]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/blackfin/kernel/setup.c
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / arch / blackfin / kernel / setup.c
1 /*
2  * Copyright 2004-2010 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 #include <asm/irq_handler.h>
33 #include <asm/pda.h>
34
35 u16 _bfin_swrst;
36 EXPORT_SYMBOL(_bfin_swrst);
37
38 unsigned long memory_start, memory_end, physical_mem_end;
39 unsigned long _rambase, _ramstart, _ramend;
40 unsigned long reserved_mem_dcache_on;
41 unsigned long reserved_mem_icache_on;
42 EXPORT_SYMBOL(memory_start);
43 EXPORT_SYMBOL(memory_end);
44 EXPORT_SYMBOL(physical_mem_end);
45 EXPORT_SYMBOL(_ramend);
46 EXPORT_SYMBOL(reserved_mem_dcache_on);
47
48 #ifdef CONFIG_MTD_UCLINUX
49 extern struct map_info uclinux_ram_map;
50 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
51 unsigned long _ebss;
52 EXPORT_SYMBOL(memory_mtd_end);
53 EXPORT_SYMBOL(memory_mtd_start);
54 EXPORT_SYMBOL(mtd_size);
55 #endif
56
57 char __initdata command_line[COMMAND_LINE_SIZE];
58 struct blackfin_initial_pda __initdata initial_pda;
59
60 /* boot memmap, for parsing "memmap=" */
61 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
62 #define BFIN_MEMMAP_RAM         1
63 #define BFIN_MEMMAP_RESERVED    2
64 static struct bfin_memmap {
65         int nr_map;
66         struct bfin_memmap_entry {
67                 unsigned long long addr; /* start of memory segment */
68                 unsigned long long size;
69                 unsigned long type;
70         } map[BFIN_MEMMAP_MAX];
71 } bfin_memmap __initdata;
72
73 /* for memmap sanitization */
74 struct change_member {
75         struct bfin_memmap_entry *pentry; /* pointer to original entry */
76         unsigned long long addr; /* address for this change point */
77 };
78 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
81 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
82
83 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
84
85 static int early_init_clkin_hz(char *buf);
86
87 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
88 void __init generate_cplb_tables(void)
89 {
90         unsigned int cpu;
91
92         generate_cplb_tables_all();
93         /* Generate per-CPU I&D CPLB tables */
94         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
95                 generate_cplb_tables_cpu(cpu);
96 }
97 #endif
98
99 void __cpuinit bfin_setup_caches(unsigned int cpu)
100 {
101 #ifdef CONFIG_BFIN_ICACHE
102         bfin_icache_init(icplb_tbl[cpu]);
103 #endif
104
105 #ifdef CONFIG_BFIN_DCACHE
106         bfin_dcache_init(dcplb_tbl[cpu]);
107 #endif
108
109         bfin_setup_cpudata(cpu);
110
111         /*
112          * In cache coherence emulation mode, we need to have the
113          * D-cache enabled before running any atomic operation which
114          * might involve cache invalidation (i.e. spinlock, rwlock).
115          * So printk's are deferred until then.
116          */
117 #ifdef CONFIG_BFIN_ICACHE
118         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
119         printk(KERN_INFO "  External memory:"
120 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
121                " cacheable"
122 # else
123                " uncacheable"
124 # endif
125                " in instruction cache\n");
126         if (L2_LENGTH)
127                 printk(KERN_INFO "  L2 SRAM        :"
128 # ifdef CONFIG_BFIN_L2_ICACHEABLE
129                        " cacheable"
130 # else
131                        " uncacheable"
132 # endif
133                        " in instruction cache\n");
134
135 #else
136         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
137 #endif
138
139 #ifdef CONFIG_BFIN_DCACHE
140         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
141         printk(KERN_INFO "  External memory:"
142 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
143                " cacheable (write-back)"
144 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
145                " cacheable (write-through)"
146 # else
147                " uncacheable"
148 # endif
149                " in data cache\n");
150         if (L2_LENGTH)
151                 printk(KERN_INFO "  L2 SRAM        :"
152 # if defined CONFIG_BFIN_L2_WRITEBACK
153                        " cacheable (write-back)"
154 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
155                        " cacheable (write-through)"
156 # else
157                        " uncacheable"
158 # endif
159                        " in data cache\n");
160 #else
161         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
162 #endif
163 }
164
165 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
166 {
167         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
168
169         cpudata->imemctl = bfin_read_IMEM_CONTROL();
170         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
171 }
172
173 void __init bfin_cache_init(void)
174 {
175 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
176         generate_cplb_tables();
177 #endif
178         bfin_setup_caches(0);
179 }
180
181 void __init bfin_relocate_l1_mem(void)
182 {
183         unsigned long text_l1_len = (unsigned long)_text_l1_len;
184         unsigned long data_l1_len = (unsigned long)_data_l1_len;
185         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
186         unsigned long l2_len = (unsigned long)_l2_len;
187
188         early_shadow_stamp();
189
190         /*
191          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
192          * we know that everything about l1 text/data is nice and aligned,
193          * so copy by 4 byte chunks, and don't worry about overlapping
194          * src/dest.
195          *
196          * We can't use the dma_memcpy functions, since they can call
197          * scheduler functions which might be in L1 :( and core writes
198          * into L1 instruction cause bad access errors, so we are stuck,
199          * we are required to use DMA, but can't use the common dma
200          * functions. We can't use memcpy either - since that might be
201          * going to be in the relocated L1
202          */
203
204         blackfin_dma_early_init();
205
206         /* if necessary, copy L1 text to L1 instruction SRAM */
207         if (L1_CODE_LENGTH && text_l1_len)
208                 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
209
210         /* if necessary, copy L1 data to L1 data bank A SRAM */
211         if (L1_DATA_A_LENGTH && data_l1_len)
212                 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
213
214         /* if necessary, copy L1 data B to L1 data bank B SRAM */
215         if (L1_DATA_B_LENGTH && data_b_l1_len)
216                 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
217
218         early_dma_memcpy_done();
219
220 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
221         blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
222 #endif
223
224         /* if necessary, copy L2 text/data to L2 SRAM */
225         if (L2_LENGTH && l2_len)
226                 memcpy(_stext_l2, _l2_lma, l2_len);
227 }
228
229 #ifdef CONFIG_SMP
230 void __init bfin_relocate_coreb_l1_mem(void)
231 {
232         unsigned long text_l1_len = (unsigned long)_text_l1_len;
233         unsigned long data_l1_len = (unsigned long)_data_l1_len;
234         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
235
236         blackfin_dma_early_init();
237
238         /* if necessary, copy L1 text to L1 instruction SRAM */
239         if (L1_CODE_LENGTH && text_l1_len)
240                 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
241                                 text_l1_len);
242
243         /* if necessary, copy L1 data to L1 data bank A SRAM */
244         if (L1_DATA_A_LENGTH && data_l1_len)
245                 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
246                                 data_l1_len);
247
248         /* if necessary, copy L1 data B to L1 data bank B SRAM */
249         if (L1_DATA_B_LENGTH && data_b_l1_len)
250                 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
251                                 data_b_l1_len);
252
253         early_dma_memcpy_done();
254
255 #ifdef CONFIG_ICACHE_FLUSH_L1
256         blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
257                         (unsigned long)_stext_l1 + COREB_L1_CODE_START;
258 #endif
259 }
260 #endif
261
262 #ifdef CONFIG_ROMKERNEL
263 void __init bfin_relocate_xip_data(void)
264 {
265         early_shadow_stamp();
266
267         memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
268         memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
269 }
270 #endif
271
272 /* add_memory_region to memmap */
273 static void __init add_memory_region(unsigned long long start,
274                               unsigned long long size, int type)
275 {
276         int i;
277
278         i = bfin_memmap.nr_map;
279
280         if (i == BFIN_MEMMAP_MAX) {
281                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
282                 return;
283         }
284
285         bfin_memmap.map[i].addr = start;
286         bfin_memmap.map[i].size = size;
287         bfin_memmap.map[i].type = type;
288         bfin_memmap.nr_map++;
289 }
290
291 /*
292  * Sanitize the boot memmap, removing overlaps.
293  */
294 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
295 {
296         struct change_member *change_tmp;
297         unsigned long current_type, last_type;
298         unsigned long long last_addr;
299         int chgidx, still_changing;
300         int overlap_entries;
301         int new_entry;
302         int old_nr, new_nr, chg_nr;
303         int i;
304
305         /*
306                 Visually we're performing the following (1,2,3,4 = memory types)
307
308                 Sample memory map (w/overlaps):
309                    ____22__________________
310                    ______________________4_
311                    ____1111________________
312                    _44_____________________
313                    11111111________________
314                    ____________________33__
315                    ___________44___________
316                    __________33333_________
317                    ______________22________
318                    ___________________2222_
319                    _________111111111______
320                    _____________________11_
321                    _________________4______
322
323                 Sanitized equivalent (no overlap):
324                    1_______________________
325                    _44_____________________
326                    ___1____________________
327                    ____22__________________
328                    ______11________________
329                    _________1______________
330                    __________3_____________
331                    ___________44___________
332                    _____________33_________
333                    _______________2________
334                    ________________1_______
335                    _________________4______
336                    ___________________2____
337                    ____________________33__
338                    ______________________4_
339         */
340         /* if there's only one memory region, don't bother */
341         if (*pnr_map < 2)
342                 return -1;
343
344         old_nr = *pnr_map;
345
346         /* bail out if we find any unreasonable addresses in memmap */
347         for (i = 0; i < old_nr; i++)
348                 if (map[i].addr + map[i].size < map[i].addr)
349                         return -1;
350
351         /* create pointers for initial change-point information (for sorting) */
352         for (i = 0; i < 2*old_nr; i++)
353                 change_point[i] = &change_point_list[i];
354
355         /* record all known change-points (starting and ending addresses),
356            omitting those that are for empty memory regions */
357         chgidx = 0;
358         for (i = 0; i < old_nr; i++) {
359                 if (map[i].size != 0) {
360                         change_point[chgidx]->addr = map[i].addr;
361                         change_point[chgidx++]->pentry = &map[i];
362                         change_point[chgidx]->addr = map[i].addr + map[i].size;
363                         change_point[chgidx++]->pentry = &map[i];
364                 }
365         }
366         chg_nr = chgidx;        /* true number of change-points */
367
368         /* sort change-point list by memory addresses (low -> high) */
369         still_changing = 1;
370         while (still_changing) {
371                 still_changing = 0;
372                 for (i = 1; i < chg_nr; i++) {
373                         /* if <current_addr> > <last_addr>, swap */
374                         /* or, if current=<start_addr> & last=<end_addr>, swap */
375                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
376                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
377                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
378                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
379                            ) {
380                                 change_tmp = change_point[i];
381                                 change_point[i] = change_point[i-1];
382                                 change_point[i-1] = change_tmp;
383                                 still_changing = 1;
384                         }
385                 }
386         }
387
388         /* create a new memmap, removing overlaps */
389         overlap_entries = 0;    /* number of entries in the overlap table */
390         new_entry = 0;          /* index for creating new memmap entries */
391         last_type = 0;          /* start with undefined memory type */
392         last_addr = 0;          /* start with 0 as last starting address */
393         /* loop through change-points, determining affect on the new memmap */
394         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
395                 /* keep track of all overlapping memmap entries */
396                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
397                         /* add map entry to overlap list (> 1 entry implies an overlap) */
398                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
399                 } else {
400                         /* remove entry from list (order independent, so swap with last) */
401                         for (i = 0; i < overlap_entries; i++) {
402                                 if (overlap_list[i] == change_point[chgidx]->pentry)
403                                         overlap_list[i] = overlap_list[overlap_entries-1];
404                         }
405                         overlap_entries--;
406                 }
407                 /* if there are overlapping entries, decide which "type" to use */
408                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
409                 current_type = 0;
410                 for (i = 0; i < overlap_entries; i++)
411                         if (overlap_list[i]->type > current_type)
412                                 current_type = overlap_list[i]->type;
413                 /* continue building up new memmap based on this information */
414                 if (current_type != last_type) {
415                         if (last_type != 0) {
416                                 new_map[new_entry].size =
417                                         change_point[chgidx]->addr - last_addr;
418                                 /* move forward only if the new size was non-zero */
419                                 if (new_map[new_entry].size != 0)
420                                         if (++new_entry >= BFIN_MEMMAP_MAX)
421                                                 break;  /* no more space left for new entries */
422                         }
423                         if (current_type != 0) {
424                                 new_map[new_entry].addr = change_point[chgidx]->addr;
425                                 new_map[new_entry].type = current_type;
426                                 last_addr = change_point[chgidx]->addr;
427                         }
428                         last_type = current_type;
429                 }
430         }
431         new_nr = new_entry;     /* retain count for new entries */
432
433         /* copy new mapping into original location */
434         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
435         *pnr_map = new_nr;
436
437         return 0;
438 }
439
440 static void __init print_memory_map(char *who)
441 {
442         int i;
443
444         for (i = 0; i < bfin_memmap.nr_map; i++) {
445                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
446                         bfin_memmap.map[i].addr,
447                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
448                 switch (bfin_memmap.map[i].type) {
449                 case BFIN_MEMMAP_RAM:
450                         printk(KERN_CONT "(usable)\n");
451                         break;
452                 case BFIN_MEMMAP_RESERVED:
453                         printk(KERN_CONT "(reserved)\n");
454                         break;
455                 default:
456                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
457                         break;
458                 }
459         }
460 }
461
462 static __init int parse_memmap(char *arg)
463 {
464         unsigned long long start_at, mem_size;
465
466         if (!arg)
467                 return -EINVAL;
468
469         mem_size = memparse(arg, &arg);
470         if (*arg == '@') {
471                 start_at = memparse(arg+1, &arg);
472                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
473         } else if (*arg == '$') {
474                 start_at = memparse(arg+1, &arg);
475                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
476         }
477
478         return 0;
479 }
480
481 /*
482  * Initial parsing of the command line.  Currently, we support:
483  *  - Controlling the linux memory size: mem=xxx[KMG]
484  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
485  *       $ -> reserved memory is dcacheable
486  *       # -> reserved memory is icacheable
487  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
488  *       @ from <start> to <start>+<mem>, type RAM
489  *       $ from <start> to <start>+<mem>, type RESERVED
490  */
491 static __init void parse_cmdline_early(char *cmdline_p)
492 {
493         char c = ' ', *to = cmdline_p;
494         unsigned int memsize;
495         for (;;) {
496                 if (c == ' ') {
497                         if (!memcmp(to, "mem=", 4)) {
498                                 to += 4;
499                                 memsize = memparse(to, &to);
500                                 if (memsize)
501                                         _ramend = memsize;
502
503                         } else if (!memcmp(to, "max_mem=", 8)) {
504                                 to += 8;
505                                 memsize = memparse(to, &to);
506                                 if (memsize) {
507                                         physical_mem_end = memsize;
508                                         if (*to != ' ') {
509                                                 if (*to == '$'
510                                                     || *(to + 1) == '$')
511                                                         reserved_mem_dcache_on = 1;
512                                                 if (*to == '#'
513                                                     || *(to + 1) == '#')
514                                                         reserved_mem_icache_on = 1;
515                                         }
516                                 }
517                         } else if (!memcmp(to, "clkin_hz=", 9)) {
518                                 to += 9;
519                                 early_init_clkin_hz(to);
520 #ifdef CONFIG_EARLY_PRINTK
521                         } else if (!memcmp(to, "earlyprintk=", 12)) {
522                                 to += 12;
523                                 setup_early_printk(to);
524 #endif
525                         } else if (!memcmp(to, "memmap=", 7)) {
526                                 to += 7;
527                                 parse_memmap(to);
528                         }
529                 }
530                 c = *(to++);
531                 if (!c)
532                         break;
533         }
534 }
535
536 /*
537  * Setup memory defaults from user config.
538  * The physical memory layout looks like:
539  *
540  *  [_rambase, _ramstart]:              kernel image
541  *  [memory_start, memory_end]:         dynamic memory managed by kernel
542  *  [memory_end, _ramend]:              reserved memory
543  *      [memory_mtd_start(memory_end),
544  *              memory_mtd_start + mtd_size]:   rootfs (if any)
545  *      [_ramend - DMA_UNCACHED_REGION,
546  *              _ramend]:                       uncached DMA region
547  *  [_ramend, physical_mem_end]:        memory not managed by kernel
548  */
549 static __init void memory_setup(void)
550 {
551 #ifdef CONFIG_MTD_UCLINUX
552         unsigned long mtd_phys = 0;
553 #endif
554         unsigned long max_mem;
555
556         _rambase = CONFIG_BOOT_LOAD;
557         _ramstart = (unsigned long)_end;
558
559         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
560                 console_init();
561                 panic("DMA region exceeds memory limit: %lu.",
562                         _ramend - _ramstart);
563         }
564         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
565
566 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
567         /* Due to a Hardware Anomaly we need to limit the size of usable
568          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
569          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
570          */
571 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
572         if (max_mem >= 56 * 1024 * 1024)
573                 max_mem = 56 * 1024 * 1024;
574 # else
575         if (max_mem >= 60 * 1024 * 1024)
576                 max_mem = 60 * 1024 * 1024;
577 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
578 #endif                          /* ANOMALY_05000263 */
579
580
581 #ifdef CONFIG_MPU
582         /* Round up to multiple of 4MB */
583         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
584 #else
585         memory_start = PAGE_ALIGN(_ramstart);
586 #endif
587
588 #if defined(CONFIG_MTD_UCLINUX)
589         /* generic memory mapped MTD driver */
590         memory_mtd_end = memory_end;
591
592         mtd_phys = _ramstart;
593         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
594
595 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
596         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
597                 mtd_size =
598                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
599 # endif
600
601 # if defined(CONFIG_CRAMFS)
602         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
603                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
604 # endif
605
606 # if defined(CONFIG_ROMFS_FS)
607         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
608             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
609                 mtd_size =
610                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
611
612                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
613                 if (memory_end > max_mem) {
614                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
615                         memory_end = max_mem;
616                 }
617         }
618 # endif                         /* CONFIG_ROMFS_FS */
619
620         /* Since the default MTD_UCLINUX has no magic number, we just blindly
621          * read 8 past the end of the kernel's image, and look at it.
622          * When no image is attached, mtd_size is set to a random number
623          * Do some basic sanity checks before operating on things
624          */
625         if (mtd_size == 0 || memory_end <= mtd_size) {
626                 pr_emerg("Could not find valid ram mtd attached.\n");
627         } else {
628                 memory_end -= mtd_size;
629
630                 /* Relocate MTD image to the top of memory after the uncached memory area */
631                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
632                 uclinux_ram_map.size = mtd_size;
633                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
634                         _end, mtd_size, (void *)memory_mtd_start);
635                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
636         }
637 #endif                          /* CONFIG_MTD_UCLINUX */
638
639         /* We need lo limit memory, since everything could have a text section
640          * of userspace in it, and expose anomaly 05000263. If the anomaly
641          * doesn't exist, or we don't need to - then dont.
642          */
643         if (memory_end > max_mem) {
644                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
645                 memory_end = max_mem;
646         }
647
648 #ifdef CONFIG_MPU
649 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
650         page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
651                                         ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
652 #else
653         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
654 #endif
655         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
656 #endif
657
658         init_mm.start_code = (unsigned long)_stext;
659         init_mm.end_code = (unsigned long)_etext;
660         init_mm.end_data = (unsigned long)_edata;
661         init_mm.brk = (unsigned long)0;
662
663         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
664         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
665
666         printk(KERN_INFO "Memory map:\n"
667                "  fixedcode = 0x%p-0x%p\n"
668                "  text      = 0x%p-0x%p\n"
669                "  rodata    = 0x%p-0x%p\n"
670                "  bss       = 0x%p-0x%p\n"
671                "  data      = 0x%p-0x%p\n"
672                "    stack   = 0x%p-0x%p\n"
673                "  init      = 0x%p-0x%p\n"
674                "  available = 0x%p-0x%p\n"
675 #ifdef CONFIG_MTD_UCLINUX
676                "  rootfs    = 0x%p-0x%p\n"
677 #endif
678 #if DMA_UNCACHED_REGION > 0
679                "  DMA Zone  = 0x%p-0x%p\n"
680 #endif
681                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
682                 _stext, _etext,
683                 __start_rodata, __end_rodata,
684                 __bss_start, __bss_stop,
685                 _sdata, _edata,
686                 (void *)&init_thread_union,
687                 (void *)((int)(&init_thread_union) + THREAD_SIZE),
688                 __init_begin, __init_end,
689                 (void *)_ramstart, (void *)memory_end
690 #ifdef CONFIG_MTD_UCLINUX
691                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
692 #endif
693 #if DMA_UNCACHED_REGION > 0
694                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
695 #endif
696                 );
697 }
698
699 /*
700  * Find the lowest, highest page frame number we have available
701  */
702 void __init find_min_max_pfn(void)
703 {
704         int i;
705
706         max_pfn = 0;
707         min_low_pfn = memory_end;
708
709         for (i = 0; i < bfin_memmap.nr_map; i++) {
710                 unsigned long start, end;
711                 /* RAM? */
712                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
713                         continue;
714                 start = PFN_UP(bfin_memmap.map[i].addr);
715                 end = PFN_DOWN(bfin_memmap.map[i].addr +
716                                 bfin_memmap.map[i].size);
717                 if (start >= end)
718                         continue;
719                 if (end > max_pfn)
720                         max_pfn = end;
721                 if (start < min_low_pfn)
722                         min_low_pfn = start;
723         }
724 }
725
726 static __init void setup_bootmem_allocator(void)
727 {
728         int bootmap_size;
729         int i;
730         unsigned long start_pfn, end_pfn;
731         unsigned long curr_pfn, last_pfn, size;
732
733         /* mark memory between memory_start and memory_end usable */
734         add_memory_region(memory_start,
735                 memory_end - memory_start, BFIN_MEMMAP_RAM);
736         /* sanity check for overlap */
737         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
738         print_memory_map("boot memmap");
739
740         /* initialize globals in linux/bootmem.h */
741         find_min_max_pfn();
742         /* pfn of the last usable page frame */
743         if (max_pfn > memory_end >> PAGE_SHIFT)
744                 max_pfn = memory_end >> PAGE_SHIFT;
745         /* pfn of last page frame directly mapped by kernel */
746         max_low_pfn = max_pfn;
747         /* pfn of the first usable page frame after kernel image*/
748         if (min_low_pfn < memory_start >> PAGE_SHIFT)
749                 min_low_pfn = memory_start >> PAGE_SHIFT;
750
751         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
752         end_pfn = memory_end >> PAGE_SHIFT;
753
754         /*
755          * give all the memory to the bootmap allocator, tell it to put the
756          * boot mem_map at the start of memory.
757          */
758         bootmap_size = init_bootmem_node(NODE_DATA(0),
759                         memory_start >> PAGE_SHIFT,     /* map goes here */
760                         start_pfn, end_pfn);
761
762         /* register the memmap regions with the bootmem allocator */
763         for (i = 0; i < bfin_memmap.nr_map; i++) {
764                 /*
765                  * Reserve usable memory
766                  */
767                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
768                         continue;
769                 /*
770                  * We are rounding up the start address of usable memory:
771                  */
772                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
773                 if (curr_pfn >= end_pfn)
774                         continue;
775                 /*
776                  * ... and at the end of the usable range downwards:
777                  */
778                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
779                                          bfin_memmap.map[i].size);
780
781                 if (last_pfn > end_pfn)
782                         last_pfn = end_pfn;
783
784                 /*
785                  * .. finally, did all the rounding and playing
786                  * around just make the area go away?
787                  */
788                 if (last_pfn <= curr_pfn)
789                         continue;
790
791                 size = last_pfn - curr_pfn;
792                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
793         }
794
795         /* reserve memory before memory_start, including bootmap */
796         reserve_bootmem(PAGE_OFFSET,
797                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
798                 BOOTMEM_DEFAULT);
799 }
800
801 #define EBSZ_TO_MEG(ebsz) \
802 ({ \
803         int meg = 0; \
804         switch (ebsz & 0xf) { \
805                 case 0x1: meg =  16; break; \
806                 case 0x3: meg =  32; break; \
807                 case 0x5: meg =  64; break; \
808                 case 0x7: meg = 128; break; \
809                 case 0x9: meg = 256; break; \
810                 case 0xb: meg = 512; break; \
811         } \
812         meg; \
813 })
814 static inline int __init get_mem_size(void)
815 {
816 #if defined(EBIU_SDBCTL)
817 # if defined(BF561_FAMILY)
818         int ret = 0;
819         u32 sdbctl = bfin_read_EBIU_SDBCTL();
820         ret += EBSZ_TO_MEG(sdbctl >>  0);
821         ret += EBSZ_TO_MEG(sdbctl >>  8);
822         ret += EBSZ_TO_MEG(sdbctl >> 16);
823         ret += EBSZ_TO_MEG(sdbctl >> 24);
824         return ret;
825 # else
826         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
827 # endif
828 #elif defined(EBIU_DDRCTL1)
829         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
830         int ret = 0;
831         switch (ddrctl & 0xc0000) {
832         case DEVSZ_64:
833                 ret = 64 / 8;
834                 break;
835         case DEVSZ_128:
836                 ret = 128 / 8;
837                 break;
838         case DEVSZ_256:
839                 ret = 256 / 8;
840                 break;
841         case DEVSZ_512:
842                 ret = 512 / 8;
843                 break;
844         }
845         switch (ddrctl & 0x30000) {
846                 case DEVWD_4:  ret *= 2;
847                 case DEVWD_8:  ret *= 2;
848                 case DEVWD_16: break;
849         }
850         if ((ddrctl & 0xc000) == 0x4000)
851                 ret *= 2;
852         return ret;
853 #endif
854         BUG();
855 }
856
857 __attribute__((weak))
858 void __init native_machine_early_platform_add_devices(void)
859 {
860 }
861
862 void __init setup_arch(char **cmdline_p)
863 {
864         u32 mmr;
865         unsigned long sclk, cclk;
866
867         native_machine_early_platform_add_devices();
868
869         enable_shadow_console();
870
871         /* Check to make sure we are running on the right processor */
872         if (unlikely(CPUID != bfin_cpuid()))
873                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
874                         CPU, bfin_cpuid(), bfin_revid());
875
876 #ifdef CONFIG_DUMMY_CONSOLE
877         conswitchp = &dummy_con;
878 #endif
879
880 #if defined(CONFIG_CMDLINE_BOOL)
881         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
882         command_line[sizeof(command_line) - 1] = 0;
883 #endif
884
885         /* Keep a copy of command line */
886         *cmdline_p = &command_line[0];
887         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
888         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
889
890         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
891
892         /* If the user does not specify things on the command line, use
893          * what the bootloader set things up as
894          */
895         physical_mem_end = 0;
896         parse_cmdline_early(&command_line[0]);
897
898         if (_ramend == 0)
899                 _ramend = get_mem_size() * 1024 * 1024;
900
901         if (physical_mem_end == 0)
902                 physical_mem_end = _ramend;
903
904         memory_setup();
905
906         /* Initialize Async memory banks */
907         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
908         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
909         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
910 #ifdef CONFIG_EBIU_MBSCTLVAL
911         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
912         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
913         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
914 #endif
915 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
916         bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
917         bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
918         bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
919         bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
920                                         ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
921 #endif
922
923         cclk = get_cclk();
924         sclk = get_sclk();
925
926         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
927                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
928
929 #ifdef BF561_FAMILY
930         if (ANOMALY_05000266) {
931                 bfin_read_IMDMA_D0_IRQ_STATUS();
932                 bfin_read_IMDMA_D1_IRQ_STATUS();
933         }
934 #endif
935
936         mmr = bfin_read_TBUFCTL();
937         printk(KERN_INFO "Hardware Trace %s and %sabled\n",
938                 (mmr & 0x1) ? "active" : "off",
939                 (mmr & 0x2) ? "en" : "dis");
940
941         mmr = bfin_read_SYSCR();
942         printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
943
944         /* Newer parts mirror SWRST bits in SYSCR */
945 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
946     defined(CONFIG_BF538) || defined(CONFIG_BF539)
947         _bfin_swrst = bfin_read_SWRST();
948 #else
949         /* Clear boot mode field */
950         _bfin_swrst = mmr & ~0xf;
951 #endif
952
953 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
954         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
955 #endif
956 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
957         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
958 #endif
959
960 #ifdef CONFIG_SMP
961         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
962 #else
963         if (_bfin_swrst & RESET_DOUBLE) {
964 #endif
965                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
966 #ifdef CONFIG_DEBUG_DOUBLEFAULT
967                 /* We assume the crashing kernel, and the current symbol table match */
968                 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
969                         initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
970                         initial_pda.retx_doublefault);
971                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
972                         initial_pda.dcplb_doublefault_addr);
973                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
974                         initial_pda.icplb_doublefault_addr);
975 #endif
976                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
977                         initial_pda.retx);
978         } else if (_bfin_swrst & RESET_WDOG)
979                 printk(KERN_INFO "Recovering from Watchdog event\n");
980         else if (_bfin_swrst & RESET_SOFTWARE)
981                 printk(KERN_NOTICE "Reset caused by Software reset\n");
982
983         printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
984         if (bfin_compiled_revid() == 0xffff)
985                 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
986         else if (bfin_compiled_revid() == -1)
987                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
988         else
989                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
990
991         if (likely(CPUID == bfin_cpuid())) {
992                 if (bfin_revid() != bfin_compiled_revid()) {
993                         if (bfin_compiled_revid() == -1)
994                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
995                                        bfin_revid());
996                         else if (bfin_compiled_revid() != 0xffff) {
997                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
998                                        bfin_compiled_revid(), bfin_revid());
999                                 if (bfin_compiled_revid() > bfin_revid())
1000                                         panic("Error: you are missing anomaly workarounds for this rev");
1001                         }
1002                 }
1003                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
1004                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1005                                CPU, bfin_revid());
1006         }
1007
1008         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1009
1010         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1011                cclk / 1000000, sclk / 1000000);
1012
1013         setup_bootmem_allocator();
1014
1015         paging_init();
1016
1017         /* Copy atomic sequences to their fixed location, and sanity check that
1018            these locations are the ones that we advertise to userspace.  */
1019         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1020                FIXED_CODE_END - FIXED_CODE_START);
1021         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1022                != SIGRETURN_STUB - FIXED_CODE_START);
1023         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1024                != ATOMIC_XCHG32 - FIXED_CODE_START);
1025         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1026                != ATOMIC_CAS32 - FIXED_CODE_START);
1027         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1028                != ATOMIC_ADD32 - FIXED_CODE_START);
1029         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1030                != ATOMIC_SUB32 - FIXED_CODE_START);
1031         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1032                != ATOMIC_IOR32 - FIXED_CODE_START);
1033         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1034                != ATOMIC_AND32 - FIXED_CODE_START);
1035         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1036                != ATOMIC_XOR32 - FIXED_CODE_START);
1037         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1038                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1039
1040 #ifdef CONFIG_SMP
1041         platform_init_cpus();
1042 #endif
1043         init_exception_vectors();
1044         bfin_cache_init();      /* Initialize caches for the boot CPU */
1045 }
1046
1047 static int __init topology_init(void)
1048 {
1049         unsigned int cpu;
1050
1051         for_each_possible_cpu(cpu) {
1052                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1053         }
1054
1055         return 0;
1056 }
1057
1058 subsys_initcall(topology_init);
1059
1060 /* Get the input clock frequency */
1061 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1062 static u_long get_clkin_hz(void)
1063 {
1064         return cached_clkin_hz;
1065 }
1066 static int __init early_init_clkin_hz(char *buf)
1067 {
1068         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1069 #ifdef BFIN_KERNEL_CLOCK
1070         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1071                 panic("cannot change clkin_hz when reprogramming clocks");
1072 #endif
1073         return 1;
1074 }
1075 early_param("clkin_hz=", early_init_clkin_hz);
1076
1077 /* Get the voltage input multiplier */
1078 static u_long get_vco(void)
1079 {
1080         static u_long cached_vco;
1081         u_long msel, pll_ctl;
1082
1083         /* The assumption here is that VCO never changes at runtime.
1084          * If, someday, we support that, then we'll have to change this.
1085          */
1086         if (cached_vco)
1087                 return cached_vco;
1088
1089         pll_ctl = bfin_read_PLL_CTL();
1090         msel = (pll_ctl >> 9) & 0x3F;
1091         if (0 == msel)
1092                 msel = 64;
1093
1094         cached_vco = get_clkin_hz();
1095         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1096         cached_vco *= msel;
1097         return cached_vco;
1098 }
1099
1100 /* Get the Core clock */
1101 u_long get_cclk(void)
1102 {
1103         static u_long cached_cclk_pll_div, cached_cclk;
1104         u_long csel, ssel;
1105
1106         if (bfin_read_PLL_STAT() & 0x1)
1107                 return get_clkin_hz();
1108
1109         ssel = bfin_read_PLL_DIV();
1110         if (ssel == cached_cclk_pll_div)
1111                 return cached_cclk;
1112         else
1113                 cached_cclk_pll_div = ssel;
1114
1115         csel = ((ssel >> 4) & 0x03);
1116         ssel &= 0xf;
1117         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1118                 cached_cclk = get_vco() / ssel;
1119         else
1120                 cached_cclk = get_vco() >> csel;
1121         return cached_cclk;
1122 }
1123 EXPORT_SYMBOL(get_cclk);
1124
1125 /* Get the System clock */
1126 u_long get_sclk(void)
1127 {
1128         static u_long cached_sclk;
1129         u_long ssel;
1130
1131         /* The assumption here is that SCLK never changes at runtime.
1132          * If, someday, we support that, then we'll have to change this.
1133          */
1134         if (cached_sclk)
1135                 return cached_sclk;
1136
1137         if (bfin_read_PLL_STAT() & 0x1)
1138                 return get_clkin_hz();
1139
1140         ssel = bfin_read_PLL_DIV() & 0xf;
1141         if (0 == ssel) {
1142                 printk(KERN_WARNING "Invalid System Clock\n");
1143                 ssel = 1;
1144         }
1145
1146         cached_sclk = get_vco() / ssel;
1147         return cached_sclk;
1148 }
1149 EXPORT_SYMBOL(get_sclk);
1150
1151 unsigned long sclk_to_usecs(unsigned long sclk)
1152 {
1153         u64 tmp = USEC_PER_SEC * (u64)sclk;
1154         do_div(tmp, get_sclk());
1155         return tmp;
1156 }
1157 EXPORT_SYMBOL(sclk_to_usecs);
1158
1159 unsigned long usecs_to_sclk(unsigned long usecs)
1160 {
1161         u64 tmp = get_sclk() * (u64)usecs;
1162         do_div(tmp, USEC_PER_SEC);
1163         return tmp;
1164 }
1165 EXPORT_SYMBOL(usecs_to_sclk);
1166
1167 /*
1168  *      Get CPU information for use by the procfs.
1169  */
1170 static int show_cpuinfo(struct seq_file *m, void *v)
1171 {
1172         char *cpu, *mmu, *fpu, *vendor, *cache;
1173         uint32_t revid;
1174         int cpu_num = *(unsigned int *)v;
1175         u_long sclk, cclk;
1176         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1177         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1178
1179         cpu = CPU;
1180         mmu = "none";
1181         fpu = "none";
1182         revid = bfin_revid();
1183
1184         sclk = get_sclk();
1185         cclk = get_cclk();
1186
1187         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1188         case 0xca:
1189                 vendor = "Analog Devices";
1190                 break;
1191         default:
1192                 vendor = "unknown";
1193                 break;
1194         }
1195
1196         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1197
1198         if (CPUID == bfin_cpuid())
1199                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1200         else
1201                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1202                         CPUID, bfin_cpuid());
1203
1204         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1205                 "stepping\t: %d ",
1206                 cpu, cclk/1000000, sclk/1000000,
1207 #ifdef CONFIG_MPU
1208                 "mpu on",
1209 #else
1210                 "mpu off",
1211 #endif
1212                 revid);
1213
1214         if (bfin_revid() != bfin_compiled_revid()) {
1215                 if (bfin_compiled_revid() == -1)
1216                         seq_printf(m, "(Compiled for Rev none)");
1217                 else if (bfin_compiled_revid() == 0xffff)
1218                         seq_printf(m, "(Compiled for Rev any)");
1219                 else
1220                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1221         }
1222
1223         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1224                 cclk/1000000, cclk%1000000,
1225                 sclk/1000000, sclk%1000000);
1226         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1227                 "Calibration\t: %lu loops\n",
1228                 (loops_per_jiffy * HZ) / 500000,
1229                 ((loops_per_jiffy * HZ) / 5000) % 100,
1230                 (loops_per_jiffy * HZ));
1231
1232         /* Check Cache configutation */
1233         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1234         case ACACHE_BSRAM:
1235                 cache = "dbank-A/B\t: cache/sram";
1236                 dcache_size = 16;
1237                 dsup_banks = 1;
1238                 break;
1239         case ACACHE_BCACHE:
1240                 cache = "dbank-A/B\t: cache/cache";
1241                 dcache_size = 32;
1242                 dsup_banks = 2;
1243                 break;
1244         case ASRAM_BSRAM:
1245                 cache = "dbank-A/B\t: sram/sram";
1246                 dcache_size = 0;
1247                 dsup_banks = 0;
1248                 break;
1249         default:
1250                 cache = "unknown";
1251                 dcache_size = 0;
1252                 dsup_banks = 0;
1253                 break;
1254         }
1255
1256         /* Is it turned on? */
1257         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1258                 dcache_size = 0;
1259
1260         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1261                 icache_size = 0;
1262
1263         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1264                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1265                 icache_size, dcache_size, 0);
1266         seq_printf(m, "%s\n", cache);
1267         seq_printf(m, "external memory\t: "
1268 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1269                    "cacheable"
1270 #else
1271                    "uncacheable"
1272 #endif
1273                    " in instruction cache\n");
1274         seq_printf(m, "external memory\t: "
1275 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1276                       "cacheable (write-back)"
1277 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1278                       "cacheable (write-through)"
1279 #else
1280                       "uncacheable"
1281 #endif
1282                       " in data cache\n");
1283
1284         if (icache_size)
1285                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1286                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1287         else
1288                 seq_printf(m, "icache setup\t: off\n");
1289
1290         seq_printf(m,
1291                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1292                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1293                    BFIN_DLINES);
1294 #ifdef __ARCH_SYNC_CORE_DCACHE
1295         seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1296 #endif
1297 #ifdef __ARCH_SYNC_CORE_ICACHE
1298         seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1299 #endif
1300
1301         seq_printf(m, "\n");
1302
1303         if (cpu_num != num_possible_cpus() - 1)
1304                 return 0;
1305
1306         if (L2_LENGTH) {
1307                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1308                 seq_printf(m, "L2 SRAM\t\t: "
1309 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1310                               "cacheable"
1311 #else
1312                               "uncacheable"
1313 #endif
1314                               " in instruction cache\n");
1315                 seq_printf(m, "L2 SRAM\t\t: "
1316 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1317                               "cacheable (write-back)"
1318 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1319                               "cacheable (write-through)"
1320 #else
1321                               "uncacheable"
1322 #endif
1323                               " in data cache\n");
1324         }
1325         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1326         seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1327                 physical_mem_end >> 10, 0ul, physical_mem_end);
1328         seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1329                 ((int)memory_end - (int)_rambase) >> 10,
1330                 _rambase, memory_end);
1331
1332         return 0;
1333 }
1334
1335 static void *c_start(struct seq_file *m, loff_t *pos)
1336 {
1337         if (*pos == 0)
1338                 *pos = cpumask_first(cpu_online_mask);
1339         if (*pos >= num_online_cpus())
1340                 return NULL;
1341
1342         return pos;
1343 }
1344
1345 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1346 {
1347         *pos = cpumask_next(*pos, cpu_online_mask);
1348
1349         return c_start(m, pos);
1350 }
1351
1352 static void c_stop(struct seq_file *m, void *v)
1353 {
1354 }
1355
1356 const struct seq_operations cpuinfo_op = {
1357         .start = c_start,
1358         .next = c_next,
1359         .stop = c_stop,
1360         .show = show_cpuinfo,
1361 };
1362
1363 void __init cmdline_init(const char *r0)
1364 {
1365         early_shadow_stamp();
1366         if (r0)
1367                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1368 }