]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/blackfin/mach-common/smp.c
Merge branches 'from-henrik', 'hidraw', 'logitech', 'picolcd', 'ps3', 'uclogic',...
[karo-tx-linux.git] / arch / blackfin / mach-common / smp.c
1 /*
2  * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
3  *
4  * Copyright 2007-2009 Analog Devices Inc.
5  *                         Philippe Gerum <rpm@xenomai.org>
6  *
7  * Licensed under the GPL-2.
8  */
9
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/clockchips.h>
18 #include <linux/profile.h>
19 #include <linux/errno.h>
20 #include <linux/mm.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/cpumask.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/slab.h>
27 #include <linux/atomic.h>
28 #include <asm/cacheflush.h>
29 #include <asm/irq_handler.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/pgalloc.h>
33 #include <asm/processor.h>
34 #include <asm/ptrace.h>
35 #include <asm/cpu.h>
36 #include <asm/time.h>
37 #include <linux/err.h>
38
39 /*
40  * Anomaly notes:
41  * 05000120 - we always define corelock as 32-bit integer in L2
42  */
43 struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
44
45 #ifdef CONFIG_ICACHE_FLUSH_L1
46 unsigned long blackfin_iflush_l1_entry[NR_CPUS];
47 #endif
48
49 struct blackfin_initial_pda __cpuinitdata initial_pda_coreb;
50
51 enum ipi_message_type {
52         BFIN_IPI_TIMER,
53         BFIN_IPI_RESCHEDULE,
54         BFIN_IPI_CALL_FUNC,
55         BFIN_IPI_CALL_FUNC_SINGLE,
56         BFIN_IPI_CPU_STOP,
57 };
58
59 struct blackfin_flush_data {
60         unsigned long start;
61         unsigned long end;
62 };
63
64 void *secondary_stack;
65
66 static struct blackfin_flush_data smp_flush_data;
67
68 static DEFINE_SPINLOCK(stop_lock);
69
70 /* A magic number - stress test shows this is safe for common cases */
71 #define BFIN_IPI_MSGQ_LEN 5
72
73 /* Simple FIFO buffer, overflow leads to panic */
74 struct ipi_data {
75         unsigned long count;
76         unsigned long bits;
77 };
78
79 static DEFINE_PER_CPU(struct ipi_data, bfin_ipi);
80
81 static void ipi_cpu_stop(unsigned int cpu)
82 {
83         spin_lock(&stop_lock);
84         printk(KERN_CRIT "CPU%u: stopping\n", cpu);
85         dump_stack();
86         spin_unlock(&stop_lock);
87
88         set_cpu_online(cpu, false);
89
90         local_irq_disable();
91
92         while (1)
93                 SSYNC();
94 }
95
96 static void ipi_flush_icache(void *info)
97 {
98         struct blackfin_flush_data *fdata = info;
99
100         /* Invalidate the memory holding the bounds of the flushed region. */
101         blackfin_dcache_invalidate_range((unsigned long)fdata,
102                                          (unsigned long)fdata + sizeof(*fdata));
103
104         /* Make sure all write buffers in the data side of the core
105          * are flushed before trying to invalidate the icache.  This
106          * needs to be after the data flush and before the icache
107          * flush so that the SSYNC does the right thing in preventing
108          * the instruction prefetcher from hitting things in cached
109          * memory at the wrong time -- it runs much further ahead than
110          * the pipeline.
111          */
112         SSYNC();
113
114         /* ipi_flaush_icache is invoked by generic flush_icache_range,
115          * so call blackfin arch icache flush directly here.
116          */
117         blackfin_icache_flush_range(fdata->start, fdata->end);
118 }
119
120 /* Use IRQ_SUPPLE_0 to request reschedule.
121  * When returning from interrupt to user space,
122  * there is chance to reschedule */
123 static irqreturn_t ipi_handler_int0(int irq, void *dev_instance)
124 {
125         unsigned int cpu = smp_processor_id();
126
127         platform_clear_ipi(cpu, IRQ_SUPPLE_0);
128         return IRQ_HANDLED;
129 }
130
131 DECLARE_PER_CPU(struct clock_event_device, coretmr_events);
132 void ipi_timer(void)
133 {
134         int cpu = smp_processor_id();
135         struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
136         evt->event_handler(evt);
137 }
138
139 static irqreturn_t ipi_handler_int1(int irq, void *dev_instance)
140 {
141         struct ipi_data *bfin_ipi_data;
142         unsigned int cpu = smp_processor_id();
143         unsigned long pending;
144         unsigned long msg;
145
146         platform_clear_ipi(cpu, IRQ_SUPPLE_1);
147
148         bfin_ipi_data = &__get_cpu_var(bfin_ipi);
149
150         while ((pending = xchg(&bfin_ipi_data->bits, 0)) != 0) {
151                 msg = 0;
152                 do {
153                         msg = find_next_bit(&pending, BITS_PER_LONG, msg + 1);
154                         switch (msg) {
155                         case BFIN_IPI_TIMER:
156                                 ipi_timer();
157                                 break;
158                         case BFIN_IPI_RESCHEDULE:
159                                 scheduler_ipi();
160                                 break;
161                         case BFIN_IPI_CALL_FUNC:
162                                 generic_smp_call_function_interrupt();
163                                 break;
164
165                         case BFIN_IPI_CALL_FUNC_SINGLE:
166                                 generic_smp_call_function_single_interrupt();
167                                 break;
168
169                         case BFIN_IPI_CPU_STOP:
170                                 ipi_cpu_stop(cpu);
171                                 break;
172                         }
173                 } while (msg < BITS_PER_LONG);
174
175                 smp_mb();
176         }
177         return IRQ_HANDLED;
178 }
179
180 static void bfin_ipi_init(void)
181 {
182         unsigned int cpu;
183         struct ipi_data *bfin_ipi_data;
184         for_each_possible_cpu(cpu) {
185                 bfin_ipi_data = &per_cpu(bfin_ipi, cpu);
186                 bfin_ipi_data->bits = 0;
187                 bfin_ipi_data->count = 0;
188         }
189 }
190
191 void send_ipi(const struct cpumask *cpumask, enum ipi_message_type msg)
192 {
193         unsigned int cpu;
194         struct ipi_data *bfin_ipi_data;
195         unsigned long flags;
196
197         local_irq_save(flags);
198
199         for_each_cpu(cpu, cpumask) {
200                 bfin_ipi_data = &per_cpu(bfin_ipi, cpu);
201                 smp_mb();
202                 set_bit(msg, &bfin_ipi_data->bits);
203                 bfin_ipi_data->count++;
204                 platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1);
205         }
206
207         local_irq_restore(flags);
208 }
209
210 void arch_send_call_function_single_ipi(int cpu)
211 {
212         send_ipi(cpumask_of(cpu), BFIN_IPI_CALL_FUNC_SINGLE);
213 }
214
215 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
216 {
217         send_ipi(mask, BFIN_IPI_CALL_FUNC);
218 }
219
220 void smp_send_reschedule(int cpu)
221 {
222         send_ipi(cpumask_of(cpu), BFIN_IPI_RESCHEDULE);
223
224         return;
225 }
226
227 void smp_send_msg(const struct cpumask *mask, unsigned long type)
228 {
229         send_ipi(mask, type);
230 }
231
232 void smp_timer_broadcast(const struct cpumask *mask)
233 {
234         smp_send_msg(mask, BFIN_IPI_TIMER);
235 }
236
237 void smp_send_stop(void)
238 {
239         cpumask_t callmap;
240
241         preempt_disable();
242         cpumask_copy(&callmap, cpu_online_mask);
243         cpumask_clear_cpu(smp_processor_id(), &callmap);
244         if (!cpumask_empty(&callmap))
245                 send_ipi(&callmap, BFIN_IPI_CPU_STOP);
246
247         preempt_enable();
248
249         return;
250 }
251
252 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
253 {
254         int ret;
255
256         secondary_stack = task_stack_page(idle) + THREAD_SIZE;
257
258         ret = platform_boot_secondary(cpu, idle);
259
260         secondary_stack = NULL;
261
262         return ret;
263 }
264
265 static void __cpuinit setup_secondary(unsigned int cpu)
266 {
267         unsigned long ilat;
268
269         bfin_write_IMASK(0);
270         CSYNC();
271         ilat = bfin_read_ILAT();
272         CSYNC();
273         bfin_write_ILAT(ilat);
274         CSYNC();
275
276         /* Enable interrupt levels IVG7-15. IARs have been already
277          * programmed by the boot CPU.  */
278         bfin_irq_flags |= IMASK_IVG15 |
279             IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
280             IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
281 }
282
283 void __cpuinit secondary_start_kernel(void)
284 {
285         unsigned int cpu = smp_processor_id();
286         struct mm_struct *mm = &init_mm;
287
288         if (_bfin_swrst & SWRST_DBL_FAULT_B) {
289                 printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
290 #ifdef CONFIG_DEBUG_DOUBLEFAULT
291                 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
292                         initial_pda_coreb.seqstat_doublefault & SEQSTAT_EXCAUSE,
293                         initial_pda_coreb.retx_doublefault);
294                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
295                         initial_pda_coreb.dcplb_doublefault_addr);
296                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
297                         initial_pda_coreb.icplb_doublefault_addr);
298 #endif
299                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
300                         initial_pda_coreb.retx);
301         }
302
303         /*
304          * We want the D-cache to be enabled early, in case the atomic
305          * support code emulates cache coherence (see
306          * __ARCH_SYNC_CORE_DCACHE).
307          */
308         init_exception_vectors();
309
310         local_irq_disable();
311
312         /* Attach the new idle task to the global mm. */
313         atomic_inc(&mm->mm_users);
314         atomic_inc(&mm->mm_count);
315         current->active_mm = mm;
316
317         preempt_disable();
318
319         setup_secondary(cpu);
320
321         platform_secondary_init(cpu);
322
323         /* setup local core timer */
324         bfin_local_timer_setup();
325
326         local_irq_enable();
327
328         bfin_setup_caches(cpu);
329
330         notify_cpu_starting(cpu);
331         /*
332          * Calibrate loops per jiffy value.
333          * IRQs need to be enabled here - D-cache can be invalidated
334          * in timer irq handler, so core B can read correct jiffies.
335          */
336         calibrate_delay();
337
338         cpu_idle();
339 }
340
341 void __init smp_prepare_boot_cpu(void)
342 {
343 }
344
345 void __init smp_prepare_cpus(unsigned int max_cpus)
346 {
347         platform_prepare_cpus(max_cpus);
348         bfin_ipi_init();
349         platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0);
350         platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1);
351 }
352
353 void __init smp_cpus_done(unsigned int max_cpus)
354 {
355         unsigned long bogosum = 0;
356         unsigned int cpu;
357
358         for_each_online_cpu(cpu)
359                 bogosum += loops_per_jiffy;
360
361         printk(KERN_INFO "SMP: Total of %d processors activated "
362                "(%lu.%02lu BogoMIPS).\n",
363                num_online_cpus(),
364                bogosum / (500000/HZ),
365                (bogosum / (5000/HZ)) % 100);
366 }
367
368 void smp_icache_flush_range_others(unsigned long start, unsigned long end)
369 {
370         smp_flush_data.start = start;
371         smp_flush_data.end = end;
372
373         preempt_disable();
374         if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 1))
375                 printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
376         preempt_enable();
377 }
378 EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
379
380 #ifdef __ARCH_SYNC_CORE_ICACHE
381 unsigned long icache_invld_count[NR_CPUS];
382 void resync_core_icache(void)
383 {
384         unsigned int cpu = get_cpu();
385         blackfin_invalidate_entire_icache();
386         icache_invld_count[cpu]++;
387         put_cpu();
388 }
389 EXPORT_SYMBOL(resync_core_icache);
390 #endif
391
392 #ifdef __ARCH_SYNC_CORE_DCACHE
393 unsigned long dcache_invld_count[NR_CPUS];
394 unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
395
396 void resync_core_dcache(void)
397 {
398         unsigned int cpu = get_cpu();
399         blackfin_invalidate_entire_dcache();
400         dcache_invld_count[cpu]++;
401         put_cpu();
402 }
403 EXPORT_SYMBOL(resync_core_dcache);
404 #endif
405
406 #ifdef CONFIG_HOTPLUG_CPU
407 int __cpuexit __cpu_disable(void)
408 {
409         unsigned int cpu = smp_processor_id();
410
411         if (cpu == 0)
412                 return -EPERM;
413
414         set_cpu_online(cpu, false);
415         return 0;
416 }
417
418 static DECLARE_COMPLETION(cpu_killed);
419
420 int __cpuexit __cpu_die(unsigned int cpu)
421 {
422         return wait_for_completion_timeout(&cpu_killed, 5000);
423 }
424
425 void cpu_die(void)
426 {
427         complete(&cpu_killed);
428
429         atomic_dec(&init_mm.mm_users);
430         atomic_dec(&init_mm.mm_count);
431
432         local_irq_disable();
433         platform_cpu_die();
434 }
435 #endif