]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/blackfin/kernel/setup.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mv-sheeva.git] / arch / blackfin / kernel / setup.c
1 /*
2  * Copyright 2004-2009 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
35
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
45
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM         1
62 #define BFIN_MEMMAP_RESERVED    2
63 static struct bfin_memmap {
64         int nr_map;
65         struct bfin_memmap_entry {
66                 unsigned long long addr; /* start of memory segment */
67                 unsigned long long size;
68                 unsigned long type;
69         } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74         struct bfin_memmap_entry *pentry; /* pointer to original entry */
75         unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
88 {
89         unsigned int cpu;
90
91         generate_cplb_tables_all();
92         /* Generate per-CPU I&D CPLB tables */
93         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94                 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101         bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105         bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108         /*
109          * In cache coherence emulation mode, we need to have the
110          * D-cache enabled before running any atomic operation which
111          * might involve cache invalidation (i.e. spinlock, rwlock).
112          * So printk's are deferred until then.
113          */
114 #ifdef CONFIG_BFIN_ICACHE
115         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116         printk(KERN_INFO "  External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118                " cacheable"
119 # else
120                " uncacheable"
121 # endif
122                " in instruction cache\n");
123         if (L2_LENGTH)
124                 printk(KERN_INFO "  L2 SRAM        :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126                        " cacheable"
127 # else
128                        " uncacheable"
129 # endif
130                        " in instruction cache\n");
131
132 #else
133         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
135
136 #ifdef CONFIG_BFIN_DCACHE
137         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138         printk(KERN_INFO "  External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140                " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142                " cacheable (write-through)"
143 # else
144                " uncacheable"
145 # endif
146                " in data cache\n");
147         if (L2_LENGTH)
148                 printk(KERN_INFO "  L2 SRAM        :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150                        " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152                        " cacheable (write-through)"
153 # else
154                        " uncacheable"
155 # endif
156                        " in data cache\n");
157 #else
158         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
160 }
161
162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
163 {
164         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
165
166         cpudata->idle = current;
167         cpudata->imemctl = bfin_read_IMEM_CONTROL();
168         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
169 }
170
171 void __init bfin_cache_init(void)
172 {
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174         generate_cplb_tables();
175 #endif
176         bfin_setup_caches(0);
177 }
178
179 void __init bfin_relocate_l1_mem(void)
180 {
181         unsigned long l1_code_length;
182         unsigned long l1_data_a_length;
183         unsigned long l1_data_b_length;
184         unsigned long l2_length;
185
186         early_shadow_stamp();
187
188         /*
189          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190          * we know that everything about l1 text/data is nice and aligned,
191          * so copy by 4 byte chunks, and don't worry about overlapping
192          * src/dest.
193          *
194          * We can't use the dma_memcpy functions, since they can call
195          * scheduler functions which might be in L1 :( and core writes
196          * into L1 instruction cause bad access errors, so we are stuck,
197          * we are required to use DMA, but can't use the common dma
198          * functions. We can't use memcpy either - since that might be
199          * going to be in the relocated L1
200          */
201
202         blackfin_dma_early_init();
203
204         /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
205         l1_code_length = _etext_l1 - _stext_l1;
206         if (l1_code_length)
207                 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
208
209         /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
210         l1_data_a_length = _sbss_l1 - _sdata_l1;
211         if (l1_data_a_length)
212                 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
213
214         /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
215         l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
216         if (l1_data_b_length)
217                 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
218                         l1_data_a_length, l1_data_b_length);
219
220         early_dma_memcpy_done();
221
222         /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
223         if (L2_LENGTH != 0) {
224                 l2_length = _sbss_l2 - _stext_l2;
225                 if (l2_length)
226                         memcpy(_stext_l2, _l2_lma_start, l2_length);
227         }
228 }
229
230 /* add_memory_region to memmap */
231 static void __init add_memory_region(unsigned long long start,
232                               unsigned long long size, int type)
233 {
234         int i;
235
236         i = bfin_memmap.nr_map;
237
238         if (i == BFIN_MEMMAP_MAX) {
239                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
240                 return;
241         }
242
243         bfin_memmap.map[i].addr = start;
244         bfin_memmap.map[i].size = size;
245         bfin_memmap.map[i].type = type;
246         bfin_memmap.nr_map++;
247 }
248
249 /*
250  * Sanitize the boot memmap, removing overlaps.
251  */
252 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
253 {
254         struct change_member *change_tmp;
255         unsigned long current_type, last_type;
256         unsigned long long last_addr;
257         int chgidx, still_changing;
258         int overlap_entries;
259         int new_entry;
260         int old_nr, new_nr, chg_nr;
261         int i;
262
263         /*
264                 Visually we're performing the following (1,2,3,4 = memory types)
265
266                 Sample memory map (w/overlaps):
267                    ____22__________________
268                    ______________________4_
269                    ____1111________________
270                    _44_____________________
271                    11111111________________
272                    ____________________33__
273                    ___________44___________
274                    __________33333_________
275                    ______________22________
276                    ___________________2222_
277                    _________111111111______
278                    _____________________11_
279                    _________________4______
280
281                 Sanitized equivalent (no overlap):
282                    1_______________________
283                    _44_____________________
284                    ___1____________________
285                    ____22__________________
286                    ______11________________
287                    _________1______________
288                    __________3_____________
289                    ___________44___________
290                    _____________33_________
291                    _______________2________
292                    ________________1_______
293                    _________________4______
294                    ___________________2____
295                    ____________________33__
296                    ______________________4_
297         */
298         /* if there's only one memory region, don't bother */
299         if (*pnr_map < 2)
300                 return -1;
301
302         old_nr = *pnr_map;
303
304         /* bail out if we find any unreasonable addresses in memmap */
305         for (i = 0; i < old_nr; i++)
306                 if (map[i].addr + map[i].size < map[i].addr)
307                         return -1;
308
309         /* create pointers for initial change-point information (for sorting) */
310         for (i = 0; i < 2*old_nr; i++)
311                 change_point[i] = &change_point_list[i];
312
313         /* record all known change-points (starting and ending addresses),
314            omitting those that are for empty memory regions */
315         chgidx = 0;
316         for (i = 0; i < old_nr; i++) {
317                 if (map[i].size != 0) {
318                         change_point[chgidx]->addr = map[i].addr;
319                         change_point[chgidx++]->pentry = &map[i];
320                         change_point[chgidx]->addr = map[i].addr + map[i].size;
321                         change_point[chgidx++]->pentry = &map[i];
322                 }
323         }
324         chg_nr = chgidx;        /* true number of change-points */
325
326         /* sort change-point list by memory addresses (low -> high) */
327         still_changing = 1;
328         while (still_changing) {
329                 still_changing = 0;
330                 for (i = 1; i < chg_nr; i++) {
331                         /* if <current_addr> > <last_addr>, swap */
332                         /* or, if current=<start_addr> & last=<end_addr>, swap */
333                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
334                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
335                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
336                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
337                            ) {
338                                 change_tmp = change_point[i];
339                                 change_point[i] = change_point[i-1];
340                                 change_point[i-1] = change_tmp;
341                                 still_changing = 1;
342                         }
343                 }
344         }
345
346         /* create a new memmap, removing overlaps */
347         overlap_entries = 0;    /* number of entries in the overlap table */
348         new_entry = 0;          /* index for creating new memmap entries */
349         last_type = 0;          /* start with undefined memory type */
350         last_addr = 0;          /* start with 0 as last starting address */
351         /* loop through change-points, determining affect on the new memmap */
352         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
353                 /* keep track of all overlapping memmap entries */
354                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
355                         /* add map entry to overlap list (> 1 entry implies an overlap) */
356                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
357                 } else {
358                         /* remove entry from list (order independent, so swap with last) */
359                         for (i = 0; i < overlap_entries; i++) {
360                                 if (overlap_list[i] == change_point[chgidx]->pentry)
361                                         overlap_list[i] = overlap_list[overlap_entries-1];
362                         }
363                         overlap_entries--;
364                 }
365                 /* if there are overlapping entries, decide which "type" to use */
366                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
367                 current_type = 0;
368                 for (i = 0; i < overlap_entries; i++)
369                         if (overlap_list[i]->type > current_type)
370                                 current_type = overlap_list[i]->type;
371                 /* continue building up new memmap based on this information */
372                 if (current_type != last_type) {
373                         if (last_type != 0) {
374                                 new_map[new_entry].size =
375                                         change_point[chgidx]->addr - last_addr;
376                                 /* move forward only if the new size was non-zero */
377                                 if (new_map[new_entry].size != 0)
378                                         if (++new_entry >= BFIN_MEMMAP_MAX)
379                                                 break;  /* no more space left for new entries */
380                         }
381                         if (current_type != 0) {
382                                 new_map[new_entry].addr = change_point[chgidx]->addr;
383                                 new_map[new_entry].type = current_type;
384                                 last_addr = change_point[chgidx]->addr;
385                         }
386                         last_type = current_type;
387                 }
388         }
389         new_nr = new_entry;     /* retain count for new entries */
390
391         /* copy new mapping into original location */
392         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
393         *pnr_map = new_nr;
394
395         return 0;
396 }
397
398 static void __init print_memory_map(char *who)
399 {
400         int i;
401
402         for (i = 0; i < bfin_memmap.nr_map; i++) {
403                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
404                         bfin_memmap.map[i].addr,
405                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
406                 switch (bfin_memmap.map[i].type) {
407                 case BFIN_MEMMAP_RAM:
408                         printk(KERN_CONT "(usable)\n");
409                         break;
410                 case BFIN_MEMMAP_RESERVED:
411                         printk(KERN_CONT "(reserved)\n");
412                         break;
413                 default:
414                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
415                         break;
416                 }
417         }
418 }
419
420 static __init int parse_memmap(char *arg)
421 {
422         unsigned long long start_at, mem_size;
423
424         if (!arg)
425                 return -EINVAL;
426
427         mem_size = memparse(arg, &arg);
428         if (*arg == '@') {
429                 start_at = memparse(arg+1, &arg);
430                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
431         } else if (*arg == '$') {
432                 start_at = memparse(arg+1, &arg);
433                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
434         }
435
436         return 0;
437 }
438
439 /*
440  * Initial parsing of the command line.  Currently, we support:
441  *  - Controlling the linux memory size: mem=xxx[KMG]
442  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
443  *       $ -> reserved memory is dcacheable
444  *       # -> reserved memory is icacheable
445  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
446  *       @ from <start> to <start>+<mem>, type RAM
447  *       $ from <start> to <start>+<mem>, type RESERVED
448  */
449 static __init void parse_cmdline_early(char *cmdline_p)
450 {
451         char c = ' ', *to = cmdline_p;
452         unsigned int memsize;
453         for (;;) {
454                 if (c == ' ') {
455                         if (!memcmp(to, "mem=", 4)) {
456                                 to += 4;
457                                 memsize = memparse(to, &to);
458                                 if (memsize)
459                                         _ramend = memsize;
460
461                         } else if (!memcmp(to, "max_mem=", 8)) {
462                                 to += 8;
463                                 memsize = memparse(to, &to);
464                                 if (memsize) {
465                                         physical_mem_end = memsize;
466                                         if (*to != ' ') {
467                                                 if (*to == '$'
468                                                     || *(to + 1) == '$')
469                                                         reserved_mem_dcache_on = 1;
470                                                 if (*to == '#'
471                                                     || *(to + 1) == '#')
472                                                         reserved_mem_icache_on = 1;
473                                         }
474                                 }
475                         } else if (!memcmp(to, "clkin_hz=", 9)) {
476                                 to += 9;
477                                 early_init_clkin_hz(to);
478 #ifdef CONFIG_EARLY_PRINTK
479                         } else if (!memcmp(to, "earlyprintk=", 12)) {
480                                 to += 12;
481                                 setup_early_printk(to);
482 #endif
483                         } else if (!memcmp(to, "memmap=", 7)) {
484                                 to += 7;
485                                 parse_memmap(to);
486                         }
487                 }
488                 c = *(to++);
489                 if (!c)
490                         break;
491         }
492 }
493
494 /*
495  * Setup memory defaults from user config.
496  * The physical memory layout looks like:
497  *
498  *  [_rambase, _ramstart]:              kernel image
499  *  [memory_start, memory_end]:         dynamic memory managed by kernel
500  *  [memory_end, _ramend]:              reserved memory
501  *      [memory_mtd_start(memory_end),
502  *              memory_mtd_start + mtd_size]:   rootfs (if any)
503  *      [_ramend - DMA_UNCACHED_REGION,
504  *              _ramend]:                       uncached DMA region
505  *  [_ramend, physical_mem_end]:        memory not managed by kernel
506  */
507 static __init void memory_setup(void)
508 {
509 #ifdef CONFIG_MTD_UCLINUX
510         unsigned long mtd_phys = 0;
511 #endif
512         unsigned long max_mem;
513
514         _rambase = (unsigned long)_stext;
515         _ramstart = (unsigned long)_end;
516
517         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
518                 console_init();
519                 panic("DMA region exceeds memory limit: %lu.",
520                         _ramend - _ramstart);
521         }
522         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
523
524 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
525         /* Due to a Hardware Anomaly we need to limit the size of usable
526          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
527          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
528          */
529 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
530         if (max_mem >= 56 * 1024 * 1024)
531                 max_mem = 56 * 1024 * 1024;
532 # else
533         if (max_mem >= 60 * 1024 * 1024)
534                 max_mem = 60 * 1024 * 1024;
535 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
536 #endif                          /* ANOMALY_05000263 */
537
538
539 #ifdef CONFIG_MPU
540         /* Round up to multiple of 4MB */
541         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
542 #else
543         memory_start = PAGE_ALIGN(_ramstart);
544 #endif
545
546 #if defined(CONFIG_MTD_UCLINUX)
547         /* generic memory mapped MTD driver */
548         memory_mtd_end = memory_end;
549
550         mtd_phys = _ramstart;
551         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
552
553 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
554         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
555                 mtd_size =
556                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
557 # endif
558
559 # if defined(CONFIG_CRAMFS)
560         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
561                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
562 # endif
563
564 # if defined(CONFIG_ROMFS_FS)
565         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
566             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
567                 mtd_size =
568                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
569
570                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
571                 if (memory_end > max_mem) {
572                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
573                         memory_end = max_mem;
574                 }
575         }
576 # endif                         /* CONFIG_ROMFS_FS */
577
578         /* Since the default MTD_UCLINUX has no magic number, we just blindly
579          * read 8 past the end of the kernel's image, and look at it.
580          * When no image is attached, mtd_size is set to a random number
581          * Do some basic sanity checks before operating on things
582          */
583         if (mtd_size == 0 || memory_end <= mtd_size) {
584                 pr_emerg("Could not find valid ram mtd attached.\n");
585         } else {
586                 memory_end -= mtd_size;
587
588                 /* Relocate MTD image to the top of memory after the uncached memory area */
589                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
590                 uclinux_ram_map.size = mtd_size;
591                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
592                         _end, mtd_size, (void *)memory_mtd_start);
593                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
594         }
595 #endif                          /* CONFIG_MTD_UCLINUX */
596
597         /* We need lo limit memory, since everything could have a text section
598          * of userspace in it, and expose anomaly 05000263. If the anomaly
599          * doesn't exist, or we don't need to - then dont.
600          */
601         if (memory_end > max_mem) {
602                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
603                 memory_end = max_mem;
604         }
605
606 #ifdef CONFIG_MPU
607         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
608         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
609 #endif
610
611 #if !defined(CONFIG_MTD_UCLINUX)
612         /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
613         memory_end -= SIZE_4K;
614 #endif
615
616         init_mm.start_code = (unsigned long)_stext;
617         init_mm.end_code = (unsigned long)_etext;
618         init_mm.end_data = (unsigned long)_edata;
619         init_mm.brk = (unsigned long)0;
620
621         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
622         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
623
624         printk(KERN_INFO "Memory map:\n"
625                "  fixedcode = 0x%p-0x%p\n"
626                "  text      = 0x%p-0x%p\n"
627                "  rodata    = 0x%p-0x%p\n"
628                "  bss       = 0x%p-0x%p\n"
629                "  data      = 0x%p-0x%p\n"
630                "    stack   = 0x%p-0x%p\n"
631                "  init      = 0x%p-0x%p\n"
632                "  available = 0x%p-0x%p\n"
633 #ifdef CONFIG_MTD_UCLINUX
634                "  rootfs    = 0x%p-0x%p\n"
635 #endif
636 #if DMA_UNCACHED_REGION > 0
637                "  DMA Zone  = 0x%p-0x%p\n"
638 #endif
639                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
640                 _stext, _etext,
641                 __start_rodata, __end_rodata,
642                 __bss_start, __bss_stop,
643                 _sdata, _edata,
644                 (void *)&init_thread_union,
645                 (void *)((int)(&init_thread_union) + 0x2000),
646                 __init_begin, __init_end,
647                 (void *)_ramstart, (void *)memory_end
648 #ifdef CONFIG_MTD_UCLINUX
649                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
650 #endif
651 #if DMA_UNCACHED_REGION > 0
652                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
653 #endif
654                 );
655 }
656
657 /*
658  * Find the lowest, highest page frame number we have available
659  */
660 void __init find_min_max_pfn(void)
661 {
662         int i;
663
664         max_pfn = 0;
665         min_low_pfn = memory_end;
666
667         for (i = 0; i < bfin_memmap.nr_map; i++) {
668                 unsigned long start, end;
669                 /* RAM? */
670                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
671                         continue;
672                 start = PFN_UP(bfin_memmap.map[i].addr);
673                 end = PFN_DOWN(bfin_memmap.map[i].addr +
674                                 bfin_memmap.map[i].size);
675                 if (start >= end)
676                         continue;
677                 if (end > max_pfn)
678                         max_pfn = end;
679                 if (start < min_low_pfn)
680                         min_low_pfn = start;
681         }
682 }
683
684 static __init void setup_bootmem_allocator(void)
685 {
686         int bootmap_size;
687         int i;
688         unsigned long start_pfn, end_pfn;
689         unsigned long curr_pfn, last_pfn, size;
690
691         /* mark memory between memory_start and memory_end usable */
692         add_memory_region(memory_start,
693                 memory_end - memory_start, BFIN_MEMMAP_RAM);
694         /* sanity check for overlap */
695         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
696         print_memory_map("boot memmap");
697
698         /* initialize globals in linux/bootmem.h */
699         find_min_max_pfn();
700         /* pfn of the last usable page frame */
701         if (max_pfn > memory_end >> PAGE_SHIFT)
702                 max_pfn = memory_end >> PAGE_SHIFT;
703         /* pfn of last page frame directly mapped by kernel */
704         max_low_pfn = max_pfn;
705         /* pfn of the first usable page frame after kernel image*/
706         if (min_low_pfn < memory_start >> PAGE_SHIFT)
707                 min_low_pfn = memory_start >> PAGE_SHIFT;
708
709         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
710         end_pfn = memory_end >> PAGE_SHIFT;
711
712         /*
713          * give all the memory to the bootmap allocator, tell it to put the
714          * boot mem_map at the start of memory.
715          */
716         bootmap_size = init_bootmem_node(NODE_DATA(0),
717                         memory_start >> PAGE_SHIFT,     /* map goes here */
718                         start_pfn, end_pfn);
719
720         /* register the memmap regions with the bootmem allocator */
721         for (i = 0; i < bfin_memmap.nr_map; i++) {
722                 /*
723                  * Reserve usable memory
724                  */
725                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
726                         continue;
727                 /*
728                  * We are rounding up the start address of usable memory:
729                  */
730                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
731                 if (curr_pfn >= end_pfn)
732                         continue;
733                 /*
734                  * ... and at the end of the usable range downwards:
735                  */
736                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
737                                          bfin_memmap.map[i].size);
738
739                 if (last_pfn > end_pfn)
740                         last_pfn = end_pfn;
741
742                 /*
743                  * .. finally, did all the rounding and playing
744                  * around just make the area go away?
745                  */
746                 if (last_pfn <= curr_pfn)
747                         continue;
748
749                 size = last_pfn - curr_pfn;
750                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
751         }
752
753         /* reserve memory before memory_start, including bootmap */
754         reserve_bootmem(PAGE_OFFSET,
755                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
756                 BOOTMEM_DEFAULT);
757 }
758
759 #define EBSZ_TO_MEG(ebsz) \
760 ({ \
761         int meg = 0; \
762         switch (ebsz & 0xf) { \
763                 case 0x1: meg =  16; break; \
764                 case 0x3: meg =  32; break; \
765                 case 0x5: meg =  64; break; \
766                 case 0x7: meg = 128; break; \
767                 case 0x9: meg = 256; break; \
768                 case 0xb: meg = 512; break; \
769         } \
770         meg; \
771 })
772 static inline int __init get_mem_size(void)
773 {
774 #if defined(EBIU_SDBCTL)
775 # if defined(BF561_FAMILY)
776         int ret = 0;
777         u32 sdbctl = bfin_read_EBIU_SDBCTL();
778         ret += EBSZ_TO_MEG(sdbctl >>  0);
779         ret += EBSZ_TO_MEG(sdbctl >>  8);
780         ret += EBSZ_TO_MEG(sdbctl >> 16);
781         ret += EBSZ_TO_MEG(sdbctl >> 24);
782         return ret;
783 # else
784         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
785 # endif
786 #elif defined(EBIU_DDRCTL1)
787         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
788         int ret = 0;
789         switch (ddrctl & 0xc0000) {
790                 case DEVSZ_64:  ret = 64 / 8;
791                 case DEVSZ_128: ret = 128 / 8;
792                 case DEVSZ_256: ret = 256 / 8;
793                 case DEVSZ_512: ret = 512 / 8;
794         }
795         switch (ddrctl & 0x30000) {
796                 case DEVWD_4:  ret *= 2;
797                 case DEVWD_8:  ret *= 2;
798                 case DEVWD_16: break;
799         }
800         if ((ddrctl & 0xc000) == 0x4000)
801                 ret *= 2;
802         return ret;
803 #endif
804         BUG();
805 }
806
807 void __init setup_arch(char **cmdline_p)
808 {
809         unsigned long sclk, cclk;
810
811         enable_shadow_console();
812
813         /* Check to make sure we are running on the right processor */
814         if (unlikely(CPUID != bfin_cpuid()))
815                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
816                         CPU, bfin_cpuid(), bfin_revid());
817
818 #ifdef CONFIG_DUMMY_CONSOLE
819         conswitchp = &dummy_con;
820 #endif
821
822 #if defined(CONFIG_CMDLINE_BOOL)
823         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
824         command_line[sizeof(command_line) - 1] = 0;
825 #endif
826
827         /* Keep a copy of command line */
828         *cmdline_p = &command_line[0];
829         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
830         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
831
832         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
833
834         /* If the user does not specify things on the command line, use
835          * what the bootloader set things up as
836          */
837         physical_mem_end = 0;
838         parse_cmdline_early(&command_line[0]);
839
840         if (_ramend == 0)
841                 _ramend = get_mem_size() * 1024 * 1024;
842
843         if (physical_mem_end == 0)
844                 physical_mem_end = _ramend;
845
846         memory_setup();
847
848         /* Initialize Async memory banks */
849         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
850         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
851         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
852 #ifdef CONFIG_EBIU_MBSCTLVAL
853         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
854         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
855         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
856 #endif
857
858         cclk = get_cclk();
859         sclk = get_sclk();
860
861         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
862                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
863
864 #ifdef BF561_FAMILY
865         if (ANOMALY_05000266) {
866                 bfin_read_IMDMA_D0_IRQ_STATUS();
867                 bfin_read_IMDMA_D1_IRQ_STATUS();
868         }
869 #endif
870         printk(KERN_INFO "Hardware Trace ");
871         if (bfin_read_TBUFCTL() & 0x1)
872                 printk(KERN_CONT "Active ");
873         else
874                 printk(KERN_CONT "Off ");
875         if (bfin_read_TBUFCTL() & 0x2)
876                 printk(KERN_CONT "and Enabled\n");
877         else
878                 printk(KERN_CONT "and Disabled\n");
879
880         printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
881
882         /* Newer parts mirror SWRST bits in SYSCR */
883 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
884     defined(CONFIG_BF538) || defined(CONFIG_BF539)
885         _bfin_swrst = bfin_read_SWRST();
886 #else
887         /* Clear boot mode field */
888         _bfin_swrst = bfin_read_SYSCR() & ~0xf;
889 #endif
890
891 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
892         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
893 #endif
894 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
895         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
896 #endif
897
898 #ifdef CONFIG_SMP
899         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
900 #else
901         if (_bfin_swrst & RESET_DOUBLE) {
902 #endif
903                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
904 #ifdef CONFIG_DEBUG_DOUBLEFAULT
905                 /* We assume the crashing kernel, and the current symbol table match */
906                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
907                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
908                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
909                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
910 #endif
911                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
912                         init_retx);
913         } else if (_bfin_swrst & RESET_WDOG)
914                 printk(KERN_INFO "Recovering from Watchdog event\n");
915         else if (_bfin_swrst & RESET_SOFTWARE)
916                 printk(KERN_NOTICE "Reset caused by Software reset\n");
917
918         printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
919         if (bfin_compiled_revid() == 0xffff)
920                 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
921         else if (bfin_compiled_revid() == -1)
922                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
923         else
924                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
925
926         if (likely(CPUID == bfin_cpuid())) {
927                 if (bfin_revid() != bfin_compiled_revid()) {
928                         if (bfin_compiled_revid() == -1)
929                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
930                                        bfin_revid());
931                         else if (bfin_compiled_revid() != 0xffff) {
932                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
933                                        bfin_compiled_revid(), bfin_revid());
934                                 if (bfin_compiled_revid() > bfin_revid())
935                                         panic("Error: you are missing anomaly workarounds for this rev");
936                         }
937                 }
938                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
939                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
940                                CPU, bfin_revid());
941         }
942
943         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
944
945         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
946                cclk / 1000000, sclk / 1000000);
947
948         setup_bootmem_allocator();
949
950         paging_init();
951
952         /* Copy atomic sequences to their fixed location, and sanity check that
953            these locations are the ones that we advertise to userspace.  */
954         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
955                FIXED_CODE_END - FIXED_CODE_START);
956         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
957                != SIGRETURN_STUB - FIXED_CODE_START);
958         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
959                != ATOMIC_XCHG32 - FIXED_CODE_START);
960         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
961                != ATOMIC_CAS32 - FIXED_CODE_START);
962         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
963                != ATOMIC_ADD32 - FIXED_CODE_START);
964         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
965                != ATOMIC_SUB32 - FIXED_CODE_START);
966         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
967                != ATOMIC_IOR32 - FIXED_CODE_START);
968         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
969                != ATOMIC_AND32 - FIXED_CODE_START);
970         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
971                != ATOMIC_XOR32 - FIXED_CODE_START);
972         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
973                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
974
975 #ifdef CONFIG_SMP
976         platform_init_cpus();
977 #endif
978         init_exception_vectors();
979         bfin_cache_init();      /* Initialize caches for the boot CPU */
980 }
981
982 static int __init topology_init(void)
983 {
984         unsigned int cpu;
985         /* Record CPU-private information for the boot processor. */
986         bfin_setup_cpudata(0);
987
988         for_each_possible_cpu(cpu) {
989                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
990         }
991
992         return 0;
993 }
994
995 subsys_initcall(topology_init);
996
997 /* Get the input clock frequency */
998 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
999 static u_long get_clkin_hz(void)
1000 {
1001         return cached_clkin_hz;
1002 }
1003 static int __init early_init_clkin_hz(char *buf)
1004 {
1005         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1006 #ifdef BFIN_KERNEL_CLOCK
1007         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1008                 panic("cannot change clkin_hz when reprogramming clocks");
1009 #endif
1010         return 1;
1011 }
1012 early_param("clkin_hz=", early_init_clkin_hz);
1013
1014 /* Get the voltage input multiplier */
1015 static u_long get_vco(void)
1016 {
1017         static u_long cached_vco;
1018         u_long msel, pll_ctl;
1019
1020         /* The assumption here is that VCO never changes at runtime.
1021          * If, someday, we support that, then we'll have to change this.
1022          */
1023         if (cached_vco)
1024                 return cached_vco;
1025
1026         pll_ctl = bfin_read_PLL_CTL();
1027         msel = (pll_ctl >> 9) & 0x3F;
1028         if (0 == msel)
1029                 msel = 64;
1030
1031         cached_vco = get_clkin_hz();
1032         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1033         cached_vco *= msel;
1034         return cached_vco;
1035 }
1036
1037 /* Get the Core clock */
1038 u_long get_cclk(void)
1039 {
1040         static u_long cached_cclk_pll_div, cached_cclk;
1041         u_long csel, ssel;
1042
1043         if (bfin_read_PLL_STAT() & 0x1)
1044                 return get_clkin_hz();
1045
1046         ssel = bfin_read_PLL_DIV();
1047         if (ssel == cached_cclk_pll_div)
1048                 return cached_cclk;
1049         else
1050                 cached_cclk_pll_div = ssel;
1051
1052         csel = ((ssel >> 4) & 0x03);
1053         ssel &= 0xf;
1054         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1055                 cached_cclk = get_vco() / ssel;
1056         else
1057                 cached_cclk = get_vco() >> csel;
1058         return cached_cclk;
1059 }
1060 EXPORT_SYMBOL(get_cclk);
1061
1062 /* Get the System clock */
1063 u_long get_sclk(void)
1064 {
1065         static u_long cached_sclk;
1066         u_long ssel;
1067
1068         /* The assumption here is that SCLK never changes at runtime.
1069          * If, someday, we support that, then we'll have to change this.
1070          */
1071         if (cached_sclk)
1072                 return cached_sclk;
1073
1074         if (bfin_read_PLL_STAT() & 0x1)
1075                 return get_clkin_hz();
1076
1077         ssel = bfin_read_PLL_DIV() & 0xf;
1078         if (0 == ssel) {
1079                 printk(KERN_WARNING "Invalid System Clock\n");
1080                 ssel = 1;
1081         }
1082
1083         cached_sclk = get_vco() / ssel;
1084         return cached_sclk;
1085 }
1086 EXPORT_SYMBOL(get_sclk);
1087
1088 unsigned long sclk_to_usecs(unsigned long sclk)
1089 {
1090         u64 tmp = USEC_PER_SEC * (u64)sclk;
1091         do_div(tmp, get_sclk());
1092         return tmp;
1093 }
1094 EXPORT_SYMBOL(sclk_to_usecs);
1095
1096 unsigned long usecs_to_sclk(unsigned long usecs)
1097 {
1098         u64 tmp = get_sclk() * (u64)usecs;
1099         do_div(tmp, USEC_PER_SEC);
1100         return tmp;
1101 }
1102 EXPORT_SYMBOL(usecs_to_sclk);
1103
1104 /*
1105  *      Get CPU information for use by the procfs.
1106  */
1107 static int show_cpuinfo(struct seq_file *m, void *v)
1108 {
1109         char *cpu, *mmu, *fpu, *vendor, *cache;
1110         uint32_t revid;
1111         int cpu_num = *(unsigned int *)v;
1112         u_long sclk, cclk;
1113         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1114         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1115
1116         cpu = CPU;
1117         mmu = "none";
1118         fpu = "none";
1119         revid = bfin_revid();
1120
1121         sclk = get_sclk();
1122         cclk = get_cclk();
1123
1124         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1125         case 0xca:
1126                 vendor = "Analog Devices";
1127                 break;
1128         default:
1129                 vendor = "unknown";
1130                 break;
1131         }
1132
1133         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1134
1135         if (CPUID == bfin_cpuid())
1136                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1137         else
1138                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1139                         CPUID, bfin_cpuid());
1140
1141         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1142                 "stepping\t: %d ",
1143                 cpu, cclk/1000000, sclk/1000000,
1144 #ifdef CONFIG_MPU
1145                 "mpu on",
1146 #else
1147                 "mpu off",
1148 #endif
1149                 revid);
1150
1151         if (bfin_revid() != bfin_compiled_revid()) {
1152                 if (bfin_compiled_revid() == -1)
1153                         seq_printf(m, "(Compiled for Rev none)");
1154                 else if (bfin_compiled_revid() == 0xffff)
1155                         seq_printf(m, "(Compiled for Rev any)");
1156                 else
1157                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1158         }
1159
1160         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1161                 cclk/1000000, cclk%1000000,
1162                 sclk/1000000, sclk%1000000);
1163         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1164                 "Calibration\t: %lu loops\n",
1165                 (loops_per_jiffy * HZ) / 500000,
1166                 ((loops_per_jiffy * HZ) / 5000) % 100,
1167                 (loops_per_jiffy * HZ));
1168
1169         /* Check Cache configutation */
1170         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1171         case ACACHE_BSRAM:
1172                 cache = "dbank-A/B\t: cache/sram";
1173                 dcache_size = 16;
1174                 dsup_banks = 1;
1175                 break;
1176         case ACACHE_BCACHE:
1177                 cache = "dbank-A/B\t: cache/cache";
1178                 dcache_size = 32;
1179                 dsup_banks = 2;
1180                 break;
1181         case ASRAM_BSRAM:
1182                 cache = "dbank-A/B\t: sram/sram";
1183                 dcache_size = 0;
1184                 dsup_banks = 0;
1185                 break;
1186         default:
1187                 cache = "unknown";
1188                 dcache_size = 0;
1189                 dsup_banks = 0;
1190                 break;
1191         }
1192
1193         /* Is it turned on? */
1194         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1195                 dcache_size = 0;
1196
1197         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1198                 icache_size = 0;
1199
1200         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1201                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1202                 icache_size, dcache_size, 0);
1203         seq_printf(m, "%s\n", cache);
1204         seq_printf(m, "external memory\t: "
1205 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1206                    "cacheable"
1207 #else
1208                    "uncacheable"
1209 #endif
1210                    " in instruction cache\n");
1211         seq_printf(m, "external memory\t: "
1212 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1213                       "cacheable (write-back)"
1214 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1215                       "cacheable (write-through)"
1216 #else
1217                       "uncacheable"
1218 #endif
1219                       " in data cache\n");
1220
1221         if (icache_size)
1222                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1223                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1224         else
1225                 seq_printf(m, "icache setup\t: off\n");
1226
1227         seq_printf(m,
1228                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1229                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1230                    BFIN_DLINES);
1231 #ifdef __ARCH_SYNC_CORE_DCACHE
1232         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1233 #endif
1234 #ifdef __ARCH_SYNC_CORE_ICACHE
1235         seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1236 #endif
1237
1238         if (cpu_num != num_possible_cpus() - 1)
1239                 return 0;
1240
1241         if (L2_LENGTH) {
1242                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1243                 seq_printf(m, "L2 SRAM\t\t: "
1244 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1245                               "cacheable"
1246 #else
1247                               "uncacheable"
1248 #endif
1249                               " in instruction cache\n");
1250                 seq_printf(m, "L2 SRAM\t\t: "
1251 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1252                               "cacheable (write-back)"
1253 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1254                               "cacheable (write-through)"
1255 #else
1256                               "uncacheable"
1257 #endif
1258                               " in data cache\n");
1259         }
1260         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1261         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1262                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1263         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1264                 ((int)memory_end - (int)_stext) >> 10,
1265                 _stext,
1266                 (void *)memory_end);
1267         seq_printf(m, "\n");
1268
1269         return 0;
1270 }
1271
1272 static void *c_start(struct seq_file *m, loff_t *pos)
1273 {
1274         if (*pos == 0)
1275                 *pos = first_cpu(cpu_online_map);
1276         if (*pos >= num_online_cpus())
1277                 return NULL;
1278
1279         return pos;
1280 }
1281
1282 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1283 {
1284         *pos = next_cpu(*pos, cpu_online_map);
1285
1286         return c_start(m, pos);
1287 }
1288
1289 static void c_stop(struct seq_file *m, void *v)
1290 {
1291 }
1292
1293 const struct seq_operations cpuinfo_op = {
1294         .start = c_start,
1295         .next = c_next,
1296         .stop = c_stop,
1297         .show = show_cpuinfo,
1298 };
1299
1300 void __init cmdline_init(const char *r0)
1301 {
1302         early_shadow_stamp();
1303         if (r0)
1304                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1305 }