]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/ia64/mm/init.c
Merge tag 'sound-fix-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[karo-tx-linux.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37
38 extern void ia64_tlb_init (void);
39
40 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
41
42 #ifdef CONFIG_VIRTUAL_MEM_MAP
43 unsigned long VMALLOC_END = VMALLOC_END_INIT;
44 EXPORT_SYMBOL(VMALLOC_END);
45 struct page *vmem_map;
46 EXPORT_SYMBOL(vmem_map);
47 #endif
48
49 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
50 EXPORT_SYMBOL(zero_page_memmap_ptr);
51
52 void
53 __ia64_sync_icache_dcache (pte_t pte)
54 {
55         unsigned long addr;
56         struct page *page;
57
58         page = pte_page(pte);
59         addr = (unsigned long) page_address(page);
60
61         if (test_bit(PG_arch_1, &page->flags))
62                 return;                         /* i-cache is already coherent with d-cache */
63
64         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
65         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
66 }
67
68 /*
69  * Since DMA is i-cache coherent, any (complete) pages that were written via
70  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
71  * flush them when they get mapped into an executable vm-area.
72  */
73 void
74 dma_mark_clean(void *addr, size_t size)
75 {
76         unsigned long pg_addr, end;
77
78         pg_addr = PAGE_ALIGN((unsigned long) addr);
79         end = (unsigned long) addr + size;
80         while (pg_addr + PAGE_SIZE <= end) {
81                 struct page *page = virt_to_page(pg_addr);
82                 set_bit(PG_arch_1, &page->flags);
83                 pg_addr += PAGE_SIZE;
84         }
85 }
86
87 inline void
88 ia64_set_rbs_bot (void)
89 {
90         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
91
92         if (stack_size > MAX_USER_STACK_SIZE)
93                 stack_size = MAX_USER_STACK_SIZE;
94         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
95 }
96
97 /*
98  * This performs some platform-dependent address space initialization.
99  * On IA-64, we want to setup the VM area for the register backing
100  * store (which grows upwards) and install the gateway page which is
101  * used for signal trampolines, etc.
102  */
103 void
104 ia64_init_addr_space (void)
105 {
106         struct vm_area_struct *vma;
107
108         ia64_set_rbs_bot();
109
110         /*
111          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
112          * the problem.  When the process attempts to write to the register backing store
113          * for the first time, it will get a SEGFAULT in this case.
114          */
115         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
116         if (vma) {
117                 INIT_LIST_HEAD(&vma->anon_vma_chain);
118                 vma->vm_mm = current->mm;
119                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
120                 vma->vm_end = vma->vm_start + PAGE_SIZE;
121                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
122                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
123                 down_write(&current->mm->mmap_sem);
124                 if (insert_vm_struct(current->mm, vma)) {
125                         up_write(&current->mm->mmap_sem);
126                         kmem_cache_free(vm_area_cachep, vma);
127                         return;
128                 }
129                 up_write(&current->mm->mmap_sem);
130         }
131
132         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
133         if (!(current->personality & MMAP_PAGE_ZERO)) {
134                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
135                 if (vma) {
136                         INIT_LIST_HEAD(&vma->anon_vma_chain);
137                         vma->vm_mm = current->mm;
138                         vma->vm_end = PAGE_SIZE;
139                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
140                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
141                                         VM_DONTEXPAND | VM_DONTDUMP;
142                         down_write(&current->mm->mmap_sem);
143                         if (insert_vm_struct(current->mm, vma)) {
144                                 up_write(&current->mm->mmap_sem);
145                                 kmem_cache_free(vm_area_cachep, vma);
146                                 return;
147                         }
148                         up_write(&current->mm->mmap_sem);
149                 }
150         }
151 }
152
153 void
154 free_initmem (void)
155 {
156         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
157                            -1, "unused kernel");
158 }
159
160 void __init
161 free_initrd_mem (unsigned long start, unsigned long end)
162 {
163         /*
164          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
165          * Thus EFI and the kernel may have different page sizes. It is
166          * therefore possible to have the initrd share the same page as
167          * the end of the kernel (given current setup).
168          *
169          * To avoid freeing/using the wrong page (kernel sized) we:
170          *      - align up the beginning of initrd
171          *      - align down the end of initrd
172          *
173          *  |             |
174          *  |=============| a000
175          *  |             |
176          *  |             |
177          *  |             | 9000
178          *  |/////////////|
179          *  |/////////////|
180          *  |=============| 8000
181          *  |///INITRD////|
182          *  |/////////////|
183          *  |/////////////| 7000
184          *  |             |
185          *  |KKKKKKKKKKKKK|
186          *  |=============| 6000
187          *  |KKKKKKKKKKKKK|
188          *  |KKKKKKKKKKKKK|
189          *  K=kernel using 8KB pages
190          *
191          * In this example, we must free page 8000 ONLY. So we must align up
192          * initrd_start and keep initrd_end as is.
193          */
194         start = PAGE_ALIGN(start);
195         end = end & PAGE_MASK;
196
197         if (start < end)
198                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
199
200         for (; start < end; start += PAGE_SIZE) {
201                 if (!virt_addr_valid(start))
202                         continue;
203                 free_reserved_page(virt_to_page(start));
204         }
205 }
206
207 /*
208  * This installs a clean page in the kernel's page table.
209  */
210 static struct page * __init
211 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
212 {
213         pgd_t *pgd;
214         pud_t *pud;
215         pmd_t *pmd;
216         pte_t *pte;
217
218         if (!PageReserved(page))
219                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
220                        page_address(page));
221
222         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
223
224         {
225                 pud = pud_alloc(&init_mm, pgd, address);
226                 if (!pud)
227                         goto out;
228                 pmd = pmd_alloc(&init_mm, pud, address);
229                 if (!pmd)
230                         goto out;
231                 pte = pte_alloc_kernel(pmd, address);
232                 if (!pte)
233                         goto out;
234                 if (!pte_none(*pte))
235                         goto out;
236                 set_pte(pte, mk_pte(page, pgprot));
237         }
238   out:
239         /* no need for flush_tlb */
240         return page;
241 }
242
243 static void __init
244 setup_gate (void)
245 {
246         struct page *page;
247
248         /*
249          * Map the gate page twice: once read-only to export the ELF
250          * headers etc. and once execute-only page to enable
251          * privilege-promotion via "epc":
252          */
253         page = virt_to_page(ia64_imva(__start_gate_section));
254         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
255 #ifdef HAVE_BUGGY_SEGREL
256         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
257         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
258 #else
259         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
260         /* Fill in the holes (if any) with read-only zero pages: */
261         {
262                 unsigned long addr;
263
264                 for (addr = GATE_ADDR + PAGE_SIZE;
265                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
266                      addr += PAGE_SIZE)
267                 {
268                         put_kernel_page(ZERO_PAGE(0), addr,
269                                         PAGE_READONLY);
270                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
271                                         PAGE_READONLY);
272                 }
273         }
274 #endif
275         ia64_patch_gate();
276 }
277
278 static struct vm_area_struct gate_vma;
279
280 static int __init gate_vma_init(void)
281 {
282         gate_vma.vm_mm = NULL;
283         gate_vma.vm_start = FIXADDR_USER_START;
284         gate_vma.vm_end = FIXADDR_USER_END;
285         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
286         gate_vma.vm_page_prot = __P101;
287
288         return 0;
289 }
290 __initcall(gate_vma_init);
291
292 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
293 {
294         return &gate_vma;
295 }
296
297 int in_gate_area_no_mm(unsigned long addr)
298 {
299         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
300                 return 1;
301         return 0;
302 }
303
304 int in_gate_area(struct mm_struct *mm, unsigned long addr)
305 {
306         return in_gate_area_no_mm(addr);
307 }
308
309 void ia64_mmu_init(void *my_cpu_data)
310 {
311         unsigned long pta, impl_va_bits;
312         extern void tlb_init(void);
313
314 #ifdef CONFIG_DISABLE_VHPT
315 #       define VHPT_ENABLE_BIT  0
316 #else
317 #       define VHPT_ENABLE_BIT  1
318 #endif
319
320         /*
321          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
322          * address space.  The IA-64 architecture guarantees that at least 50 bits of
323          * virtual address space are implemented but if we pick a large enough page size
324          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
325          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
326          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
327          * problem in practice.  Alternatively, we could truncate the top of the mapped
328          * address space to not permit mappings that would overlap with the VMLPT.
329          * --davidm 00/12/06
330          */
331 #       define pte_bits                 3
332 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
333         /*
334          * The virtual page table has to cover the entire implemented address space within
335          * a region even though not all of this space may be mappable.  The reason for
336          * this is that the Access bit and Dirty bit fault handlers perform
337          * non-speculative accesses to the virtual page table, so the address range of the
338          * virtual page table itself needs to be covered by virtual page table.
339          */
340 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
341 #       define POW2(n)                  (1ULL << (n))
342
343         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
344
345         if (impl_va_bits < 51 || impl_va_bits > 61)
346                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
347         /*
348          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
349          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
350          * the test makes sure that our mapped space doesn't overlap the
351          * unimplemented hole in the middle of the region.
352          */
353         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
354             (mapped_space_bits > impl_va_bits - 1))
355                 panic("Cannot build a big enough virtual-linear page table"
356                       " to cover mapped address space.\n"
357                       " Try using a smaller page size.\n");
358
359
360         /* place the VMLPT at the end of each page-table mapped region: */
361         pta = POW2(61) - POW2(vmlpt_bits);
362
363         /*
364          * Set the (virtually mapped linear) page table address.  Bit
365          * 8 selects between the short and long format, bits 2-7 the
366          * size of the table, and bit 0 whether the VHPT walker is
367          * enabled.
368          */
369         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
370
371         ia64_tlb_init();
372
373 #ifdef  CONFIG_HUGETLB_PAGE
374         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
375         ia64_srlz_d();
376 #endif
377 }
378
379 #ifdef CONFIG_VIRTUAL_MEM_MAP
380 int vmemmap_find_next_valid_pfn(int node, int i)
381 {
382         unsigned long end_address, hole_next_pfn;
383         unsigned long stop_address;
384         pg_data_t *pgdat = NODE_DATA(node);
385
386         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
387         end_address = PAGE_ALIGN(end_address);
388         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
389
390         do {
391                 pgd_t *pgd;
392                 pud_t *pud;
393                 pmd_t *pmd;
394                 pte_t *pte;
395
396                 pgd = pgd_offset_k(end_address);
397                 if (pgd_none(*pgd)) {
398                         end_address += PGDIR_SIZE;
399                         continue;
400                 }
401
402                 pud = pud_offset(pgd, end_address);
403                 if (pud_none(*pud)) {
404                         end_address += PUD_SIZE;
405                         continue;
406                 }
407
408                 pmd = pmd_offset(pud, end_address);
409                 if (pmd_none(*pmd)) {
410                         end_address += PMD_SIZE;
411                         continue;
412                 }
413
414                 pte = pte_offset_kernel(pmd, end_address);
415 retry_pte:
416                 if (pte_none(*pte)) {
417                         end_address += PAGE_SIZE;
418                         pte++;
419                         if ((end_address < stop_address) &&
420                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
421                                 goto retry_pte;
422                         continue;
423                 }
424                 /* Found next valid vmem_map page */
425                 break;
426         } while (end_address < stop_address);
427
428         end_address = min(end_address, stop_address);
429         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
430         hole_next_pfn = end_address / sizeof(struct page);
431         return hole_next_pfn - pgdat->node_start_pfn;
432 }
433
434 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
435 {
436         unsigned long address, start_page, end_page;
437         struct page *map_start, *map_end;
438         int node;
439         pgd_t *pgd;
440         pud_t *pud;
441         pmd_t *pmd;
442         pte_t *pte;
443
444         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
445         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
446
447         start_page = (unsigned long) map_start & PAGE_MASK;
448         end_page = PAGE_ALIGN((unsigned long) map_end);
449         node = paddr_to_nid(__pa(start));
450
451         for (address = start_page; address < end_page; address += PAGE_SIZE) {
452                 pgd = pgd_offset_k(address);
453                 if (pgd_none(*pgd))
454                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455                 pud = pud_offset(pgd, address);
456
457                 if (pud_none(*pud))
458                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
459                 pmd = pmd_offset(pud, address);
460
461                 if (pmd_none(*pmd))
462                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
463                 pte = pte_offset_kernel(pmd, address);
464
465                 if (pte_none(*pte))
466                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
467                                              PAGE_KERNEL));
468         }
469         return 0;
470 }
471
472 struct memmap_init_callback_data {
473         struct page *start;
474         struct page *end;
475         int nid;
476         unsigned long zone;
477 };
478
479 static int __meminit
480 virtual_memmap_init(u64 start, u64 end, void *arg)
481 {
482         struct memmap_init_callback_data *args;
483         struct page *map_start, *map_end;
484
485         args = (struct memmap_init_callback_data *) arg;
486         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
487         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
488
489         if (map_start < args->start)
490                 map_start = args->start;
491         if (map_end > args->end)
492                 map_end = args->end;
493
494         /*
495          * We have to initialize "out of bounds" struct page elements that fit completely
496          * on the same pages that were allocated for the "in bounds" elements because they
497          * may be referenced later (and found to be "reserved").
498          */
499         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
500         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
501                     / sizeof(struct page));
502
503         if (map_start < map_end)
504                 memmap_init_zone((unsigned long)(map_end - map_start),
505                                  args->nid, args->zone, page_to_pfn(map_start),
506                                  MEMMAP_EARLY);
507         return 0;
508 }
509
510 void __meminit
511 memmap_init (unsigned long size, int nid, unsigned long zone,
512              unsigned long start_pfn)
513 {
514         if (!vmem_map)
515                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
516         else {
517                 struct page *start;
518                 struct memmap_init_callback_data args;
519
520                 start = pfn_to_page(start_pfn);
521                 args.start = start;
522                 args.end = start + size;
523                 args.nid = nid;
524                 args.zone = zone;
525
526                 efi_memmap_walk(virtual_memmap_init, &args);
527         }
528 }
529
530 int
531 ia64_pfn_valid (unsigned long pfn)
532 {
533         char byte;
534         struct page *pg = pfn_to_page(pfn);
535
536         return     (__get_user(byte, (char __user *) pg) == 0)
537                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
538                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
539 }
540 EXPORT_SYMBOL(ia64_pfn_valid);
541
542 int __init find_largest_hole(u64 start, u64 end, void *arg)
543 {
544         u64 *max_gap = arg;
545
546         static u64 last_end = PAGE_OFFSET;
547
548         /* NOTE: this algorithm assumes efi memmap table is ordered */
549
550         if (*max_gap < (start - last_end))
551                 *max_gap = start - last_end;
552         last_end = end;
553         return 0;
554 }
555
556 #endif /* CONFIG_VIRTUAL_MEM_MAP */
557
558 int __init register_active_ranges(u64 start, u64 len, int nid)
559 {
560         u64 end = start + len;
561
562 #ifdef CONFIG_KEXEC
563         if (start > crashk_res.start && start < crashk_res.end)
564                 start = crashk_res.end;
565         if (end > crashk_res.start && end < crashk_res.end)
566                 end = crashk_res.start;
567 #endif
568
569         if (start < end)
570                 memblock_add_node(__pa(start), end - start, nid);
571         return 0;
572 }
573
574 int
575 find_max_min_low_pfn (u64 start, u64 end, void *arg)
576 {
577         unsigned long pfn_start, pfn_end;
578 #ifdef CONFIG_FLATMEM
579         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
580         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
581 #else
582         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
583         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
584 #endif
585         min_low_pfn = min(min_low_pfn, pfn_start);
586         max_low_pfn = max(max_low_pfn, pfn_end);
587         return 0;
588 }
589
590 /*
591  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
592  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
593  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
594  * useful for performance testing, but conceivably could also come in handy for debugging
595  * purposes.
596  */
597
598 static int nolwsys __initdata;
599
600 static int __init
601 nolwsys_setup (char *s)
602 {
603         nolwsys = 1;
604         return 1;
605 }
606
607 __setup("nolwsys", nolwsys_setup);
608
609 void __init
610 mem_init (void)
611 {
612         int i;
613
614         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
615         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
616         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
617
618 #ifdef CONFIG_PCI
619         /*
620          * This needs to be called _after_ the command line has been parsed but _before_
621          * any drivers that may need the PCI DMA interface are initialized or bootmem has
622          * been freed.
623          */
624         platform_dma_init();
625 #endif
626
627 #ifdef CONFIG_FLATMEM
628         BUG_ON(!mem_map);
629 #endif
630
631         set_max_mapnr(max_low_pfn);
632         high_memory = __va(max_low_pfn * PAGE_SIZE);
633         free_all_bootmem();
634         mem_init_print_info(NULL);
635
636         /*
637          * For fsyscall entrpoints with no light-weight handler, use the ordinary
638          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
639          * code can tell them apart.
640          */
641         for (i = 0; i < NR_syscalls; ++i) {
642                 extern unsigned long fsyscall_table[NR_syscalls];
643                 extern unsigned long sys_call_table[NR_syscalls];
644
645                 if (!fsyscall_table[i] || nolwsys)
646                         fsyscall_table[i] = sys_call_table[i] | 1;
647         }
648         setup_gate();
649 }
650
651 #ifdef CONFIG_MEMORY_HOTPLUG
652 int arch_add_memory(int nid, u64 start, u64 size)
653 {
654         pg_data_t *pgdat;
655         struct zone *zone;
656         unsigned long start_pfn = start >> PAGE_SHIFT;
657         unsigned long nr_pages = size >> PAGE_SHIFT;
658         int ret;
659
660         pgdat = NODE_DATA(nid);
661
662         zone = pgdat->node_zones +
663                 zone_for_memory(nid, start, size, ZONE_NORMAL);
664         ret = __add_pages(nid, zone, start_pfn, nr_pages);
665
666         if (ret)
667                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
668                        __func__,  ret);
669
670         return ret;
671 }
672
673 #ifdef CONFIG_MEMORY_HOTREMOVE
674 int arch_remove_memory(u64 start, u64 size)
675 {
676         unsigned long start_pfn = start >> PAGE_SHIFT;
677         unsigned long nr_pages = size >> PAGE_SHIFT;
678         struct zone *zone;
679         int ret;
680
681         zone = page_zone(pfn_to_page(start_pfn));
682         ret = __remove_pages(zone, start_pfn, nr_pages);
683         if (ret)
684                 pr_warn("%s: Problem encountered in __remove_pages() as"
685                         " ret=%d\n", __func__,  ret);
686
687         return ret;
688 }
689 #endif
690 #endif
691
692 /**
693  * show_mem - give short summary of memory stats
694  *
695  * Shows a simple page count of reserved and used pages in the system.
696  * For discontig machines, it does this on a per-pgdat basis.
697  */
698 void show_mem(unsigned int filter)
699 {
700         int total_reserved = 0;
701         unsigned long total_present = 0;
702         pg_data_t *pgdat;
703
704         printk(KERN_INFO "Mem-info:\n");
705         show_free_areas(filter);
706         printk(KERN_INFO "Node memory in pages:\n");
707         for_each_online_pgdat(pgdat) {
708                 unsigned long present;
709                 unsigned long flags;
710                 int reserved = 0;
711                 int nid = pgdat->node_id;
712                 int zoneid;
713
714                 if (skip_free_areas_node(filter, nid))
715                         continue;
716                 pgdat_resize_lock(pgdat, &flags);
717
718                 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
719                         struct zone *zone = &pgdat->node_zones[zoneid];
720                         if (!populated_zone(zone))
721                                 continue;
722
723                         reserved += zone->present_pages - zone->managed_pages;
724                 }
725                 present = pgdat->node_present_pages;
726
727                 pgdat_resize_unlock(pgdat, &flags);
728                 total_present += present;
729                 total_reserved += reserved;
730                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, ",
731                        nid, present, reserved);
732         }
733         printk(KERN_INFO "%ld pages of RAM\n", total_present);
734         printk(KERN_INFO "%d reserved pages\n", total_reserved);
735         printk(KERN_INFO "Total of %ld pages in page table cache\n",
736                quicklist_total_size());
737         printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
738 }