]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/blackfin/kernel/setup.c
Merge branch 'akpm' (Andrew's patch-bomb)
[karo-tx-linux.git] / arch / blackfin / kernel / setup.c
1 /*
2  * Copyright 2004-2010 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 #include <asm/irq_handler.h>
33 #include <asm/pda.h>
34
35 u16 _bfin_swrst;
36 EXPORT_SYMBOL(_bfin_swrst);
37
38 unsigned long memory_start, memory_end, physical_mem_end;
39 unsigned long _rambase, _ramstart, _ramend;
40 unsigned long reserved_mem_dcache_on;
41 unsigned long reserved_mem_icache_on;
42 EXPORT_SYMBOL(memory_start);
43 EXPORT_SYMBOL(memory_end);
44 EXPORT_SYMBOL(physical_mem_end);
45 EXPORT_SYMBOL(_ramend);
46 EXPORT_SYMBOL(reserved_mem_dcache_on);
47
48 #ifdef CONFIG_MTD_UCLINUX
49 extern struct map_info uclinux_ram_map;
50 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
51 unsigned long _ebss;
52 EXPORT_SYMBOL(memory_mtd_end);
53 EXPORT_SYMBOL(memory_mtd_start);
54 EXPORT_SYMBOL(mtd_size);
55 #endif
56
57 char __initdata command_line[COMMAND_LINE_SIZE];
58 struct blackfin_initial_pda __initdata initial_pda;
59
60 /* boot memmap, for parsing "memmap=" */
61 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
62 #define BFIN_MEMMAP_RAM         1
63 #define BFIN_MEMMAP_RESERVED    2
64 static struct bfin_memmap {
65         int nr_map;
66         struct bfin_memmap_entry {
67                 unsigned long long addr; /* start of memory segment */
68                 unsigned long long size;
69                 unsigned long type;
70         } map[BFIN_MEMMAP_MAX];
71 } bfin_memmap __initdata;
72
73 /* for memmap sanitization */
74 struct change_member {
75         struct bfin_memmap_entry *pentry; /* pointer to original entry */
76         unsigned long long addr; /* address for this change point */
77 };
78 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
81 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
82
83 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
84
85 static int early_init_clkin_hz(char *buf);
86
87 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
88 void __init generate_cplb_tables(void)
89 {
90         unsigned int cpu;
91
92         generate_cplb_tables_all();
93         /* Generate per-CPU I&D CPLB tables */
94         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
95                 generate_cplb_tables_cpu(cpu);
96 }
97 #endif
98
99 void __cpuinit bfin_setup_caches(unsigned int cpu)
100 {
101 #ifdef CONFIG_BFIN_ICACHE
102         bfin_icache_init(icplb_tbl[cpu]);
103 #endif
104
105 #ifdef CONFIG_BFIN_DCACHE
106         bfin_dcache_init(dcplb_tbl[cpu]);
107 #endif
108
109         bfin_setup_cpudata(cpu);
110
111         /*
112          * In cache coherence emulation mode, we need to have the
113          * D-cache enabled before running any atomic operation which
114          * might involve cache invalidation (i.e. spinlock, rwlock).
115          * So printk's are deferred until then.
116          */
117 #ifdef CONFIG_BFIN_ICACHE
118         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
119         printk(KERN_INFO "  External memory:"
120 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
121                " cacheable"
122 # else
123                " uncacheable"
124 # endif
125                " in instruction cache\n");
126         if (L2_LENGTH)
127                 printk(KERN_INFO "  L2 SRAM        :"
128 # ifdef CONFIG_BFIN_L2_ICACHEABLE
129                        " cacheable"
130 # else
131                        " uncacheable"
132 # endif
133                        " in instruction cache\n");
134
135 #else
136         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
137 #endif
138
139 #ifdef CONFIG_BFIN_DCACHE
140         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
141         printk(KERN_INFO "  External memory:"
142 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
143                " cacheable (write-back)"
144 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
145                " cacheable (write-through)"
146 # else
147                " uncacheable"
148 # endif
149                " in data cache\n");
150         if (L2_LENGTH)
151                 printk(KERN_INFO "  L2 SRAM        :"
152 # if defined CONFIG_BFIN_L2_WRITEBACK
153                        " cacheable (write-back)"
154 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
155                        " cacheable (write-through)"
156 # else
157                        " uncacheable"
158 # endif
159                        " in data cache\n");
160 #else
161         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
162 #endif
163 }
164
165 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
166 {
167         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
168
169         cpudata->imemctl = bfin_read_IMEM_CONTROL();
170         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
171 }
172
173 void __init bfin_cache_init(void)
174 {
175 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
176         generate_cplb_tables();
177 #endif
178         bfin_setup_caches(0);
179 }
180
181 void __init bfin_relocate_l1_mem(void)
182 {
183         unsigned long text_l1_len = (unsigned long)_text_l1_len;
184         unsigned long data_l1_len = (unsigned long)_data_l1_len;
185         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
186         unsigned long l2_len = (unsigned long)_l2_len;
187
188         early_shadow_stamp();
189
190         /*
191          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
192          * we know that everything about l1 text/data is nice and aligned,
193          * so copy by 4 byte chunks, and don't worry about overlapping
194          * src/dest.
195          *
196          * We can't use the dma_memcpy functions, since they can call
197          * scheduler functions which might be in L1 :( and core writes
198          * into L1 instruction cause bad access errors, so we are stuck,
199          * we are required to use DMA, but can't use the common dma
200          * functions. We can't use memcpy either - since that might be
201          * going to be in the relocated L1
202          */
203
204         blackfin_dma_early_init();
205
206         /* if necessary, copy L1 text to L1 instruction SRAM */
207         if (L1_CODE_LENGTH && text_l1_len)
208                 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
209
210         /* if necessary, copy L1 data to L1 data bank A SRAM */
211         if (L1_DATA_A_LENGTH && data_l1_len)
212                 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
213
214         /* if necessary, copy L1 data B to L1 data bank B SRAM */
215         if (L1_DATA_B_LENGTH && data_b_l1_len)
216                 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
217
218         early_dma_memcpy_done();
219
220 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
221         blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
222 #endif
223
224         /* if necessary, copy L2 text/data to L2 SRAM */
225         if (L2_LENGTH && l2_len)
226                 memcpy(_stext_l2, _l2_lma, l2_len);
227 }
228
229 #ifdef CONFIG_SMP
230 void __init bfin_relocate_coreb_l1_mem(void)
231 {
232         unsigned long text_l1_len = (unsigned long)_text_l1_len;
233         unsigned long data_l1_len = (unsigned long)_data_l1_len;
234         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
235
236         blackfin_dma_early_init();
237
238         /* if necessary, copy L1 text to L1 instruction SRAM */
239         if (L1_CODE_LENGTH && text_l1_len)
240                 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
241                                 text_l1_len);
242
243         /* if necessary, copy L1 data to L1 data bank A SRAM */
244         if (L1_DATA_A_LENGTH && data_l1_len)
245                 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
246                                 data_l1_len);
247
248         /* if necessary, copy L1 data B to L1 data bank B SRAM */
249         if (L1_DATA_B_LENGTH && data_b_l1_len)
250                 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
251                                 data_b_l1_len);
252
253         early_dma_memcpy_done();
254
255 #ifdef CONFIG_ICACHE_FLUSH_L1
256         blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
257                         (unsigned long)_stext_l1 + COREB_L1_CODE_START;
258 #endif
259 }
260 #endif
261
262 #ifdef CONFIG_ROMKERNEL
263 void __init bfin_relocate_xip_data(void)
264 {
265         early_shadow_stamp();
266
267         memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
268         memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
269 }
270 #endif
271
272 /* add_memory_region to memmap */
273 static void __init add_memory_region(unsigned long long start,
274                               unsigned long long size, int type)
275 {
276         int i;
277
278         i = bfin_memmap.nr_map;
279
280         if (i == BFIN_MEMMAP_MAX) {
281                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
282                 return;
283         }
284
285         bfin_memmap.map[i].addr = start;
286         bfin_memmap.map[i].size = size;
287         bfin_memmap.map[i].type = type;
288         bfin_memmap.nr_map++;
289 }
290
291 /*
292  * Sanitize the boot memmap, removing overlaps.
293  */
294 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
295 {
296         struct change_member *change_tmp;
297         unsigned long current_type, last_type;
298         unsigned long long last_addr;
299         int chgidx, still_changing;
300         int overlap_entries;
301         int new_entry;
302         int old_nr, new_nr, chg_nr;
303         int i;
304
305         /*
306                 Visually we're performing the following (1,2,3,4 = memory types)
307
308                 Sample memory map (w/overlaps):
309                    ____22__________________
310                    ______________________4_
311                    ____1111________________
312                    _44_____________________
313                    11111111________________
314                    ____________________33__
315                    ___________44___________
316                    __________33333_________
317                    ______________22________
318                    ___________________2222_
319                    _________111111111______
320                    _____________________11_
321                    _________________4______
322
323                 Sanitized equivalent (no overlap):
324                    1_______________________
325                    _44_____________________
326                    ___1____________________
327                    ____22__________________
328                    ______11________________
329                    _________1______________
330                    __________3_____________
331                    ___________44___________
332                    _____________33_________
333                    _______________2________
334                    ________________1_______
335                    _________________4______
336                    ___________________2____
337                    ____________________33__
338                    ______________________4_
339         */
340         /* if there's only one memory region, don't bother */
341         if (*pnr_map < 2)
342                 return -1;
343
344         old_nr = *pnr_map;
345
346         /* bail out if we find any unreasonable addresses in memmap */
347         for (i = 0; i < old_nr; i++)
348                 if (map[i].addr + map[i].size < map[i].addr)
349                         return -1;
350
351         /* create pointers for initial change-point information (for sorting) */
352         for (i = 0; i < 2*old_nr; i++)
353                 change_point[i] = &change_point_list[i];
354
355         /* record all known change-points (starting and ending addresses),
356            omitting those that are for empty memory regions */
357         chgidx = 0;
358         for (i = 0; i < old_nr; i++) {
359                 if (map[i].size != 0) {
360                         change_point[chgidx]->addr = map[i].addr;
361                         change_point[chgidx++]->pentry = &map[i];
362                         change_point[chgidx]->addr = map[i].addr + map[i].size;
363                         change_point[chgidx++]->pentry = &map[i];
364                 }
365         }
366         chg_nr = chgidx;        /* true number of change-points */
367
368         /* sort change-point list by memory addresses (low -> high) */
369         still_changing = 1;
370         while (still_changing) {
371                 still_changing = 0;
372                 for (i = 1; i < chg_nr; i++) {
373                         /* if <current_addr> > <last_addr>, swap */
374                         /* or, if current=<start_addr> & last=<end_addr>, swap */
375                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
376                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
377                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
378                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
379                            ) {
380                                 change_tmp = change_point[i];
381                                 change_point[i] = change_point[i-1];
382                                 change_point[i-1] = change_tmp;
383                                 still_changing = 1;
384                         }
385                 }
386         }
387
388         /* create a new memmap, removing overlaps */
389         overlap_entries = 0;    /* number of entries in the overlap table */
390         new_entry = 0;          /* index for creating new memmap entries */
391         last_type = 0;          /* start with undefined memory type */
392         last_addr = 0;          /* start with 0 as last starting address */
393         /* loop through change-points, determining affect on the new memmap */
394         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
395                 /* keep track of all overlapping memmap entries */
396                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
397                         /* add map entry to overlap list (> 1 entry implies an overlap) */
398                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
399                 } else {
400                         /* remove entry from list (order independent, so swap with last) */
401                         for (i = 0; i < overlap_entries; i++) {
402                                 if (overlap_list[i] == change_point[chgidx]->pentry)
403                                         overlap_list[i] = overlap_list[overlap_entries-1];
404                         }
405                         overlap_entries--;
406                 }
407                 /* if there are overlapping entries, decide which "type" to use */
408                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
409                 current_type = 0;
410                 for (i = 0; i < overlap_entries; i++)
411                         if (overlap_list[i]->type > current_type)
412                                 current_type = overlap_list[i]->type;
413                 /* continue building up new memmap based on this information */
414                 if (current_type != last_type) {
415                         if (last_type != 0) {
416                                 new_map[new_entry].size =
417                                         change_point[chgidx]->addr - last_addr;
418                                 /* move forward only if the new size was non-zero */
419                                 if (new_map[new_entry].size != 0)
420                                         if (++new_entry >= BFIN_MEMMAP_MAX)
421                                                 break;  /* no more space left for new entries */
422                         }
423                         if (current_type != 0) {
424                                 new_map[new_entry].addr = change_point[chgidx]->addr;
425                                 new_map[new_entry].type = current_type;
426                                 last_addr = change_point[chgidx]->addr;
427                         }
428                         last_type = current_type;
429                 }
430         }
431         new_nr = new_entry;     /* retain count for new entries */
432
433         /* copy new mapping into original location */
434         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
435         *pnr_map = new_nr;
436
437         return 0;
438 }
439
440 static void __init print_memory_map(char *who)
441 {
442         int i;
443
444         for (i = 0; i < bfin_memmap.nr_map; i++) {
445                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
446                         bfin_memmap.map[i].addr,
447                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
448                 switch (bfin_memmap.map[i].type) {
449                 case BFIN_MEMMAP_RAM:
450                         printk(KERN_CONT "(usable)\n");
451                         break;
452                 case BFIN_MEMMAP_RESERVED:
453                         printk(KERN_CONT "(reserved)\n");
454                         break;
455                 default:
456                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
457                         break;
458                 }
459         }
460 }
461
462 static __init int parse_memmap(char *arg)
463 {
464         unsigned long long start_at, mem_size;
465
466         if (!arg)
467                 return -EINVAL;
468
469         mem_size = memparse(arg, &arg);
470         if (*arg == '@') {
471                 start_at = memparse(arg+1, &arg);
472                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
473         } else if (*arg == '$') {
474                 start_at = memparse(arg+1, &arg);
475                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
476         }
477
478         return 0;
479 }
480
481 /*
482  * Initial parsing of the command line.  Currently, we support:
483  *  - Controlling the linux memory size: mem=xxx[KMG]
484  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
485  *       $ -> reserved memory is dcacheable
486  *       # -> reserved memory is icacheable
487  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
488  *       @ from <start> to <start>+<mem>, type RAM
489  *       $ from <start> to <start>+<mem>, type RESERVED
490  */
491 static __init void parse_cmdline_early(char *cmdline_p)
492 {
493         char c = ' ', *to = cmdline_p;
494         unsigned int memsize;
495         for (;;) {
496                 if (c == ' ') {
497                         if (!memcmp(to, "mem=", 4)) {
498                                 to += 4;
499                                 memsize = memparse(to, &to);
500                                 if (memsize)
501                                         _ramend = memsize;
502
503                         } else if (!memcmp(to, "max_mem=", 8)) {
504                                 to += 8;
505                                 memsize = memparse(to, &to);
506                                 if (memsize) {
507                                         physical_mem_end = memsize;
508                                         if (*to != ' ') {
509                                                 if (*to == '$'
510                                                     || *(to + 1) == '$')
511                                                         reserved_mem_dcache_on = 1;
512                                                 if (*to == '#'
513                                                     || *(to + 1) == '#')
514                                                         reserved_mem_icache_on = 1;
515                                         }
516                                 }
517                         } else if (!memcmp(to, "clkin_hz=", 9)) {
518                                 to += 9;
519                                 early_init_clkin_hz(to);
520 #ifdef CONFIG_EARLY_PRINTK
521                         } else if (!memcmp(to, "earlyprintk=", 12)) {
522                                 to += 12;
523                                 setup_early_printk(to);
524 #endif
525                         } else if (!memcmp(to, "memmap=", 7)) {
526                                 to += 7;
527                                 parse_memmap(to);
528                         }
529                 }
530                 c = *(to++);
531                 if (!c)
532                         break;
533         }
534 }
535
536 /*
537  * Setup memory defaults from user config.
538  * The physical memory layout looks like:
539  *
540  *  [_rambase, _ramstart]:              kernel image
541  *  [memory_start, memory_end]:         dynamic memory managed by kernel
542  *  [memory_end, _ramend]:              reserved memory
543  *      [memory_mtd_start(memory_end),
544  *              memory_mtd_start + mtd_size]:   rootfs (if any)
545  *      [_ramend - DMA_UNCACHED_REGION,
546  *              _ramend]:                       uncached DMA region
547  *  [_ramend, physical_mem_end]:        memory not managed by kernel
548  */
549 static __init void memory_setup(void)
550 {
551 #ifdef CONFIG_MTD_UCLINUX
552         unsigned long mtd_phys = 0;
553         unsigned long n;
554 #endif
555         unsigned long max_mem;
556
557         _rambase = CONFIG_BOOT_LOAD;
558         _ramstart = (unsigned long)_end;
559
560         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
561                 console_init();
562                 panic("DMA region exceeds memory limit: %lu.",
563                         _ramend - _ramstart);
564         }
565         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
566
567 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
568         /* Due to a Hardware Anomaly we need to limit the size of usable
569          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
570          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
571          */
572 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
573         if (max_mem >= 56 * 1024 * 1024)
574                 max_mem = 56 * 1024 * 1024;
575 # else
576         if (max_mem >= 60 * 1024 * 1024)
577                 max_mem = 60 * 1024 * 1024;
578 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
579 #endif                          /* ANOMALY_05000263 */
580
581
582 #ifdef CONFIG_MPU
583         /* Round up to multiple of 4MB */
584         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
585 #else
586         memory_start = PAGE_ALIGN(_ramstart);
587 #endif
588
589 #if defined(CONFIG_MTD_UCLINUX)
590         /* generic memory mapped MTD driver */
591         memory_mtd_end = memory_end;
592
593         mtd_phys = _ramstart;
594         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
595
596 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
597         n = ext2_image_size((void *)(mtd_phys + 0x400));
598         if (n)
599                 mtd_size = PAGE_ALIGN(n * 1024);
600 # endif
601
602 # if defined(CONFIG_CRAMFS)
603         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
604                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
605 # endif
606
607 # if defined(CONFIG_ROMFS_FS)
608         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
609             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
610                 mtd_size =
611                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
612
613                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
614                 if (memory_end > max_mem) {
615                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
616                         memory_end = max_mem;
617                 }
618         }
619 # endif                         /* CONFIG_ROMFS_FS */
620
621         /* Since the default MTD_UCLINUX has no magic number, we just blindly
622          * read 8 past the end of the kernel's image, and look at it.
623          * When no image is attached, mtd_size is set to a random number
624          * Do some basic sanity checks before operating on things
625          */
626         if (mtd_size == 0 || memory_end <= mtd_size) {
627                 pr_emerg("Could not find valid ram mtd attached.\n");
628         } else {
629                 memory_end -= mtd_size;
630
631                 /* Relocate MTD image to the top of memory after the uncached memory area */
632                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
633                 uclinux_ram_map.size = mtd_size;
634                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
635                         _end, mtd_size, (void *)memory_mtd_start);
636                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
637         }
638 #endif                          /* CONFIG_MTD_UCLINUX */
639
640         /* We need lo limit memory, since everything could have a text section
641          * of userspace in it, and expose anomaly 05000263. If the anomaly
642          * doesn't exist, or we don't need to - then dont.
643          */
644         if (memory_end > max_mem) {
645                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
646                 memory_end = max_mem;
647         }
648
649 #ifdef CONFIG_MPU
650 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
651         page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
652                                         ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
653 #else
654         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
655 #endif
656         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
657 #endif
658
659         init_mm.start_code = (unsigned long)_stext;
660         init_mm.end_code = (unsigned long)_etext;
661         init_mm.end_data = (unsigned long)_edata;
662         init_mm.brk = (unsigned long)0;
663
664         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
665         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
666
667         printk(KERN_INFO "Memory map:\n"
668                "  fixedcode = 0x%p-0x%p\n"
669                "  text      = 0x%p-0x%p\n"
670                "  rodata    = 0x%p-0x%p\n"
671                "  bss       = 0x%p-0x%p\n"
672                "  data      = 0x%p-0x%p\n"
673                "    stack   = 0x%p-0x%p\n"
674                "  init      = 0x%p-0x%p\n"
675                "  available = 0x%p-0x%p\n"
676 #ifdef CONFIG_MTD_UCLINUX
677                "  rootfs    = 0x%p-0x%p\n"
678 #endif
679 #if DMA_UNCACHED_REGION > 0
680                "  DMA Zone  = 0x%p-0x%p\n"
681 #endif
682                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
683                 _stext, _etext,
684                 __start_rodata, __end_rodata,
685                 __bss_start, __bss_stop,
686                 _sdata, _edata,
687                 (void *)&init_thread_union,
688                 (void *)((int)(&init_thread_union) + THREAD_SIZE),
689                 __init_begin, __init_end,
690                 (void *)_ramstart, (void *)memory_end
691 #ifdef CONFIG_MTD_UCLINUX
692                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
693 #endif
694 #if DMA_UNCACHED_REGION > 0
695                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
696 #endif
697                 );
698 }
699
700 /*
701  * Find the lowest, highest page frame number we have available
702  */
703 void __init find_min_max_pfn(void)
704 {
705         int i;
706
707         max_pfn = 0;
708         min_low_pfn = memory_end;
709
710         for (i = 0; i < bfin_memmap.nr_map; i++) {
711                 unsigned long start, end;
712                 /* RAM? */
713                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
714                         continue;
715                 start = PFN_UP(bfin_memmap.map[i].addr);
716                 end = PFN_DOWN(bfin_memmap.map[i].addr +
717                                 bfin_memmap.map[i].size);
718                 if (start >= end)
719                         continue;
720                 if (end > max_pfn)
721                         max_pfn = end;
722                 if (start < min_low_pfn)
723                         min_low_pfn = start;
724         }
725 }
726
727 static __init void setup_bootmem_allocator(void)
728 {
729         int bootmap_size;
730         int i;
731         unsigned long start_pfn, end_pfn;
732         unsigned long curr_pfn, last_pfn, size;
733
734         /* mark memory between memory_start and memory_end usable */
735         add_memory_region(memory_start,
736                 memory_end - memory_start, BFIN_MEMMAP_RAM);
737         /* sanity check for overlap */
738         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
739         print_memory_map("boot memmap");
740
741         /* initialize globals in linux/bootmem.h */
742         find_min_max_pfn();
743         /* pfn of the last usable page frame */
744         if (max_pfn > memory_end >> PAGE_SHIFT)
745                 max_pfn = memory_end >> PAGE_SHIFT;
746         /* pfn of last page frame directly mapped by kernel */
747         max_low_pfn = max_pfn;
748         /* pfn of the first usable page frame after kernel image*/
749         if (min_low_pfn < memory_start >> PAGE_SHIFT)
750                 min_low_pfn = memory_start >> PAGE_SHIFT;
751
752         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
753         end_pfn = memory_end >> PAGE_SHIFT;
754
755         /*
756          * give all the memory to the bootmap allocator, tell it to put the
757          * boot mem_map at the start of memory.
758          */
759         bootmap_size = init_bootmem_node(NODE_DATA(0),
760                         memory_start >> PAGE_SHIFT,     /* map goes here */
761                         start_pfn, end_pfn);
762
763         /* register the memmap regions with the bootmem allocator */
764         for (i = 0; i < bfin_memmap.nr_map; i++) {
765                 /*
766                  * Reserve usable memory
767                  */
768                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
769                         continue;
770                 /*
771                  * We are rounding up the start address of usable memory:
772                  */
773                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
774                 if (curr_pfn >= end_pfn)
775                         continue;
776                 /*
777                  * ... and at the end of the usable range downwards:
778                  */
779                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
780                                          bfin_memmap.map[i].size);
781
782                 if (last_pfn > end_pfn)
783                         last_pfn = end_pfn;
784
785                 /*
786                  * .. finally, did all the rounding and playing
787                  * around just make the area go away?
788                  */
789                 if (last_pfn <= curr_pfn)
790                         continue;
791
792                 size = last_pfn - curr_pfn;
793                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
794         }
795
796         /* reserve memory before memory_start, including bootmap */
797         reserve_bootmem(PAGE_OFFSET,
798                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
799                 BOOTMEM_DEFAULT);
800 }
801
802 #define EBSZ_TO_MEG(ebsz) \
803 ({ \
804         int meg = 0; \
805         switch (ebsz & 0xf) { \
806                 case 0x1: meg =  16; break; \
807                 case 0x3: meg =  32; break; \
808                 case 0x5: meg =  64; break; \
809                 case 0x7: meg = 128; break; \
810                 case 0x9: meg = 256; break; \
811                 case 0xb: meg = 512; break; \
812         } \
813         meg; \
814 })
815 static inline int __init get_mem_size(void)
816 {
817 #if defined(EBIU_SDBCTL)
818 # if defined(BF561_FAMILY)
819         int ret = 0;
820         u32 sdbctl = bfin_read_EBIU_SDBCTL();
821         ret += EBSZ_TO_MEG(sdbctl >>  0);
822         ret += EBSZ_TO_MEG(sdbctl >>  8);
823         ret += EBSZ_TO_MEG(sdbctl >> 16);
824         ret += EBSZ_TO_MEG(sdbctl >> 24);
825         return ret;
826 # else
827         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
828 # endif
829 #elif defined(EBIU_DDRCTL1)
830         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
831         int ret = 0;
832         switch (ddrctl & 0xc0000) {
833         case DEVSZ_64:
834                 ret = 64 / 8;
835                 break;
836         case DEVSZ_128:
837                 ret = 128 / 8;
838                 break;
839         case DEVSZ_256:
840                 ret = 256 / 8;
841                 break;
842         case DEVSZ_512:
843                 ret = 512 / 8;
844                 break;
845         }
846         switch (ddrctl & 0x30000) {
847                 case DEVWD_4:  ret *= 2;
848                 case DEVWD_8:  ret *= 2;
849                 case DEVWD_16: break;
850         }
851         if ((ddrctl & 0xc000) == 0x4000)
852                 ret *= 2;
853         return ret;
854 #endif
855         BUG();
856 }
857
858 __attribute__((weak))
859 void __init native_machine_early_platform_add_devices(void)
860 {
861 }
862
863 void __init setup_arch(char **cmdline_p)
864 {
865         u32 mmr;
866         unsigned long sclk, cclk;
867
868         native_machine_early_platform_add_devices();
869
870         enable_shadow_console();
871
872         /* Check to make sure we are running on the right processor */
873         if (unlikely(CPUID != bfin_cpuid()))
874                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
875                         CPU, bfin_cpuid(), bfin_revid());
876
877 #ifdef CONFIG_DUMMY_CONSOLE
878         conswitchp = &dummy_con;
879 #endif
880
881 #if defined(CONFIG_CMDLINE_BOOL)
882         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
883         command_line[sizeof(command_line) - 1] = 0;
884 #endif
885
886         /* Keep a copy of command line */
887         *cmdline_p = &command_line[0];
888         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
889         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
890
891         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
892
893         /* If the user does not specify things on the command line, use
894          * what the bootloader set things up as
895          */
896         physical_mem_end = 0;
897         parse_cmdline_early(&command_line[0]);
898
899         if (_ramend == 0)
900                 _ramend = get_mem_size() * 1024 * 1024;
901
902         if (physical_mem_end == 0)
903                 physical_mem_end = _ramend;
904
905         memory_setup();
906
907         /* Initialize Async memory banks */
908         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
909         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
910         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
911 #ifdef CONFIG_EBIU_MBSCTLVAL
912         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
913         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
914         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
915 #endif
916 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
917         bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
918         bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
919         bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
920         bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
921                                         ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
922 #endif
923
924         cclk = get_cclk();
925         sclk = get_sclk();
926
927         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
928                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
929
930 #ifdef BF561_FAMILY
931         if (ANOMALY_05000266) {
932                 bfin_read_IMDMA_D0_IRQ_STATUS();
933                 bfin_read_IMDMA_D1_IRQ_STATUS();
934         }
935 #endif
936
937         mmr = bfin_read_TBUFCTL();
938         printk(KERN_INFO "Hardware Trace %s and %sabled\n",
939                 (mmr & 0x1) ? "active" : "off",
940                 (mmr & 0x2) ? "en" : "dis");
941
942         mmr = bfin_read_SYSCR();
943         printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
944
945         /* Newer parts mirror SWRST bits in SYSCR */
946 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
947     defined(CONFIG_BF538) || defined(CONFIG_BF539)
948         _bfin_swrst = bfin_read_SWRST();
949 #else
950         /* Clear boot mode field */
951         _bfin_swrst = mmr & ~0xf;
952 #endif
953
954 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
955         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
956 #endif
957 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
958         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
959 #endif
960
961 #ifdef CONFIG_SMP
962         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
963 #else
964         if (_bfin_swrst & RESET_DOUBLE) {
965 #endif
966                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
967 #ifdef CONFIG_DEBUG_DOUBLEFAULT
968                 /* We assume the crashing kernel, and the current symbol table match */
969                 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
970                         initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
971                         initial_pda.retx_doublefault);
972                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
973                         initial_pda.dcplb_doublefault_addr);
974                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
975                         initial_pda.icplb_doublefault_addr);
976 #endif
977                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
978                         initial_pda.retx);
979         } else if (_bfin_swrst & RESET_WDOG)
980                 printk(KERN_INFO "Recovering from Watchdog event\n");
981         else if (_bfin_swrst & RESET_SOFTWARE)
982                 printk(KERN_NOTICE "Reset caused by Software reset\n");
983
984         printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
985         if (bfin_compiled_revid() == 0xffff)
986                 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
987         else if (bfin_compiled_revid() == -1)
988                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
989         else
990                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
991
992         if (likely(CPUID == bfin_cpuid())) {
993                 if (bfin_revid() != bfin_compiled_revid()) {
994                         if (bfin_compiled_revid() == -1)
995                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
996                                        bfin_revid());
997                         else if (bfin_compiled_revid() != 0xffff) {
998                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
999                                        bfin_compiled_revid(), bfin_revid());
1000                                 if (bfin_compiled_revid() > bfin_revid())
1001                                         panic("Error: you are missing anomaly workarounds for this rev");
1002                         }
1003                 }
1004                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
1005                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1006                                CPU, bfin_revid());
1007         }
1008
1009         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1010
1011         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1012                cclk / 1000000, sclk / 1000000);
1013
1014         setup_bootmem_allocator();
1015
1016         paging_init();
1017
1018         /* Copy atomic sequences to their fixed location, and sanity check that
1019            these locations are the ones that we advertise to userspace.  */
1020         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1021                FIXED_CODE_END - FIXED_CODE_START);
1022         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1023                != SIGRETURN_STUB - FIXED_CODE_START);
1024         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1025                != ATOMIC_XCHG32 - FIXED_CODE_START);
1026         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1027                != ATOMIC_CAS32 - FIXED_CODE_START);
1028         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1029                != ATOMIC_ADD32 - FIXED_CODE_START);
1030         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1031                != ATOMIC_SUB32 - FIXED_CODE_START);
1032         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1033                != ATOMIC_IOR32 - FIXED_CODE_START);
1034         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1035                != ATOMIC_AND32 - FIXED_CODE_START);
1036         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1037                != ATOMIC_XOR32 - FIXED_CODE_START);
1038         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1039                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1040
1041 #ifdef CONFIG_SMP
1042         platform_init_cpus();
1043 #endif
1044         init_exception_vectors();
1045         bfin_cache_init();      /* Initialize caches for the boot CPU */
1046 }
1047
1048 static int __init topology_init(void)
1049 {
1050         unsigned int cpu;
1051
1052         for_each_possible_cpu(cpu) {
1053                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1054         }
1055
1056         return 0;
1057 }
1058
1059 subsys_initcall(topology_init);
1060
1061 /* Get the input clock frequency */
1062 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1063 static u_long get_clkin_hz(void)
1064 {
1065         return cached_clkin_hz;
1066 }
1067 static int __init early_init_clkin_hz(char *buf)
1068 {
1069         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1070 #ifdef BFIN_KERNEL_CLOCK
1071         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1072                 panic("cannot change clkin_hz when reprogramming clocks");
1073 #endif
1074         return 1;
1075 }
1076 early_param("clkin_hz=", early_init_clkin_hz);
1077
1078 /* Get the voltage input multiplier */
1079 static u_long get_vco(void)
1080 {
1081         static u_long cached_vco;
1082         u_long msel, pll_ctl;
1083
1084         /* The assumption here is that VCO never changes at runtime.
1085          * If, someday, we support that, then we'll have to change this.
1086          */
1087         if (cached_vco)
1088                 return cached_vco;
1089
1090         pll_ctl = bfin_read_PLL_CTL();
1091         msel = (pll_ctl >> 9) & 0x3F;
1092         if (0 == msel)
1093                 msel = 64;
1094
1095         cached_vco = get_clkin_hz();
1096         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1097         cached_vco *= msel;
1098         return cached_vco;
1099 }
1100
1101 /* Get the Core clock */
1102 u_long get_cclk(void)
1103 {
1104         static u_long cached_cclk_pll_div, cached_cclk;
1105         u_long csel, ssel;
1106
1107         if (bfin_read_PLL_STAT() & 0x1)
1108                 return get_clkin_hz();
1109
1110         ssel = bfin_read_PLL_DIV();
1111         if (ssel == cached_cclk_pll_div)
1112                 return cached_cclk;
1113         else
1114                 cached_cclk_pll_div = ssel;
1115
1116         csel = ((ssel >> 4) & 0x03);
1117         ssel &= 0xf;
1118         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1119                 cached_cclk = get_vco() / ssel;
1120         else
1121                 cached_cclk = get_vco() >> csel;
1122         return cached_cclk;
1123 }
1124 EXPORT_SYMBOL(get_cclk);
1125
1126 /* Get the System clock */
1127 u_long get_sclk(void)
1128 {
1129         static u_long cached_sclk;
1130         u_long ssel;
1131
1132         /* The assumption here is that SCLK never changes at runtime.
1133          * If, someday, we support that, then we'll have to change this.
1134          */
1135         if (cached_sclk)
1136                 return cached_sclk;
1137
1138         if (bfin_read_PLL_STAT() & 0x1)
1139                 return get_clkin_hz();
1140
1141         ssel = bfin_read_PLL_DIV() & 0xf;
1142         if (0 == ssel) {
1143                 printk(KERN_WARNING "Invalid System Clock\n");
1144                 ssel = 1;
1145         }
1146
1147         cached_sclk = get_vco() / ssel;
1148         return cached_sclk;
1149 }
1150 EXPORT_SYMBOL(get_sclk);
1151
1152 unsigned long sclk_to_usecs(unsigned long sclk)
1153 {
1154         u64 tmp = USEC_PER_SEC * (u64)sclk;
1155         do_div(tmp, get_sclk());
1156         return tmp;
1157 }
1158 EXPORT_SYMBOL(sclk_to_usecs);
1159
1160 unsigned long usecs_to_sclk(unsigned long usecs)
1161 {
1162         u64 tmp = get_sclk() * (u64)usecs;
1163         do_div(tmp, USEC_PER_SEC);
1164         return tmp;
1165 }
1166 EXPORT_SYMBOL(usecs_to_sclk);
1167
1168 /*
1169  *      Get CPU information for use by the procfs.
1170  */
1171 static int show_cpuinfo(struct seq_file *m, void *v)
1172 {
1173         char *cpu, *mmu, *fpu, *vendor, *cache;
1174         uint32_t revid;
1175         int cpu_num = *(unsigned int *)v;
1176         u_long sclk, cclk;
1177         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1178         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1179
1180         cpu = CPU;
1181         mmu = "none";
1182         fpu = "none";
1183         revid = bfin_revid();
1184
1185         sclk = get_sclk();
1186         cclk = get_cclk();
1187
1188         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1189         case 0xca:
1190                 vendor = "Analog Devices";
1191                 break;
1192         default:
1193                 vendor = "unknown";
1194                 break;
1195         }
1196
1197         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1198
1199         if (CPUID == bfin_cpuid())
1200                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1201         else
1202                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1203                         CPUID, bfin_cpuid());
1204
1205         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1206                 "stepping\t: %d ",
1207                 cpu, cclk/1000000, sclk/1000000,
1208 #ifdef CONFIG_MPU
1209                 "mpu on",
1210 #else
1211                 "mpu off",
1212 #endif
1213                 revid);
1214
1215         if (bfin_revid() != bfin_compiled_revid()) {
1216                 if (bfin_compiled_revid() == -1)
1217                         seq_printf(m, "(Compiled for Rev none)");
1218                 else if (bfin_compiled_revid() == 0xffff)
1219                         seq_printf(m, "(Compiled for Rev any)");
1220                 else
1221                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1222         }
1223
1224         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1225                 cclk/1000000, cclk%1000000,
1226                 sclk/1000000, sclk%1000000);
1227         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1228                 "Calibration\t: %lu loops\n",
1229                 (loops_per_jiffy * HZ) / 500000,
1230                 ((loops_per_jiffy * HZ) / 5000) % 100,
1231                 (loops_per_jiffy * HZ));
1232
1233         /* Check Cache configutation */
1234         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1235         case ACACHE_BSRAM:
1236                 cache = "dbank-A/B\t: cache/sram";
1237                 dcache_size = 16;
1238                 dsup_banks = 1;
1239                 break;
1240         case ACACHE_BCACHE:
1241                 cache = "dbank-A/B\t: cache/cache";
1242                 dcache_size = 32;
1243                 dsup_banks = 2;
1244                 break;
1245         case ASRAM_BSRAM:
1246                 cache = "dbank-A/B\t: sram/sram";
1247                 dcache_size = 0;
1248                 dsup_banks = 0;
1249                 break;
1250         default:
1251                 cache = "unknown";
1252                 dcache_size = 0;
1253                 dsup_banks = 0;
1254                 break;
1255         }
1256
1257         /* Is it turned on? */
1258         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1259                 dcache_size = 0;
1260
1261         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1262                 icache_size = 0;
1263
1264         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1265                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1266                 icache_size, dcache_size, 0);
1267         seq_printf(m, "%s\n", cache);
1268         seq_printf(m, "external memory\t: "
1269 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1270                    "cacheable"
1271 #else
1272                    "uncacheable"
1273 #endif
1274                    " in instruction cache\n");
1275         seq_printf(m, "external memory\t: "
1276 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1277                       "cacheable (write-back)"
1278 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1279                       "cacheable (write-through)"
1280 #else
1281                       "uncacheable"
1282 #endif
1283                       " in data cache\n");
1284
1285         if (icache_size)
1286                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1287                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1288         else
1289                 seq_printf(m, "icache setup\t: off\n");
1290
1291         seq_printf(m,
1292                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1293                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1294                    BFIN_DLINES);
1295 #ifdef __ARCH_SYNC_CORE_DCACHE
1296         seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1297 #endif
1298 #ifdef __ARCH_SYNC_CORE_ICACHE
1299         seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1300 #endif
1301
1302         seq_printf(m, "\n");
1303
1304         if (cpu_num != num_possible_cpus() - 1)
1305                 return 0;
1306
1307         if (L2_LENGTH) {
1308                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1309                 seq_printf(m, "L2 SRAM\t\t: "
1310 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1311                               "cacheable"
1312 #else
1313                               "uncacheable"
1314 #endif
1315                               " in instruction cache\n");
1316                 seq_printf(m, "L2 SRAM\t\t: "
1317 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1318                               "cacheable (write-back)"
1319 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1320                               "cacheable (write-through)"
1321 #else
1322                               "uncacheable"
1323 #endif
1324                               " in data cache\n");
1325         }
1326         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1327         seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1328                 physical_mem_end >> 10, 0ul, physical_mem_end);
1329         seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1330                 ((int)memory_end - (int)_rambase) >> 10,
1331                 _rambase, memory_end);
1332
1333         return 0;
1334 }
1335
1336 static void *c_start(struct seq_file *m, loff_t *pos)
1337 {
1338         if (*pos == 0)
1339                 *pos = cpumask_first(cpu_online_mask);
1340         if (*pos >= num_online_cpus())
1341                 return NULL;
1342
1343         return pos;
1344 }
1345
1346 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1347 {
1348         *pos = cpumask_next(*pos, cpu_online_mask);
1349
1350         return c_start(m, pos);
1351 }
1352
1353 static void c_stop(struct seq_file *m, void *v)
1354 {
1355 }
1356
1357 const struct seq_operations cpuinfo_op = {
1358         .start = c_start,
1359         .next = c_next,
1360         .stop = c_stop,
1361         .show = show_cpuinfo,
1362 };
1363
1364 void __init cmdline_init(const char *r0)
1365 {
1366         early_shadow_stamp();
1367         if (r0)
1368                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1369 }