]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/ia64/sn/kernel/irq.c
ia64: sn: Use irq_move_irq()
[karo-tx-linux.git] / arch / ia64 / sn / kernel / irq.c
1 /*
2  * Platform dependent support for SGI SN
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 2000-2008 Silicon Graphics, Inc.  All Rights Reserved.
9  */
10
11 #include <linux/irq.h>
12 #include <linux/spinlock.h>
13 #include <linux/init.h>
14 #include <linux/rculist.h>
15 #include <linux/slab.h>
16 #include <asm/sn/addrs.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/intr.h>
19 #include <asm/sn/pcibr_provider.h>
20 #include <asm/sn/pcibus_provider_defs.h>
21 #include <asm/sn/pcidev.h>
22 #include <asm/sn/shub_mmr.h>
23 #include <asm/sn/sn_sal.h>
24 #include <asm/sn/sn_feature_sets.h>
25
26 static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28
29 extern int sn_ioif_inited;
30 struct list_head **sn_irq_lh;
31 static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
32
33 u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
34                                      struct sn_irq_info *sn_irq_info,
35                                      int req_irq, nasid_t req_nasid,
36                                      int req_slice)
37 {
38         struct ia64_sal_retval ret_stuff;
39         ret_stuff.status = 0;
40         ret_stuff.v0 = 0;
41
42         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
43                         (u64) SAL_INTR_ALLOC, (u64) local_nasid,
44                         (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
45                         (u64) req_nasid, (u64) req_slice);
46
47         return ret_stuff.status;
48 }
49
50 void sn_intr_free(nasid_t local_nasid, int local_widget,
51                                 struct sn_irq_info *sn_irq_info)
52 {
53         struct ia64_sal_retval ret_stuff;
54         ret_stuff.status = 0;
55         ret_stuff.v0 = 0;
56
57         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
58                         (u64) SAL_INTR_FREE, (u64) local_nasid,
59                         (u64) local_widget, (u64) sn_irq_info->irq_irq,
60                         (u64) sn_irq_info->irq_cookie, 0, 0);
61 }
62
63 u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
64                       struct sn_irq_info *sn_irq_info,
65                       nasid_t req_nasid, int req_slice)
66 {
67         struct ia64_sal_retval ret_stuff;
68         ret_stuff.status = 0;
69         ret_stuff.v0 = 0;
70
71         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
72                         (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
73                         (u64) local_widget, __pa(sn_irq_info),
74                         (u64) req_nasid, (u64) req_slice, 0);
75
76         return ret_stuff.status;
77 }
78
79 static unsigned int sn_startup_irq(struct irq_data *data)
80 {
81         return 0;
82 }
83
84 static void sn_shutdown_irq(struct irq_data *data)
85 {
86 }
87
88 extern void ia64_mca_register_cpev(int);
89
90 static void sn_disable_irq(struct irq_data *data)
91 {
92         if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
93                 ia64_mca_register_cpev(0);
94 }
95
96 static void sn_enable_irq(struct irq_data *data)
97 {
98         if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
99                 ia64_mca_register_cpev(data->irq);
100 }
101
102 static void sn_ack_irq(struct irq_data *data)
103 {
104         u64 event_occurred, mask;
105         unsigned int irq = data->irq & 0xff;
106
107         event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
108         mask = event_occurred & SH_ALL_INT_MASK;
109         HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
110         __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
111
112         irq_move_irq(data);
113 }
114
115 static void sn_irq_info_free(struct rcu_head *head);
116
117 struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
118                                        nasid_t nasid, int slice)
119 {
120         int vector;
121         int cpuid;
122 #ifdef CONFIG_SMP
123         int cpuphys;
124 #endif
125         int64_t bridge;
126         int local_widget, status;
127         nasid_t local_nasid;
128         struct sn_irq_info *new_irq_info;
129         struct sn_pcibus_provider *pci_provider;
130
131         bridge = (u64) sn_irq_info->irq_bridge;
132         if (!bridge) {
133                 return NULL; /* irq is not a device interrupt */
134         }
135
136         local_nasid = NASID_GET(bridge);
137
138         if (local_nasid & 1)
139                 local_widget = TIO_SWIN_WIDGETNUM(bridge);
140         else
141                 local_widget = SWIN_WIDGETNUM(bridge);
142         vector = sn_irq_info->irq_irq;
143
144         /* Make use of SAL_INTR_REDIRECT if PROM supports it */
145         status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
146         if (!status) {
147                 new_irq_info = sn_irq_info;
148                 goto finish_up;
149         }
150
151         /*
152          * PROM does not support SAL_INTR_REDIRECT, or it failed.
153          * Revert to old method.
154          */
155         new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
156         if (new_irq_info == NULL)
157                 return NULL;
158
159         memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
160
161         /* Free the old PROM new_irq_info structure */
162         sn_intr_free(local_nasid, local_widget, new_irq_info);
163         unregister_intr_pda(new_irq_info);
164
165         /* allocate a new PROM new_irq_info struct */
166         status = sn_intr_alloc(local_nasid, local_widget,
167                                new_irq_info, vector,
168                                nasid, slice);
169
170         /* SAL call failed */
171         if (status) {
172                 kfree(new_irq_info);
173                 return NULL;
174         }
175
176         register_intr_pda(new_irq_info);
177         spin_lock(&sn_irq_info_lock);
178         list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
179         spin_unlock(&sn_irq_info_lock);
180         call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
181
182
183 finish_up:
184         /* Update kernels new_irq_info with new target info */
185         cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
186                                      new_irq_info->irq_slice);
187         new_irq_info->irq_cpuid = cpuid;
188
189         pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
190
191         /*
192          * If this represents a line interrupt, target it.  If it's
193          * an msi (irq_int_bit < 0), it's already targeted.
194          */
195         if (new_irq_info->irq_int_bit >= 0 &&
196             pci_provider && pci_provider->target_interrupt)
197                 (pci_provider->target_interrupt)(new_irq_info);
198
199 #ifdef CONFIG_SMP
200         cpuphys = cpu_physical_id(cpuid);
201         set_irq_affinity_info((vector & 0xff), cpuphys, 0);
202 #endif
203
204         return new_irq_info;
205 }
206
207 static int sn_set_affinity_irq(struct irq_data *data,
208                                const struct cpumask *mask, bool force)
209 {
210         struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
211         unsigned int irq = data->irq;
212         nasid_t nasid;
213         int slice;
214
215         nasid = cpuid_to_nasid(cpumask_first(mask));
216         slice = cpuid_to_slice(cpumask_first(mask));
217
218         list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
219                                  sn_irq_lh[irq], list)
220                 (void)sn_retarget_vector(sn_irq_info, nasid, slice);
221
222         return 0;
223 }
224
225 #ifdef CONFIG_SMP
226 void sn_set_err_irq_affinity(unsigned int irq)
227 {
228         /*
229          * On systems which support CPU disabling (SHub2), all error interrupts
230          * are targetted at the boot CPU.
231          */
232         if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
233                 set_irq_affinity_info(irq, cpu_physical_id(0), 0);
234 }
235 #else
236 void sn_set_err_irq_affinity(unsigned int irq) { }
237 #endif
238
239 static void
240 sn_mask_irq(struct irq_data *data)
241 {
242 }
243
244 static void
245 sn_unmask_irq(struct irq_data *data)
246 {
247 }
248
249 struct irq_chip irq_type_sn = {
250         .name                   = "SN hub",
251         .irq_startup            = sn_startup_irq,
252         .irq_shutdown           = sn_shutdown_irq,
253         .irq_enable             = sn_enable_irq,
254         .irq_disable            = sn_disable_irq,
255         .irq_ack                = sn_ack_irq,
256         .irq_mask               = sn_mask_irq,
257         .irq_unmask             = sn_unmask_irq,
258         .irq_set_affinity       = sn_set_affinity_irq
259 };
260
261 ia64_vector sn_irq_to_vector(int irq)
262 {
263         if (irq >= IA64_NUM_VECTORS)
264                 return 0;
265         return (ia64_vector)irq;
266 }
267
268 unsigned int sn_local_vector_to_irq(u8 vector)
269 {
270         return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
271 }
272
273 void sn_irq_init(void)
274 {
275         int i;
276
277         ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
278         ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
279
280         for (i = 0; i < NR_IRQS; i++) {
281                 if (irq_get_chip(i) == &no_irq_chip)
282                         irq_set_chip(i, &irq_type_sn);
283         }
284 }
285
286 static void register_intr_pda(struct sn_irq_info *sn_irq_info)
287 {
288         int irq = sn_irq_info->irq_irq;
289         int cpu = sn_irq_info->irq_cpuid;
290
291         if (pdacpu(cpu)->sn_last_irq < irq) {
292                 pdacpu(cpu)->sn_last_irq = irq;
293         }
294
295         if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
296                 pdacpu(cpu)->sn_first_irq = irq;
297 }
298
299 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
300 {
301         int irq = sn_irq_info->irq_irq;
302         int cpu = sn_irq_info->irq_cpuid;
303         struct sn_irq_info *tmp_irq_info;
304         int i, foundmatch;
305
306         rcu_read_lock();
307         if (pdacpu(cpu)->sn_last_irq == irq) {
308                 foundmatch = 0;
309                 for (i = pdacpu(cpu)->sn_last_irq - 1;
310                      i && !foundmatch; i--) {
311                         list_for_each_entry_rcu(tmp_irq_info,
312                                                 sn_irq_lh[i],
313                                                 list) {
314                                 if (tmp_irq_info->irq_cpuid == cpu) {
315                                         foundmatch = 1;
316                                         break;
317                                 }
318                         }
319                 }
320                 pdacpu(cpu)->sn_last_irq = i;
321         }
322
323         if (pdacpu(cpu)->sn_first_irq == irq) {
324                 foundmatch = 0;
325                 for (i = pdacpu(cpu)->sn_first_irq + 1;
326                      i < NR_IRQS && !foundmatch; i++) {
327                         list_for_each_entry_rcu(tmp_irq_info,
328                                                 sn_irq_lh[i],
329                                                 list) {
330                                 if (tmp_irq_info->irq_cpuid == cpu) {
331                                         foundmatch = 1;
332                                         break;
333                                 }
334                         }
335                 }
336                 pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
337         }
338         rcu_read_unlock();
339 }
340
341 static void sn_irq_info_free(struct rcu_head *head)
342 {
343         struct sn_irq_info *sn_irq_info;
344
345         sn_irq_info = container_of(head, struct sn_irq_info, rcu);
346         kfree(sn_irq_info);
347 }
348
349 void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
350 {
351         nasid_t nasid = sn_irq_info->irq_nasid;
352         int slice = sn_irq_info->irq_slice;
353         int cpu = nasid_slice_to_cpuid(nasid, slice);
354 #ifdef CONFIG_SMP
355         int cpuphys;
356         struct irq_desc *desc;
357 #endif
358
359         pci_dev_get(pci_dev);
360         sn_irq_info->irq_cpuid = cpu;
361         sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
362
363         /* link it into the sn_irq[irq] list */
364         spin_lock(&sn_irq_info_lock);
365         list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
366         reserve_irq_vector(sn_irq_info->irq_irq);
367         spin_unlock(&sn_irq_info_lock);
368
369         register_intr_pda(sn_irq_info);
370 #ifdef CONFIG_SMP
371         cpuphys = cpu_physical_id(cpu);
372         set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
373         desc = irq_to_desc(sn_irq_info->irq_irq);
374         /*
375          * Affinity was set by the PROM, prevent it from
376          * being reset by the request_irq() path.
377          */
378         desc->status |= IRQ_AFFINITY_SET;
379 #endif
380 }
381
382 void sn_irq_unfixup(struct pci_dev *pci_dev)
383 {
384         struct sn_irq_info *sn_irq_info;
385
386         /* Only cleanup IRQ stuff if this device has a host bus context */
387         if (!SN_PCIDEV_BUSSOFT(pci_dev))
388                 return;
389
390         sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
391         if (!sn_irq_info)
392                 return;
393         if (!sn_irq_info->irq_irq) {
394                 kfree(sn_irq_info);
395                 return;
396         }
397
398         unregister_intr_pda(sn_irq_info);
399         spin_lock(&sn_irq_info_lock);
400         list_del_rcu(&sn_irq_info->list);
401         spin_unlock(&sn_irq_info_lock);
402         if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
403                 free_irq_vector(sn_irq_info->irq_irq);
404         call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
405         pci_dev_put(pci_dev);
406
407 }
408
409 static inline void
410 sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
411 {
412         struct sn_pcibus_provider *pci_provider;
413
414         pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
415
416         /* Don't force an interrupt if the irq has been disabled */
417         if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
418             pci_provider && pci_provider->force_interrupt)
419                 (*pci_provider->force_interrupt)(sn_irq_info);
420 }
421
422 /*
423  * Check for lost interrupts.  If the PIC int_status reg. says that
424  * an interrupt has been sent, but not handled, and the interrupt
425  * is not pending in either the cpu irr regs or in the soft irr regs,
426  * and the interrupt is not in service, then the interrupt may have
427  * been lost.  Force an interrupt on that pin.  It is possible that
428  * the interrupt is in flight, so we may generate a spurious interrupt,
429  * but we should never miss a real lost interrupt.
430  */
431 static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
432 {
433         u64 regval;
434         struct pcidev_info *pcidev_info;
435         struct pcibus_info *pcibus_info;
436
437         /*
438          * Bridge types attached to TIO (anything but PIC) do not need this WAR
439          * since they do not target Shub II interrupt registers.  If that
440          * ever changes, this check needs to accomodate.
441          */
442         if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
443                 return;
444
445         pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
446         if (!pcidev_info)
447                 return;
448
449         pcibus_info =
450             (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
451             pdi_pcibus_info;
452         regval = pcireg_intr_status_get(pcibus_info);
453
454         if (!ia64_get_irr(irq_to_vector(irq))) {
455                 if (!test_bit(irq, pda->sn_in_service_ivecs)) {
456                         regval &= 0xff;
457                         if (sn_irq_info->irq_int_bit & regval &
458                             sn_irq_info->irq_last_intr) {
459                                 regval &= ~(sn_irq_info->irq_int_bit & regval);
460                                 sn_call_force_intr_provider(sn_irq_info);
461                         }
462                 }
463         }
464         sn_irq_info->irq_last_intr = regval;
465 }
466
467 void sn_lb_int_war_check(void)
468 {
469         struct sn_irq_info *sn_irq_info;
470         int i;
471
472         if (!sn_ioif_inited || pda->sn_first_irq == 0)
473                 return;
474
475         rcu_read_lock();
476         for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
477                 list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
478                         sn_check_intr(i, sn_irq_info);
479                 }
480         }
481         rcu_read_unlock();
482 }
483
484 void __init sn_irq_lh_init(void)
485 {
486         int i;
487
488         sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
489         if (!sn_irq_lh)
490                 panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
491
492         for (i = 0; i < NR_IRQS; i++) {
493                 sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
494                 if (!sn_irq_lh[i])
495                         panic("SN PCI INIT: Failed IRQ memory allocation\n");
496
497                 INIT_LIST_HEAD(sn_irq_lh[i]);
498         }
499 }