]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/ia64/kernel/time.c
Merge tag 'squashfs-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/pkl...
[karo-tx-linux.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32
33 #include "fsyscall_gtod_data.h"
34
35 static cycle_t itc_get_cycles(struct clocksource *cs);
36
37 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38         .lock = __SEQLOCK_UNLOCKED(fsyscall_gtod_data.lock),
39 };
40
41 struct itc_jitter_data_t itc_jitter_data;
42
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49
50 #endif
51
52 #ifdef CONFIG_PARAVIRT
53 /* We need to define a real function for sched_clock, to override the
54    weak default version */
55 unsigned long long sched_clock(void)
56 {
57         return paravirt_sched_clock();
58 }
59 #endif
60
61 #ifdef CONFIG_PARAVIRT
62 static void
63 paravirt_clocksource_resume(struct clocksource *cs)
64 {
65         if (pv_time_ops.clocksource_resume)
66                 pv_time_ops.clocksource_resume();
67 }
68 #endif
69
70 static struct clocksource clocksource_itc = {
71         .name           = "itc",
72         .rating         = 350,
73         .read           = itc_get_cycles,
74         .mask           = CLOCKSOURCE_MASK(64),
75         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
76 #ifdef CONFIG_PARAVIRT
77         .resume         = paravirt_clocksource_resume,
78 #endif
79 };
80 static struct clocksource *itc_clocksource;
81
82 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
83
84 #include <linux/kernel_stat.h>
85
86 extern cputime_t cycle_to_cputime(u64 cyc);
87
88 /*
89  * Called from the context switch with interrupts disabled, to charge all
90  * accumulated times to the current process, and to prepare accounting on
91  * the next process.
92  */
93 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
94 {
95         struct thread_info *pi = task_thread_info(prev);
96         struct thread_info *ni = task_thread_info(next);
97         cputime_t delta_stime, delta_utime;
98         __u64 now;
99
100         now = ia64_get_itc();
101
102         delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
103         if (idle_task(smp_processor_id()) != prev)
104                 account_system_time(prev, 0, delta_stime, delta_stime);
105         else
106                 account_idle_time(delta_stime);
107
108         if (pi->ac_utime) {
109                 delta_utime = cycle_to_cputime(pi->ac_utime);
110                 account_user_time(prev, delta_utime, delta_utime);
111         }
112
113         pi->ac_stamp = ni->ac_stamp = now;
114         ni->ac_stime = ni->ac_utime = 0;
115 }
116
117 /*
118  * Account time for a transition between system, hard irq or soft irq state.
119  * Note that this function is called with interrupts enabled.
120  */
121 void account_system_vtime(struct task_struct *tsk)
122 {
123         struct thread_info *ti = task_thread_info(tsk);
124         unsigned long flags;
125         cputime_t delta_stime;
126         __u64 now;
127
128         local_irq_save(flags);
129
130         now = ia64_get_itc();
131
132         delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
133         if (irq_count() || idle_task(smp_processor_id()) != tsk)
134                 account_system_time(tsk, 0, delta_stime, delta_stime);
135         else
136                 account_idle_time(delta_stime);
137         ti->ac_stime = 0;
138
139         ti->ac_stamp = now;
140
141         local_irq_restore(flags);
142 }
143 EXPORT_SYMBOL_GPL(account_system_vtime);
144
145 /*
146  * Called from the timer interrupt handler to charge accumulated user time
147  * to the current process.  Must be called with interrupts disabled.
148  */
149 void account_process_tick(struct task_struct *p, int user_tick)
150 {
151         struct thread_info *ti = task_thread_info(p);
152         cputime_t delta_utime;
153
154         if (ti->ac_utime) {
155                 delta_utime = cycle_to_cputime(ti->ac_utime);
156                 account_user_time(p, delta_utime, delta_utime);
157                 ti->ac_utime = 0;
158         }
159 }
160
161 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
162
163 static irqreturn_t
164 timer_interrupt (int irq, void *dev_id)
165 {
166         unsigned long new_itm;
167
168         if (cpu_is_offline(smp_processor_id())) {
169                 return IRQ_HANDLED;
170         }
171
172         platform_timer_interrupt(irq, dev_id);
173
174         new_itm = local_cpu_data->itm_next;
175
176         if (!time_after(ia64_get_itc(), new_itm))
177                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
178                        ia64_get_itc(), new_itm);
179
180         profile_tick(CPU_PROFILING);
181
182         if (paravirt_do_steal_accounting(&new_itm))
183                 goto skip_process_time_accounting;
184
185         while (1) {
186                 update_process_times(user_mode(get_irq_regs()));
187
188                 new_itm += local_cpu_data->itm_delta;
189
190                 if (smp_processor_id() == time_keeper_id)
191                         xtime_update(1);
192
193                 local_cpu_data->itm_next = new_itm;
194
195                 if (time_after(new_itm, ia64_get_itc()))
196                         break;
197
198                 /*
199                  * Allow IPIs to interrupt the timer loop.
200                  */
201                 local_irq_enable();
202                 local_irq_disable();
203         }
204
205 skip_process_time_accounting:
206
207         do {
208                 /*
209                  * If we're too close to the next clock tick for
210                  * comfort, we increase the safety margin by
211                  * intentionally dropping the next tick(s).  We do NOT
212                  * update itm.next because that would force us to call
213                  * xtime_update() which in turn would let our clock run
214                  * too fast (with the potentially devastating effect
215                  * of losing monotony of time).
216                  */
217                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
218                         new_itm += local_cpu_data->itm_delta;
219                 ia64_set_itm(new_itm);
220                 /* double check, in case we got hit by a (slow) PMI: */
221         } while (time_after_eq(ia64_get_itc(), new_itm));
222         return IRQ_HANDLED;
223 }
224
225 /*
226  * Encapsulate access to the itm structure for SMP.
227  */
228 void
229 ia64_cpu_local_tick (void)
230 {
231         int cpu = smp_processor_id();
232         unsigned long shift = 0, delta;
233
234         /* arrange for the cycle counter to generate a timer interrupt: */
235         ia64_set_itv(IA64_TIMER_VECTOR);
236
237         delta = local_cpu_data->itm_delta;
238         /*
239          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
240          * same time:
241          */
242         if (cpu) {
243                 unsigned long hi = 1UL << ia64_fls(cpu);
244                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
245         }
246         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
247         ia64_set_itm(local_cpu_data->itm_next);
248 }
249
250 static int nojitter;
251
252 static int __init nojitter_setup(char *str)
253 {
254         nojitter = 1;
255         printk("Jitter checking for ITC timers disabled\n");
256         return 1;
257 }
258
259 __setup("nojitter", nojitter_setup);
260
261
262 void __devinit
263 ia64_init_itm (void)
264 {
265         unsigned long platform_base_freq, itc_freq;
266         struct pal_freq_ratio itc_ratio, proc_ratio;
267         long status, platform_base_drift, itc_drift;
268
269         /*
270          * According to SAL v2.6, we need to use a SAL call to determine the platform base
271          * frequency and then a PAL call to determine the frequency ratio between the ITC
272          * and the base frequency.
273          */
274         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
275                                     &platform_base_freq, &platform_base_drift);
276         if (status != 0) {
277                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
278         } else {
279                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
280                 if (status != 0)
281                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
282         }
283         if (status != 0) {
284                 /* invent "random" values */
285                 printk(KERN_ERR
286                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
287                 platform_base_freq = 100000000;
288                 platform_base_drift = -1;       /* no drift info */
289                 itc_ratio.num = 3;
290                 itc_ratio.den = 1;
291         }
292         if (platform_base_freq < 40000000) {
293                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
294                        platform_base_freq);
295                 platform_base_freq = 75000000;
296                 platform_base_drift = -1;
297         }
298         if (!proc_ratio.den)
299                 proc_ratio.den = 1;     /* avoid division by zero */
300         if (!itc_ratio.den)
301                 itc_ratio.den = 1;      /* avoid division by zero */
302
303         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
304
305         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
306         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
307                "ITC freq=%lu.%03luMHz", smp_processor_id(),
308                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
309                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
310
311         if (platform_base_drift != -1) {
312                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
313                 printk("+/-%ldppm\n", itc_drift);
314         } else {
315                 itc_drift = -1;
316                 printk("\n");
317         }
318
319         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
320         local_cpu_data->itc_freq = itc_freq;
321         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
322         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
323                                         + itc_freq/2)/itc_freq;
324
325         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
326 #ifdef CONFIG_SMP
327                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
328                  * Jitter compensation requires a cmpxchg which may limit
329                  * the scalability of the syscalls for retrieving time.
330                  * The ITC synchronization is usually successful to within a few
331                  * ITC ticks but this is not a sure thing. If you need to improve
332                  * timer performance in SMP situations then boot the kernel with the
333                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
334                  * even going backward) if the ITC offsets between the individual CPUs
335                  * are too large.
336                  */
337                 if (!nojitter)
338                         itc_jitter_data.itc_jitter = 1;
339 #endif
340         } else
341                 /*
342                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
343                  * ITC values may fluctuate significantly between processors.
344                  * Clock should not be used for hrtimers. Mark itc as only
345                  * useful for boot and testing.
346                  *
347                  * Note that jitter compensation is off! There is no point of
348                  * synchronizing ITCs since they may be large differentials
349                  * that change over time.
350                  *
351                  * The only way to fix this would be to repeatedly sync the
352                  * ITCs. Until that time we have to avoid ITC.
353                  */
354                 clocksource_itc.rating = 50;
355
356         paravirt_init_missing_ticks_accounting(smp_processor_id());
357
358         /* avoid softlock up message when cpu is unplug and plugged again. */
359         touch_softlockup_watchdog();
360
361         /* Setup the CPU local timer tick */
362         ia64_cpu_local_tick();
363
364         if (!itc_clocksource) {
365                 clocksource_register_hz(&clocksource_itc,
366                                                 local_cpu_data->itc_freq);
367                 itc_clocksource = &clocksource_itc;
368         }
369 }
370
371 static cycle_t itc_get_cycles(struct clocksource *cs)
372 {
373         unsigned long lcycle, now, ret;
374
375         if (!itc_jitter_data.itc_jitter)
376                 return get_cycles();
377
378         lcycle = itc_jitter_data.itc_lastcycle;
379         now = get_cycles();
380         if (lcycle && time_after(lcycle, now))
381                 return lcycle;
382
383         /*
384          * Keep track of the last timer value returned.
385          * In an SMP environment, you could lose out in contention of
386          * cmpxchg. If so, your cmpxchg returns new value which the
387          * winner of contention updated to. Use the new value instead.
388          */
389         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
390         if (unlikely(ret != lcycle))
391                 return ret;
392
393         return now;
394 }
395
396
397 static struct irqaction timer_irqaction = {
398         .handler =      timer_interrupt,
399         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
400         .name =         "timer"
401 };
402
403 static struct platform_device rtc_efi_dev = {
404         .name = "rtc-efi",
405         .id = -1,
406 };
407
408 static int __init rtc_init(void)
409 {
410         if (platform_device_register(&rtc_efi_dev) < 0)
411                 printk(KERN_ERR "unable to register rtc device...\n");
412
413         /* not necessarily an error */
414         return 0;
415 }
416 module_init(rtc_init);
417
418 void read_persistent_clock(struct timespec *ts)
419 {
420         efi_gettimeofday(ts);
421 }
422
423 void __init
424 time_init (void)
425 {
426         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
427         ia64_init_itm();
428 }
429
430 /*
431  * Generic udelay assumes that if preemption is allowed and the thread
432  * migrates to another CPU, that the ITC values are synchronized across
433  * all CPUs.
434  */
435 static void
436 ia64_itc_udelay (unsigned long usecs)
437 {
438         unsigned long start = ia64_get_itc();
439         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
440
441         while (time_before(ia64_get_itc(), end))
442                 cpu_relax();
443 }
444
445 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
446
447 void
448 udelay (unsigned long usecs)
449 {
450         (*ia64_udelay)(usecs);
451 }
452 EXPORT_SYMBOL(udelay);
453
454 /* IA64 doesn't cache the timezone */
455 void update_vsyscall_tz(void)
456 {
457 }
458
459 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
460                         struct clocksource *c, u32 mult)
461 {
462         unsigned long flags;
463
464         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
465
466         /* copy fsyscall clock data */
467         fsyscall_gtod_data.clk_mask = c->mask;
468         fsyscall_gtod_data.clk_mult = mult;
469         fsyscall_gtod_data.clk_shift = c->shift;
470         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
471         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
472
473         /* copy kernel time structures */
474         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
475         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
476         fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
477                                                         + wall->tv_sec;
478         fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
479                                                         + wall->tv_nsec;
480
481         /* normalize */
482         while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
483                 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
484                 fsyscall_gtod_data.monotonic_time.tv_sec++;
485         }
486
487         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
488 }
489