074                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1075                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1076
1077                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1078                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1079                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1080                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1081                 return true;
1082         }
1083 }
1084
1085 static bool trap_debug32(struct kvm_vcpu *vcpu,
1086                          struct sys_reg_params *p,
1087                          const struct sys_reg_desc *r)
1088 {
1089         if (p->is_write) {
1090                 vcpu_cp14(vcpu, r->reg) = p->regval;
1091                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1092         } else {
1093                 p->regval = vcpu_cp14(vcpu, r->reg);
1094         }
1095
1096         return true;
1097 }
1098
1099 /* AArch32 debug register mappings
1100  *
1101  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1102  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1103  *
1104  * All control registers and watchpoint value registers are mapped to
1105  * the lower 32 bits of their AArch64 equivalents. We share the trap
1106  * handlers with the above AArch64 code which checks what mode the
1107  * system is in.
1108  */
1109
1110 static bool trap_xvr(struct kvm_vcpu *vcpu,
1111                      struct sys_reg_params *p,
1112                      const struct sys_reg_desc *rd)
1113 {
1114         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1115
1116         if (p->is_write) {
1117                 u64 val = *dbg_reg;
1118
1119                 val &= 0xffffffffUL;
1120                 val |= p->regval << 32;
1121                 *dbg_reg = val;
1122
1123                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1124         } else {
1125                 p->regval = *dbg_reg >> 32;
1126         }
1127
1128         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1129
1130         return true;
1131 }
1132
1133 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1134         /* DBGBVRn */                                                   \
1135         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1136         /* DBGBCRn */                                                   \
1137         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1138         /* DBGWVRn */                                                   \
1139         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1140         /* DBGWCRn */                                                   \
1141         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1142
1143 #define DBGBXVR(n)                                                      \
1144         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1145
1146 /*
1147  * Trapped cp14 registers. We generally ignore most of the external
1148  * debug, on the principle that they don't really make sense to a
1149  * guest. Revisit this one day, would this principle change.
1150  */
1151 static const struct sys_reg_desc cp14_regs[] = {
1152         /* DBGIDR */
1153         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1154         /* DBGDTRRXext */
1155         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1156
1157         DBG_BCR_BVR_WCR_WVR(0),
1158         /* DBGDSCRint */
1159         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1160         DBG_BCR_BVR_WCR_WVR(1),
1161         /* DBGDCCINT */
1162         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1163         /* DBGDSCRext */
1164         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1165         DBG_BCR_BVR_WCR_WVR(2),
1166         /* DBGDTR[RT]Xint */
1167         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1168         /* DBGDTR[RT]Xext */
1169         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1170         DBG_BCR_BVR_WCR_WVR(3),
1171         DBG_BCR_BVR_WCR_WVR(4),
1172         DBG_BCR_BVR_WCR_WVR(5),
1173         /* DBGWFAR */
1174         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1175         /* DBGOSECCR */
1176         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1177         DBG_BCR_BVR_WCR_WVR(6),
1178         /* DBGVCR */
1179         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1180         DBG_BCR_BVR_WCR_WVR(7),
1181         DBG_BCR_BVR_WCR_WVR(8),
1182         DBG_BCR_BVR_WCR_WVR(9),
1183         DBG_BCR_BVR_WCR_WVR(10),
1184         DBG_BCR_BVR_WCR_WVR(11),
1185         DBG_BCR_BVR_WCR_WVR(12),
1186         DBG_BCR_BVR_WCR_WVR(13),
1187         DBG_BCR_BVR_WCR_WVR(14),
1188         DBG_BCR_BVR_WCR_WVR(15),
1189
1190         /* DBGDRAR (32bit) */
1191         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1192
1193         DBGBXVR(0),
1194         /* DBGOSLAR */
1195         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1196         DBGBXVR(1),
1197         /* DBGOSLSR */
1198         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1199         DBGBXVR(2),
1200         DBGBXVR(3),
1201         /* DBGOSDLR */
1202         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1203         DBGBXVR(4),
1204         /* DBGPRCR */
1205         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1206         DBGBXVR(5),
1207         DBGBXVR(6),
1208         DBGBXVR(7),
1209         DBGBXVR(8),
1210         DBGBXVR(9),
1211         DBGBXVR(10),
1212         DBGBXVR(11),
1213         DBGBXVR(12),
1214         DBGBXVR(13),
1215         DBGBXVR(14),
1216         DBGBXVR(15),
1217
1218         /* DBGDSAR (32bit) */
1219         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1220
1221         /* DBGDEVID2 */
1222         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1223         /* DBGDEVID1 */
1224         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1225         /* DBGDEVID */
1226         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1227         /* DBGCLAIMSET */
1228         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1229         /* DBGCLAIMCLR */
1230         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1231         /* DBGAUTHSTATUS */
1232         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1233 };
1234
1235 /* Trapped cp14 64bit registers */
1236 static const struct sys_reg_desc cp14_64_regs[] = {
1237         /* DBGDRAR (64bit) */
1238         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1239
1240         /* DBGDSAR (64bit) */
1241         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1242 };
1243
1244 /* Macro to expand the PMEVCNTRn register */
1245 #define PMU_PMEVCNTR(n)                                                 \
1246         /* PMEVCNTRn */                                                 \
1247         { Op1(0), CRn(0b1110),                                          \
1248           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1249           access_pmu_evcntr }
1250
1251 /* Macro to expand the PMEVTYPERn register */
1252 #define PMU_PMEVTYPER(n)                                                \
1253         /* PMEVTYPERn */                                                \
1254         { Op1(0), CRn(0b1110),                                          \
1255           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1256           access_pmu_evtyper }
1257
1258 /*
1259  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1260  * depending on the way they are accessed (as a 32bit or a 64bit
1261  * register).
1262  */
1263 static const struct sys_reg_desc cp15_regs[] = {
1264         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1265
1266         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1267         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1268         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1269         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1270         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1271         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1272         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1273         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1274         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1275         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1276         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1277
1278         /*
1279          * DC{C,I,CI}SW operations:
1280          */
1281         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1282         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1283         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1284
1285         /* PMU */
1286         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1287         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1288         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1289         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1290         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1291         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1292         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1293         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1294         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1295         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1296         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1297         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1298         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1299         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1300         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1301
1302         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1303         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1304         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1305         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1306
1307         /* ICC_SRE */
1308         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1309
1310         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1311
1312         /* PMEVCNTRn */
1313         PMU_PMEVCNTR(0),
1314         PMU_PMEVCNTR(1),
1315         PMU_PMEVCNTR(2),
1316         PMU_PMEVCNTR(3),
1317         PMU_PMEVCNTR(4),
1318         PMU_PMEVCNTR(5),
1319         PMU_PMEVCNTR(6),
1320         PMU_PMEVCNTR(7),
1321         PMU_PMEVCNTR(8),
1322         PMU_PMEVCNTR(9),
1323         PMU_PMEVCNTR(10),
1324         PMU_PMEVCNTR(11),
1325         PMU_PMEVCNTR(12),
1326         PMU_PMEVCNTR(13),
1327         PMU_PMEVCNTR(14),
1328         PMU_PMEVCNTR(15),
1329         PMU_PMEVCNTR(16),
1330         PMU_PMEVCNTR(17),
1331         PMU_PMEVCNTR(18),
1332         PMU_PMEVCNTR(19),
1333         PMU_PMEVCNTR(20),
1334         PMU_PMEVCNTR(21),
1335         PMU_PMEVCNTR(22),
1336         PMU_PMEVCNTR(23),
1337         PMU_PMEVCNTR(24),
1338         PMU_PMEVCNTR(25),
1339         PMU_PMEVCNTR(26),
1340         PMU_PMEVCNTR(27),
1341         PMU_PMEVCNTR(28),
1342         PMU_PMEVCNTR(29),
1343         PMU_PMEVCNTR(30),
1344         /* PMEVTYPERn */
1345         PMU_PMEVTYPER(0),
1346         PMU_PMEVTYPER(1),
1347         PMU_PMEVTYPER(2),
1348         PMU_PMEVTYPER(3),
1349         PMU_PMEVTYPER(4),
1350         PMU_PMEVTYPER(5),
1351         PMU_PMEVTYPER(6),
1352         PMU_PMEVTYPER(7),
1353         PMU_PMEVTYPER(8),
1354         PMU_PMEVTYPER(9),
1355         PMU_PMEVTYPER(10),
1356         PMU_PMEVTYPER(11),
1357         PMU_PMEVTYPER(12),
1358         PMU_PMEVTYPER(13),
1359         PMU_PMEVTYPER(14),
1360         PMU_PMEVTYPER(15),
1361         PMU_PMEVTYPER(16),
1362         PMU_PMEVTYPER(17),
1363         PMU_PMEVTYPER(18),
1364         PMU_PMEVTYPER(19),
1365         PMU_PMEVTYPER(20),
1366         PMU_PMEVTYPER(21),
1367         PMU_PMEVTYPER(22),
1368         PMU_PMEVTYPER(23),
1369         PMU_PMEVTYPER(24),
1370         PMU_PMEVTYPER(25),
1371         PMU_PMEVTYPER(26),
1372         PMU_PMEVTYPER(27),
1373         PMU_PMEVTYPER(28),
1374         PMU_PMEVTYPER(29),
1375         PMU_PMEVTYPER(30),
1376         /* PMCCFILTR */
1377         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1378 };
1379
1380 static const struct sys_reg_desc cp15_64_regs[] = {
1381         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1382         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1383         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1384         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1385 };
1386
1387 /* Target specific emulation tables */
1388 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1389
1390 void kvm_register_target_sys_reg_table(unsigned int target,
1391                                        struct kvm_sys_reg_target_table *table)
1392 {
1393         target_tables[target] = table;
1394 }
1395
1396 /* Get specific register table for this target. */
1397 static const struct sys_reg_desc *get_target_table(unsigned target,
1398                                                    bool mode_is_64,
1399                                                    size_t *num)
1400 {
1401         struct kvm_sys_reg_target_table *table;
1402
1403         table = target_tables[target];
1404         if (mode_is_64) {
1405                 *num = table->table64.num;
1406                 return table->table64.table;
1407         } else {
1408                 *num = table->table32.num;
1409                 return table->table32.table;
1410         }
1411 }
1412
1413 #define reg_to_match_value(x)                                           \
1414         ({                                                              \
1415                 unsigned long val;                                      \
1416                 val  = (x)->Op0 << 14;                                  \
1417                 val |= (x)->Op1 << 11;                                  \
1418                 val |= (x)->CRn << 7;                                   \
1419                 val |= (x)->CRm << 3;                                   \
1420                 val |= (x)->Op2;                                        \
1421                 val;                                                    \
1422          })
1423
1424 static int match_sys_reg(const void *key, const void *elt)
1425 {
1426         const unsigned long pval = (unsigned long)key;
1427         const struct sys_reg_desc *r = elt;
1428
1429         return pval - reg_to_match_value(r);
1430 }
1431
1432 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1433                                          const struct sys_reg_desc table[],
1434                                          unsigned int num)
1435 {
1436         unsigned long pval = reg_to_match_value(params);
1437
1438         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1439 }
1440
1441 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1442 {
1443         kvm_inject_undefined(vcpu);
1444         return 1;
1445 }
1446
1447 static void perform_access(struct kvm_vcpu *vcpu,
1448                            struct sys_reg_params *params,
1449                            const struct sys_reg_desc *r)
1450 {
1451         /*
1452          * Not having an accessor means that we have configured a trap
1453          * that we don't know how to handle. This certainly qualifies
1454          * as a gross bug that should be fixed right away.
1455          */
1456         BUG_ON(!r->access);
1457
1458         /* Skip instruction if instructed so */
1459         if (likely(r->access(vcpu, params, r)))
1460                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1461 }
1462
1463 /*
1464  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1465  *                call the corresponding trap handler.
1466  *
1467  * @params: pointer to the descriptor of the access
1468  * @table: array of trap descriptors
1469  * @num: size of the trap descriptor array
1470  *
1471  * Return 0 if the access has been handled, and -1 if not.
1472  */
1473 static int emulate_cp(struct kvm_vcpu *vcpu,
1474                       struct sys_reg_params *params,
1475                       const struct sys_reg_desc *table,
1476                       size_t num)
1477 {
1478         const struct sys_reg_desc *r;
1479
1480         if (!table)
1481                 return -1;      /* Not handled */
1482
1483         r = find_reg(params, table, num);
1484
1485         if (r) {
1486                 perform_access(vcpu, params, r);
1487                 return 0;
1488         }
1489
1490         /* Not handled */
1491         return -1;
1492 }
1493
1494 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1495                                 struct sys_reg_params *params)
1496 {
1497         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1498         int cp = -1;
1499
1500         switch(hsr_ec) {
1501         case ESR_ELx_EC_CP15_32:
1502         case ESR_ELx_EC_CP15_64:
1503                 cp = 15;
1504                 break;
1505         case ESR_ELx_EC_CP14_MR:
1506         case ESR_ELx_EC_CP14_64:
1507                 cp = 14;
1508                 break;
1509         default:
1510                 WARN_ON(1);
1511         }
1512
1513         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1514                 cp, *vcpu_pc(vcpu));
1515         print_sys_reg_instr(params);
1516         kvm_inject_undefined(vcpu);
1517 }
1518
1519 /**
1520  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1521  * @vcpu: The VCPU pointer
1522  * @run:  The kvm_run struct
1523  */
1524 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1525                             const struct sys_reg_desc *global,
1526                             size_t nr_global,
1527                             const struct sys_reg_desc *target_specific,
1528                             size_t nr_specific)
1529 {
1530         struct sys_reg_params params;
1531         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1532         int Rt = (hsr >> 5) & 0xf;
1533         int Rt2 = (hsr >> 10) & 0xf;
1534
1535         params.is_aarch32 = true;
1536         params.is_32bit = false;
1537         params.CRm = (hsr >> 1) & 0xf;
1538         params.is_write = ((hsr & 1) == 0);
1539
1540         params.Op0 = 0;
1541         params.Op1 = (hsr >> 16) & 0xf;
1542         params.Op2 = 0;
1543         params.CRn = 0;
1544
1545         /*
1546          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1547          * backends between AArch32 and AArch64, we get away with it.
1548          */
1549         if (params.is_write) {
1550                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1551                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1552         }
1553
1554         /*
1555          * Try to emulate the coprocessor access using the target
1556          * specific table first, and using the global table afterwards.
1557          * If either of the tables contains a handler, handle the
1558          * potential register operation in the case of a read and return
1559          * with success.
1560          */
1561         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1562             !emulate_cp(vcpu, &params, global, nr_global)) {
1563                 /* Split up the value between registers for the read side */
1564                 if (!params.is_write) {
1565                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1566                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1567                 }
1568
1569                 return 1;
1570         }
1571
1572         unhandled_cp_access(vcpu, &params);
1573         return 1;
1574 }
1575
1576 /**
1577  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1578  * @vcpu: The VCPU pointer
1579  * @run:  The kvm_run struct
1580  */
1581 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1582                             const struct sys_reg_desc *global,
1583                             size_t nr_global,
1584                             const struct sys_reg_desc *target_specific,
1585                             size_t nr_specific)
1586 {
1587         struct sys_reg_params params;
1588         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1589         int Rt  = (hsr >> 5) & 0xf;
1590
1591         params.is_aarch32 = true;
1592         params.is_32bit = true;
1593         params.CRm = (hsr >> 1) & 0xf;
1594         params.regval = vcpu_get_reg(vcpu, Rt);
1595         params.is_write = ((hsr & 1) == 0);
1596         params.CRn = (hsr >> 10) & 0xf;
1597         params.Op0 = 0;
1598         params.Op1 = (hsr >> 14) & 0x7;
1599         params.Op2 = (hsr >> 17) & 0x7;
1600
1601         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1602             !emulate_cp(vcpu, &params, global, nr_global)) {
1603                 if (!params.is_write)
1604                         vcpu_set_reg(vcpu, Rt, params.regval);
1605                 return 1;
1606         }
1607
1608         unhandled_cp_access(vcpu, &params);
1609         return 1;
1610 }
1611
1612 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1613 {
1614         const struct sys_reg_desc *target_specific;
1615         size_t num;
1616
1617         target_specific = get_target_table(vcpu->arch.target, false, &num);
1618         return kvm_handle_cp_64(vcpu,
1619                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1620                                 target_specific, num);
1621 }
1622
1623 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1624 {
1625         const struct sys_reg_desc *target_specific;
1626         size_t num;
1627
1628         target_specific = get_target_table(vcpu->arch.target, false, &num);
1629         return kvm_handle_cp_32(vcpu,
1630                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1631                                 target_specific, num);
1632 }
1633
1634 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1635 {
1636         return kvm_handle_cp_64(vcpu,
1637                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1638                                 NULL, 0);
1639 }
1640
1641 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1642 {
1643         return kvm_handle_cp_32(vcpu,
1644                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1645                                 NULL, 0);
1646 }
1647
1648 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1649                            struct sys_reg_params *params)
1650 {
1651         size_t num;
1652         const struct sys_reg_desc *table, *r;
1653
1654         table = get_target_table(vcpu->arch.target, true, &num);
1655
1656         /* Search target-specific then generic table. */
1657         r = find_reg(params, table, num);
1658         if (!r)
1659                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1660
1661         if (likely(r)) {
1662                 perform_access(vcpu, params, r);
1663         } else {
1664                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1665                         *vcpu_pc(vcpu));
1666                 print_sys_reg_instr(params);
1667                 kvm_inject_undefined(vcpu);
1668         }
1669         return 1;
1670 }
1671
1672 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1673                               const struct sys_reg_desc *table, size_t num)
1674 {
1675         unsigned long i;
1676
1677         for (i = 0; i < num; i++)
1678                 if (table[i].reset)
1679                         table[i].reset(vcpu, &table[i]);
1680 }
1681
1682 /**
1683  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1684  * @vcpu: The VCPU pointer
1685  * @run:  The kvm_run struct
1686  */
1687 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1688 {
1689         struct sys_reg_params params;
1690         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1691         int Rt = (esr >> 5) & 0x1f;
1692         int ret;
1693
1694         trace_kvm_handle_sys_reg(esr);
1695
1696         params.is_aarch32 = false;
1697         params.is_32bit = false;
1698         params.Op0 = (esr >> 20) & 3;
1699         params.Op1 = (esr >> 14) & 0x7;
1700         params.CRn = (esr >> 10) & 0xf;
1701         params.CRm = (esr >> 1) & 0xf;
1702         params.Op2 = (esr >> 17) & 0x7;
1703         params.regval = vcpu_get_reg(vcpu, Rt);
1704         params.is_write = !(esr & 1);
1705
1706         ret = emulate_sys_reg(vcpu, &params);
1707
1708         if (!params.is_write)
1709                 vcpu_set_reg(vcpu, Rt, params.regval);
1710         return ret;
1711 }
1712
1713 /******************************************************************************
1714  * Userspace API
1715  *****************************************************************************/
1716
1717 static bool index_to_params(u64 id, struct sys_reg_params *params)
1718 {
1719         switch (id & KVM_REG_SIZE_MASK) {
1720         case KVM_REG_SIZE_U64:
1721                 /* Any unused index bits means it's not valid. */
1722                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1723                               | KVM_REG_ARM_COPROC_MASK
1724                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1725                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1726                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1727                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1728                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1729                         return false;
1730                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1731                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1732                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1733                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1734                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1735                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1736                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1737                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1738                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1739                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1740                 return true;
1741         default:
1742                 return false;
1743         }
1744 }
1745
1746 const struct sys_reg_desc *find_reg_by_id(u64 id,
1747                                           struct sys_reg_params *params,
1748                                           const struct sys_reg_desc table[],
1749                                           unsigned int num)
1750 {
1751         if (!index_to_params(id, params))
1752                 return NULL;
1753
1754         return find_reg(params, table, num);
1755 }
1756
1757 /* Decode an index value, and find the sys_reg_desc entry. */
1758 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1759                                                     u64 id)
1760 {
1761         size_t num;
1762         const struct sys_reg_desc *table, *r;
1763         struct sys_reg_params params;
1764
1765         /* We only do sys_reg for now. */
1766         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1767                 return NULL;
1768
1769         table = get_target_table(vcpu->arch.target, true, &num);
1770         r = find_reg_by_id(id, &params, table, num);
1771         if (!r)
1772                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1773
1774         /* Not saved in the sys_reg array? */
1775         if (r && !r->reg)
1776                 r = NULL;
1777
1778         return r;
1779 }
1780
1781 /*
1782  * These are the invariant sys_reg registers: we let the guest see the
1783  * host versions of these, so they're part of the guest state.
1784  *
1785  * A future CPU may provide a mechanism to present different values to
1786  * the guest, or a future kvm may trap them.
1787  */
1788
1789 #define FUNCTION_INVARIANT(reg)                                         \
1790         static void get_##reg(struct kvm_vcpu *v,                       \
1791                               const struct sys_reg_desc *r)             \
1792         {                                                               \
1793                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
1794         }
1795
1796 FUNCTION_INVARIANT(midr_el1)
1797 FUNCTION_INVARIANT(ctr_el0)
1798 FUNCTION_INVARIANT(revidr_el1)
1799 FUNCTION_INVARIANT(id_pfr0_el1)
1800 FUNCTION_INVARIANT(id_pfr1_el1)
1801 FUNCTION_INVARIANT(id_dfr0_el1)
1802 FUNCTION_INVARIANT(id_afr0_el1)
1803 FUNCTION_INVARIANT(id_mmfr0_el1)
1804 FUNCTION_INVARIANT(id_mmfr1_el1)
1805 FUNCTION_INVARIANT(id_mmfr2_el1)
1806 FUNCTION_INVARIANT(id_mmfr3_el1)
1807 FUNCTION_INVARIANT(id_isar0_el1)
1808 FUNCTION_INVARIANT(id_isar1_el1)
1809 FUNCTION_INVARIANT(id_isar2_el1)
1810 FUNCTION_INVARIANT(id_isar3_el1)
1811 FUNCTION_INVARIANT(id_isar4_el1)
1812 FUNCTION_INVARIANT(id_isar5_el1)
1813 FUNCTION_INVARIANT(clidr_el1)
1814 FUNCTION_INVARIANT(aidr_el1)
1815
1816 /* ->val is filled in by kvm_sys_reg_table_init() */
1817 static struct sys_reg_desc invariant_sys_regs[] = {
1818         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
1819         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
1820         { SYS_DESC(SYS_ID_PFR0_EL1), NULL, get_id_pfr0_el1 },
1821         { SYS_DESC(SYS_ID_PFR1_EL1), NULL, get_id_pfr1_el1 },
1822         { SYS_DESC(SYS_ID_DFR0_EL1), NULL, get_id_dfr0_el1 },
1823         { SYS_DESC(SYS_ID_AFR0_EL1), NULL, get_id_afr0_el1 },
1824         { SYS_DESC(SYS_ID_MMFR0_EL1), NULL, get_id_mmfr0_el1 },
1825         { SYS_DESC(SYS_ID_MMFR1_EL1), NULL, get_id_mmfr1_el1 },
1826         { SYS_DESC(SYS_ID_MMFR2_EL1), NULL, get_id_mmfr2_el1 },
1827         { SYS_DESC(SYS_ID_MMFR3_EL1), NULL, get_id_mmfr3_el1 },
1828         { SYS_DESC(SYS_ID_ISAR0_EL1), NULL, get_id_isar0_el1 },
1829         { SYS_DESC(SYS_ID_ISAR1_EL1), NULL, get_id_isar1_el1 },
1830         { SYS_DESC(SYS_ID_ISAR2_EL1), NULL, get_id_isar2_el1 },
1831         { SYS_DESC(SYS_ID_ISAR3_EL1), NULL, get_id_isar3_el1 },
1832         { SYS_DESC(SYS_ID_ISAR4_EL1), NULL, get_id_isar4_el1 },
1833         { SYS_DESC(SYS_ID_ISAR5_EL1), NULL, get_id_isar5_el1 },
1834         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
1835         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
1836         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
1837 };
1838
1839 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1840 {
1841         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1842                 return -EFAULT;
1843         return 0;
1844 }
1845
1846 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1847 {
1848         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1849                 return -EFAULT;
1850         return 0;
1851 }
1852
1853 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1854 {
1855         struct sys_reg_params params;
1856         const struct sys_reg_desc *r;
1857
1858         r = find_reg_by_id(id, &params, invariant_sys_regs,
1859                            ARRAY_SIZE(invariant_sys_regs));
1860         if (!r)
1861                 return -ENOENT;
1862
1863         return reg_to_user(uaddr, &r->val, id);
1864 }
1865
1866 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1867 {
1868         struct sys_reg_params params;
1869         const struct sys_reg_desc *r;
1870         int err;
1871         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1872
1873         r = find_reg_by_id(id, &params, invariant_sys_regs,
1874                            ARRAY_SIZE(invariant_sys_regs));
1875         if (!r)
1876                 return -ENOENT;
1877
1878         err = reg_from_user(&val, uaddr, id);
1879         if (err)
1880                 return err;
1881
1882         /* This is what we mean by invariant: you can't change it. */
1883         if (r->val != val)
1884                 return -EINVAL;
1885
1886         return 0;
1887 }
1888
1889 static bool is_valid_cache(u32 val)
1890 {
1891         u32 level, ctype;
1892
1893         if (val >= CSSELR_MAX)
1894                 return false;
1895
1896         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1897         level = (val >> 1);
1898         ctype = (cache_levels >> (level * 3)) & 7;
1899
1900         switch (ctype) {
1901         case 0: /* No cache */
1902                 return false;
1903         case 1: /* Instruction cache only */
1904                 return (val & 1);
1905         case 2: /* Data cache only */
1906         case 4: /* Unified cache */
1907                 return !(val & 1);
1908         case 3: /* Separate instruction and data caches */
1909                 return true;
1910         default: /* Reserved: we can't know instruction or data. */
1911                 return false;
1912         }
1913 }
1914
1915 static int demux_c15_get(u64 id, void __user *uaddr)
1916 {
1917         u32 val;
1918         u32 __user *uval = uaddr;
1919
1920         /* Fail if we have unknown bits set. */
1921         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1922                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1923                 return -ENOENT;
1924
1925         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1926         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1927                 if (KVM_REG_SIZE(id) != 4)
1928                         return -ENOENT;
1929                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1930                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1931                 if (!is_valid_cache(val))
1932                         return -ENOENT;
1933
1934                 return put_user(get_ccsidr(val), uval);
1935         default:
1936                 return -ENOENT;
1937         }
1938 }
1939
1940 static int demux_c15_set(u64 id, void __user *uaddr)
1941 {
1942         u32 val, newval;
1943         u32 __user *uval = uaddr;
1944
1945         /* Fail if we have unknown bits set. */
1946         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1947                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1948                 return -ENOENT;
1949
1950         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1951         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1952                 if (KVM_REG_SIZE(id) != 4)
1953                         return -ENOENT;
1954                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1955                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1956                 if (!is_valid_cache(val))
1957                         return -ENOENT;
1958
1959                 if (get_user(newval, uval))
1960                         return -EFAULT;
1961
1962                 /* This is also invariant: you can't change it. */
1963                 if (newval != get_ccsidr(val))
1964                         return -EINVAL;
1965                 return 0;
1966         default:
1967                 return -ENOENT;
1968         }
1969 }
1970
1971 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1972 {
1973         const struct sys_reg_desc *r;
1974         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1975
1976         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1977                 return demux_c15_get(reg->id, uaddr);
1978
1979         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1980                 return -ENOENT;
1981
1982         r = index_to_sys_reg_desc(vcpu, reg->id);
1983         if (!r)
1984                 return get_invariant_sys_reg(reg->id, uaddr);
1985
1986         if (r->get_user)
1987                 return (r->get_user)(vcpu, r, reg, uaddr);
1988
1989         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1990 }
1991
1992 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1993 {
1994         const struct sys_reg_desc *r;
1995         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1996
1997         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1998                 return demux_c15_set(reg->id, uaddr);
1999
2000         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2001                 return -ENOENT;
2002
2003         r = index_to_sys_reg_desc(vcpu, reg->id);
2004         if (!r)
2005                 return set_invariant_sys_reg(reg->id, uaddr);
2006
2007         if (r->set_user)
2008                 return (r->set_user)(vcpu, r, reg, uaddr);
2009
2010         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2011 }
2012
2013 static unsigned int num_demux_regs(void)
2014 {
2015         unsigned int i, count = 0;
2016
2017         for (i = 0; i < CSSELR_MAX; i++)
2018                 if (is_valid_cache(i))
2019                         count++;
2020
2021         return count;
2022 }
2023
2024 static int write_demux_regids(u64 __user *uindices)
2025 {
2026         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2027         unsigned int i;
2028
2029         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2030         for (i = 0; i < CSSELR_MAX; i++) {
2031                 if (!is_valid_cache(i))
2032                         continue;
2033                 if (put_user(val | i, uindices))
2034                         return -EFAULT;
2035                 uindices++;
2036         }
2037         return 0;
2038 }
2039
2040 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2041 {
2042         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2043                 KVM_REG_ARM64_SYSREG |
2044                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2045                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2046                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2047                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2048                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2049 }
2050
2051 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2052 {
2053         if (!*uind)
2054                 return true;
2055
2056         if (put_user(sys_reg_to_index(reg), *uind))
2057                 return false;
2058
2059         (*uind)++;
2060         return true;
2061 }
2062
2063 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2064 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2065 {
2066         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2067         unsigned int total = 0;
2068         size_t num;
2069
2070         /* We check for duplicates here, to allow arch-specific overrides. */
2071         i1 = get_target_table(vcpu->arch.target, true, &num);
2072         end1 = i1 + num;
2073         i2 = sys_reg_descs;
2074         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2075
2076         BUG_ON(i1 == end1 || i2 == end2);
2077
2078         /* Walk carefully, as both tables may refer to the same register. */
2079         while (i1 || i2) {
2080                 int cmp = cmp_sys_reg(i1, i2);
2081                 /* target-specific overrides generic entry. */
2082                 if (cmp <= 0) {
2083                         /* Ignore registers we trap but don't save. */
2084                         if (i1->reg) {
2085                                 if (!copy_reg_to_user(i1, &uind))
2086                                         return -EFAULT;
2087                                 total++;
2088                         }
2089                 } else {
2090                         /* Ignore registers we trap but don't save. */
2091                         if (i2->reg) {
2092                                 if (!copy_reg_to_user(i2, &uind))
2093                                         return -EFAULT;
2094                                 total++;
2095                         }
2096                 }
2097
2098                 if (cmp <= 0 && ++i1 == end1)
2099                         i1 = NULL;
2100                 if (cmp >= 0 && ++i2 == end2)
2101                         i2 = NULL;
2102         }
2103         return total;
2104 }
2105
2106 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2107 {
2108         return ARRAY_SIZE(invariant_sys_regs)
2109                 + num_demux_regs()
2110                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2111 }
2112
2113 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2114 {
2115         unsigned int i;
2116         int err;
2117
2118         /* Then give them all the invariant registers' indices. */
2119         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2120                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2121                         return -EFAULT;
2122                 uindices++;
2123         }
2124
2125         err = walk_sys_regs(vcpu, uindices);
2126         if (err < 0)
2127                 return err;
2128         uindices += err;
2129
2130         return write_demux_regids(uindices);
2131 }
2132
2133 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2134 {
2135         unsigned int i;
2136
2137         for (i = 1; i < n; i++) {
2138                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2139                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2140                         return 1;
2141                 }
2142         }
2143
2144         return 0;
2145 }
2146
2147 void kvm_sys_reg_table_init(void)
2148 {
2149         unsigned int i;
2150         struct sys_reg_desc clidr;
2151
2152         /* Make sure tables are unique and in order. */
2153         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2154         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2155         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2156         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2157         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2158         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2159
2160         /* We abuse the reset function to overwrite the table itself. */
2161         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2162                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2163
2164         /*
2165          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2166          *
2167          *   If software reads the Cache Type fields from Ctype1
2168          *   upwards, once it has seen a value of 0b000, no caches
2169          *   exist at further-out levels of the hierarchy. So, for
2170          *   example, if Ctype3 is the first Cache Type field with a
2171          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2172          *   ignored.
2173          */
2174         get_clidr_el1(NULL, &clidr); /* Ugly... */
2175         cache_levels = clidr.val;
2176         for (i = 0; i < 7; i++)
2177                 if (((cache_levels >> (i*3)) & 7) == 0)
2178                         break;
2179         /* Clear all higher bits. */
2180         cache_levels &= (1 << (i*3))-1;
2181 }
2182
2183 /**
2184  * kvm_reset_sys_regs - sets system registers to reset value
2185  * @vcpu: The VCPU pointer
2186  *
2187  * This function finds the right table above and sets the registers on the
2188  * virtual CPU struct to their architecturally defined reset values.
2189  */
2190 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2191 {
2192         size_t num;
2193         const struct sys_reg_desc *table;
2194
2195         /* Catch someone adding a register without putting in reset entry. */
2196         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2197
2198         /* Generic chip reset first (so target could override). */
2199         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2200
2201         table = get_target_table(vcpu->arch.target, true, &num);
2202         reset_sys_reg_descs(vcpu, table, num);
2203
2204         for (num = 1; num < NR_SYS_REGS; num++)
2205                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2206                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
2207 }