]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/hexagon/include/asm/pgtable.h
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[karo-tx-linux.git] / arch / hexagon / include / asm / pgtable.h
1 /*
2  * Page table support for the Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
23
24 /*
25  * Page table definitions for Qualcomm Hexagon processor.
26  */
27 #include <linux/swap.h>
28 #include <asm/page.h>
29 #define __ARCH_USE_5LEVEL_HACK
30 #include <asm-generic/pgtable-nopmd.h>
31
32 /* A handy thing to have if one has the RAM. Declared in head.S */
33 extern unsigned long empty_zero_page;
34 extern unsigned long zero_page_mask;
35
36 /*
37  * The PTE model described here is that of the Hexagon Virtual Machine,
38  * which autonomously walks 2-level page tables.  At a lower level, we
39  * also describe the RISCish software-loaded TLB entry structure of
40  * the underlying Hexagon processor. A kernel built to run on the
41  * virtual machine has no need to know about the underlying hardware.
42  */
43 #include <asm/vm_mmu.h>
44
45 /*
46  * To maximize the comfort level for the PTE manipulation macros,
47  * define the "well known" architecture-specific bits.
48  */
49 #define _PAGE_READ      __HVM_PTE_R
50 #define _PAGE_WRITE     __HVM_PTE_W
51 #define _PAGE_EXECUTE   __HVM_PTE_X
52 #define _PAGE_USER      __HVM_PTE_U
53
54 /*
55  * We have a total of 4 "soft" bits available in the abstract PTE.
56  * The two mandatory software bits are Dirty and Accessed.
57  * To make nonlinear swap work according to the more recent
58  * model, we want a low order "Present" bit to indicate whether
59  * the PTE describes MMU programming or swap space.
60  */
61 #define _PAGE_PRESENT   (1<<0)
62 #define _PAGE_DIRTY     (1<<1)
63 #define _PAGE_ACCESSED  (1<<2)
64
65 /*
66  * For now, let's say that Valid and Present are the same thing.
67  * Alternatively, we could say that it's the "or" of R, W, and X
68  * permissions.
69  */
70 #define _PAGE_VALID     _PAGE_PRESENT
71
72 /*
73  * We're not defining _PAGE_GLOBAL here, since there's no concept
74  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
75  * and we want to use the same page table structures and macros in
76  * the native kernel as we do in the virtual machine kernel.
77  * So we'll put up with a bit of inefficiency for now...
78  */
79
80 /*
81  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
82  * only the second from the bottom, pgd and pud both being collapsed.
83  * Each entry represents 4MB of virtual address space, 4K of table
84  * thus maps the full 4GB.
85  */
86 #define PGDIR_SHIFT 22
87 #define PTRS_PER_PGD 1024
88
89 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
90 #define PGDIR_MASK (~(PGDIR_SIZE-1))
91
92 #ifdef CONFIG_PAGE_SIZE_4KB
93 #define PTRS_PER_PTE 1024
94 #endif
95
96 #ifdef CONFIG_PAGE_SIZE_16KB
97 #define PTRS_PER_PTE 256
98 #endif
99
100 #ifdef CONFIG_PAGE_SIZE_64KB
101 #define PTRS_PER_PTE 64
102 #endif
103
104 #ifdef CONFIG_PAGE_SIZE_256KB
105 #define PTRS_PER_PTE 16
106 #endif
107
108 #ifdef CONFIG_PAGE_SIZE_1MB
109 #define PTRS_PER_PTE 4
110 #endif
111
112 /*  Any bigger and the PTE disappears.  */
113 #define pgd_ERROR(e) \
114         printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
115                 pgd_val(e))
116
117 /*
118  * Page Protection Constants. Includes (in this variant) cache attributes.
119  */
120 extern unsigned long _dflt_cache_att;
121
122 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
123                                 _dflt_cache_att)
124 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | \
125                                 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
126 #define PAGE_COPY       PAGE_READONLY
127 #define PAGE_EXEC       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
128                                 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
129 #define PAGE_COPY_EXEC  PAGE_EXEC
130 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
131                                 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
132 #define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | \
133                                 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
134
135
136 /*
137  * Aliases for mapping mmap() protection bits to page protections.
138  * These get used for static initialization, so using the _dflt_cache_att
139  * variable for the default cache attribute isn't workable. If the
140  * default gets changed at boot time, the boot option code has to
141  * update data structures like the protaction_map[] array.
142  */
143 #define CACHEDEF        (CACHE_DEFAULT << 6)
144
145 /* Private (copy-on-write) page protections. */
146 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
147 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
148 #define __P010 __P000   /* Write-only copy-on-write */
149 #define __P011 __P001   /* Read/Write copy-on-write */
150 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
151                         _PAGE_EXECUTE | CACHEDEF)
152 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
153                         _PAGE_READ | CACHEDEF)
154 #define __P110 __P100   /* Write/execute copy-on-write */
155 #define __P111 __P101   /* Read/Write/Execute, copy-on-write */
156
157 /* Shared page protections. */
158 #define __S000 __P000
159 #define __S001 __P001
160 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
161                         _PAGE_WRITE | CACHEDEF)
162 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
163                         _PAGE_WRITE | CACHEDEF)
164 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
165                         _PAGE_EXECUTE | CACHEDEF)
166 #define __S101 __P101
167 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
168                         _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
169 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
170                         _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
171
172 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
173
174 /* Seems to be zero even in architectures where the zero page is firewalled? */
175 #define FIRST_USER_ADDRESS 0UL
176 #define pte_special(pte)        0
177 #define pte_mkspecial(pte)      (pte)
178
179 /*  HUGETLB not working currently  */
180 #ifdef CONFIG_HUGETLB_PAGE
181 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
182 #endif
183
184 /*
185  * For now, assume that higher-level code will do TLB/MMU invalidations
186  * and don't insert that overhead into this low-level function.
187  */
188 extern void sync_icache_dcache(pte_t pte);
189
190 #define pte_present_exec_user(pte) \
191         ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
192         (_PAGE_EXECUTE | _PAGE_USER))
193
194 static inline void set_pte(pte_t *ptep, pte_t pteval)
195 {
196         /*  should really be using pte_exec, if it weren't declared later. */
197         if (pte_present_exec_user(pteval))
198                 sync_icache_dcache(pteval);
199
200         *ptep = pteval;
201 }
202
203 /*
204  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
205  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
206  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
207  * as a universal null entry, but some of those least significant bits
208  * are interpreted by software.
209  */
210 #define _NULL_PMD       0x7
211 #define _NULL_PTE       0x0
212
213 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
214 {
215          pmd_val(*pmd_entry_ptr) = _NULL_PMD;
216 }
217
218 /*
219  * Conveniently, a null PTE value is invalid.
220  */
221 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
222                                 pte_t *ptep)
223 {
224         pte_val(*ptep) = _NULL_PTE;
225 }
226
227 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
228 /**
229  * pmd_index - returns the index of the entry in the PMD page
230  * which would control the given virtual address
231  */
232 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
233
234 #endif
235
236 /**
237  * pgd_index - returns the index of the entry in the PGD page
238  * which would control the given virtual address
239  *
240  * This returns the *index* for the address in the pgd_t
241  */
242 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
243
244 /*
245  * pgd_offset - find an offset in a page-table-directory
246  */
247 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
248
249 /*
250  * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
251  */
252 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
253
254 /**
255  * pmd_none - check if pmd_entry is mapped
256  * @pmd_entry:  pmd entry
257  *
258  * MIPS checks it against that "invalid pte table" thing.
259  */
260 static inline int pmd_none(pmd_t pmd)
261 {
262         return pmd_val(pmd) == _NULL_PMD;
263 }
264
265 /**
266  * pmd_present - is there a page table behind this?
267  * Essentially the inverse of pmd_none.  We maybe
268  * save an inline instruction by defining it this
269  * way, instead of simply "!pmd_none".
270  */
271 static inline int pmd_present(pmd_t pmd)
272 {
273         return pmd_val(pmd) != (unsigned long)_NULL_PMD;
274 }
275
276 /**
277  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
278  * As we have no known cause of badness, it's null, as it is for many
279  * architectures.
280  */
281 static inline int pmd_bad(pmd_t pmd)
282 {
283         return 0;
284 }
285
286 /*
287  * pmd_page - converts a PMD entry to a page pointer
288  */
289 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
290 #define pmd_pgtable(pmd) pmd_page(pmd)
291
292 /**
293  * pte_none - check if pte is mapped
294  * @pte: pte_t entry
295  */
296 static inline int pte_none(pte_t pte)
297 {
298         return pte_val(pte) == _NULL_PTE;
299 };
300
301 /*
302  * pte_present - check if page is present
303  */
304 static inline int pte_present(pte_t pte)
305 {
306         return pte_val(pte) & _PAGE_PRESENT;
307 }
308
309 /* mk_pte - make a PTE out of a page pointer and protection bits */
310 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
311
312 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
313 #define pte_page(x) pfn_to_page(pte_pfn(x))
314
315 /* pte_mkold - mark PTE as not recently accessed */
316 static inline pte_t pte_mkold(pte_t pte)
317 {
318         pte_val(pte) &= ~_PAGE_ACCESSED;
319         return pte;
320 }
321
322 /* pte_mkyoung - mark PTE as recently accessed */
323 static inline pte_t pte_mkyoung(pte_t pte)
324 {
325         pte_val(pte) |= _PAGE_ACCESSED;
326         return pte;
327 }
328
329 /* pte_mkclean - mark page as in sync with backing store */
330 static inline pte_t pte_mkclean(pte_t pte)
331 {
332         pte_val(pte) &= ~_PAGE_DIRTY;
333         return pte;
334 }
335
336 /* pte_mkdirty - mark page as modified */
337 static inline pte_t pte_mkdirty(pte_t pte)
338 {
339         pte_val(pte) |= _PAGE_DIRTY;
340         return pte;
341 }
342
343 /* pte_young - "is PTE marked as accessed"? */
344 static inline int pte_young(pte_t pte)
345 {
346         return pte_val(pte) & _PAGE_ACCESSED;
347 }
348
349 /* pte_dirty - "is PTE dirty?" */
350 static inline int pte_dirty(pte_t pte)
351 {
352         return pte_val(pte) & _PAGE_DIRTY;
353 }
354
355 /* pte_modify - set protection bits on PTE */
356 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
357 {
358         pte_val(pte) &= PAGE_MASK;
359         pte_val(pte) |= pgprot_val(prot);
360         return pte;
361 }
362
363 /* pte_wrprotect - mark page as not writable */
364 static inline pte_t pte_wrprotect(pte_t pte)
365 {
366         pte_val(pte) &= ~_PAGE_WRITE;
367         return pte;
368 }
369
370 /* pte_mkwrite - mark page as writable */
371 static inline pte_t pte_mkwrite(pte_t pte)
372 {
373         pte_val(pte) |= _PAGE_WRITE;
374         return pte;
375 }
376
377 /* pte_mkexec - mark PTE as executable */
378 static inline pte_t pte_mkexec(pte_t pte)
379 {
380         pte_val(pte) |= _PAGE_EXECUTE;
381         return pte;
382 }
383
384 /* pte_read - "is PTE marked as readable?" */
385 static inline int pte_read(pte_t pte)
386 {
387         return pte_val(pte) & _PAGE_READ;
388 }
389
390 /* pte_write - "is PTE marked as writable?" */
391 static inline int pte_write(pte_t pte)
392 {
393         return pte_val(pte) & _PAGE_WRITE;
394 }
395
396
397 /* pte_exec - "is PTE marked as executable?" */
398 static inline int pte_exec(pte_t pte)
399 {
400         return pte_val(pte) & _PAGE_EXECUTE;
401 }
402
403 /* __pte_to_swp_entry - extract swap entry from PTE */
404 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
405
406 /* __swp_entry_to_pte - extract PTE from swap entry */
407 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
408
409 /* pfn_pte - convert page number and protection value to page table entry */
410 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
411
412 /* pte_pfn - convert pte to page frame number */
413 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
414 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
415
416 /*
417  * set_pte_at - update page table and do whatever magic may be
418  * necessary to make the underlying hardware/firmware take note.
419  *
420  * VM may require a virtual instruction to alert the MMU.
421  */
422 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
423
424 /*
425  * May need to invoke the virtual machine as well...
426  */
427 #define pte_unmap(pte)          do { } while (0)
428 #define pte_unmap_nested(pte)   do { } while (0)
429
430 /*
431  * pte_offset_map - returns the linear address of the page table entry
432  * corresponding to an address
433  */
434 #define pte_offset_map(dir, address)                                    \
435         ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
436
437 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
438
439 /* pte_offset_kernel - kernel version of pte_offset */
440 #define pte_offset_kernel(dir, address) \
441         ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
442                                 +  __pte_offset(address))
443
444 /* ZERO_PAGE - returns the globally shared zero page */
445 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
446
447 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
448
449 /*  I think this is in case we have page table caches; needed by init/main.c  */
450 #define pgtable_cache_init()    do { } while (0)
451
452 /*
453  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
454  * interpreted as swap information.  The remaining free bits are interpreted as
455  * swap type/offset tuple.  Rather than have the TLB fill handler test
456  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
457  * all zeros for swap entries, which speeds up the miss handler at the cost of
458  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
459  * processor architecture and target applications suggest a lot of TLB misses
460  * and not much swap space.
461  *
462  * Format of swap PTE:
463  *      bit     0:      Present (zero)
464  *      bits    1-5:    swap type (arch independent layer uses 5 bits max)
465  *      bits    6-9:    bits 3:0 of offset
466  *      bits    10-12:  effectively _PAGE_PROTNONE (all zero)
467  *      bits    13-31:  bits 22:4 of swap offset
468  *
469  * The split offset makes some of the following macros a little gnarly,
470  * but there's plenty of precedent for this sort of thing.
471  */
472
473 /* Used for swap PTEs */
474 #define __swp_type(swp_pte)             (((swp_pte).val >> 1) & 0x1f)
475
476 #define __swp_offset(swp_pte) \
477         ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
478
479 #define __swp_entry(type, offset) \
480         ((swp_entry_t)  { \
481                 ((type << 1) | \
482                  ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
483
484 /*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
485 #include <asm-generic/pgtable.h>
486
487 #endif