]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/metag/kernel/process.c
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[karo-tx-linux.git] / arch / metag / kernel / process.c
1 /*
2  * Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
3  *
4  * This file contains the architecture-dependent parts of process handling.
5  *
6  */
7
8 #include <linux/errno.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/unistd.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/reboot.h>
20 #include <linux/elfcore.h>
21 #include <linux/fs.h>
22 #include <linux/tick.h>
23 #include <linux/slab.h>
24 #include <linux/mman.h>
25 #include <linux/pm.h>
26 #include <linux/syscalls.h>
27 #include <linux/uaccess.h>
28 #include <linux/smp.h>
29 #include <asm/core_reg.h>
30 #include <asm/user_gateway.h>
31 #include <asm/tcm.h>
32 #include <asm/traps.h>
33 #include <asm/switch_to.h>
34
35 /*
36  * Wait for the next interrupt and enable local interrupts
37  */
38 void arch_cpu_idle(void)
39 {
40         int tmp;
41
42         /*
43          * Quickly jump straight into the interrupt entry point without actually
44          * triggering an interrupt. When TXSTATI gets read the processor will
45          * block until an interrupt is triggered.
46          */
47         asm volatile (/* Switch into ISTAT mode */
48                       "RTH\n\t"
49                       /* Enable local interrupts */
50                       "MOV      TXMASKI, %1\n\t"
51                       /*
52                        * We can't directly "SWAP PC, PCX", so we swap via a
53                        * temporary. Essentially we do:
54                        *  PCX_new = 1f (the place to continue execution)
55                        *  PC = PCX_old
56                        */
57                       "ADD      %0, CPC0, #(1f-.)\n\t"
58                       "SWAP     PCX, %0\n\t"
59                       "MOV      PC, %0\n"
60                       /* Continue execution here with interrupts enabled */
61                       "1:"
62                       : "=a" (tmp)
63                       : "r" (get_trigger_mask()));
64 }
65
66 #ifdef CONFIG_HOTPLUG_CPU
67 void arch_cpu_idle_dead(void)
68 {
69         cpu_die();
70 }
71 #endif
72
73 void (*pm_power_off)(void);
74 EXPORT_SYMBOL(pm_power_off);
75
76 void (*soc_restart)(char *cmd);
77 void (*soc_halt)(void);
78
79 void machine_restart(char *cmd)
80 {
81         if (soc_restart)
82                 soc_restart(cmd);
83         hard_processor_halt(HALT_OK);
84 }
85
86 void machine_halt(void)
87 {
88         if (soc_halt)
89                 soc_halt();
90         smp_send_stop();
91         hard_processor_halt(HALT_OK);
92 }
93
94 void machine_power_off(void)
95 {
96         if (pm_power_off)
97                 pm_power_off();
98         smp_send_stop();
99         hard_processor_halt(HALT_OK);
100 }
101
102 #define FLAG_Z 0x8
103 #define FLAG_N 0x4
104 #define FLAG_O 0x2
105 #define FLAG_C 0x1
106
107 void show_regs(struct pt_regs *regs)
108 {
109         int i;
110         const char *AX0_names[] = {"A0StP", "A0FrP"};
111         const char *AX1_names[] = {"A1GbP", "A1LbP"};
112
113         const char *DX0_names[] = {
114                 "D0Re0",
115                 "D0Ar6",
116                 "D0Ar4",
117                 "D0Ar2",
118                 "D0FrT",
119                 "D0.5 ",
120                 "D0.6 ",
121                 "D0.7 "
122         };
123
124         const char *DX1_names[] = {
125                 "D1Re0",
126                 "D1Ar5",
127                 "D1Ar3",
128                 "D1Ar1",
129                 "D1RtP",
130                 "D1.5 ",
131                 "D1.6 ",
132                 "D1.7 "
133         };
134
135         show_regs_print_info(KERN_INFO);
136
137         pr_info(" pt_regs @ %p\n", regs);
138         pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
139         pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
140                 regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
141                 regs->ctx.Flags & FLAG_N ? 'N' : 'n',
142                 regs->ctx.Flags & FLAG_O ? 'O' : 'o',
143                 regs->ctx.Flags & FLAG_C ? 'C' : 'c');
144         pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
145         pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
146
147         /* AX regs */
148         for (i = 0; i < 2; i++) {
149                 pr_info(" %s = 0x%08x    ",
150                         AX0_names[i],
151                         regs->ctx.AX[i].U0);
152                 printk(" %s = 0x%08x\n",
153                         AX1_names[i],
154                         regs->ctx.AX[i].U1);
155         }
156
157         if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
158                 pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
159
160         /* Special place with AXx.2 */
161         pr_info(" A0.2  = 0x%08x    ",
162                 regs->ctx.Ext.AX2.U0);
163         printk(" A1.2  = 0x%08x\n",
164                 regs->ctx.Ext.AX2.U1);
165
166         /* 'extended' AX regs (nominally, just AXx.3) */
167         for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
168                 pr_info(" A0.%d  = 0x%08x    ", i + 3, regs->ctx.AX3[i].U0);
169                 printk(" A1.%d  = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
170         }
171
172         for (i = 0; i < 8; i++) {
173                 pr_info(" %s = 0x%08x    ", DX0_names[i], regs->ctx.DX[i].U0);
174                 printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
175         }
176
177         show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
178 }
179
180 /*
181  * Copy architecture-specific thread state
182  */
183 int copy_thread(unsigned long clone_flags, unsigned long usp,
184                 unsigned long kthread_arg, struct task_struct *tsk)
185 {
186         struct pt_regs *childregs = task_pt_regs(tsk);
187         void *kernel_context = ((void *) childregs +
188                                 sizeof(struct pt_regs));
189         unsigned long global_base;
190
191         BUG_ON(((unsigned long)childregs) & 0x7);
192         BUG_ON(((unsigned long)kernel_context) & 0x7);
193
194         memset(&tsk->thread.kernel_context, 0,
195                         sizeof(tsk->thread.kernel_context));
196
197         tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
198                                                      ret_from_fork,
199                                                      0, 0);
200
201         if (unlikely(tsk->flags & PF_KTHREAD)) {
202                 /*
203                  * Make sure we don't leak any kernel data to child's regs
204                  * if kernel thread becomes a userspace thread in the future
205                  */
206                 memset(childregs, 0 , sizeof(struct pt_regs));
207
208                 global_base = __core_reg_get(A1GbP);
209                 childregs->ctx.AX[0].U1 = (unsigned long) global_base;
210                 childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
211                 /* Set D1Ar1=kthread_arg and D1RtP=usp (fn) */
212                 childregs->ctx.DX[4].U1 = usp;
213                 childregs->ctx.DX[3].U1 = kthread_arg;
214                 tsk->thread.int_depth = 2;
215                 return 0;
216         }
217
218         /*
219          * Get a pointer to where the new child's register block should have
220          * been pushed.
221          * The Meta's stack grows upwards, and the context is the the first
222          * thing to be pushed by TBX (phew)
223          */
224         *childregs = *current_pt_regs();
225         /* Set the correct stack for the clone mode */
226         if (usp)
227                 childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
228         tsk->thread.int_depth = 1;
229
230         /* set return value for child process */
231         childregs->ctx.DX[0].U0 = 0;
232
233         /* The TLS pointer is passed as an argument to sys_clone. */
234         if (clone_flags & CLONE_SETTLS)
235                 tsk->thread.tls_ptr =
236                                 (__force void __user *)childregs->ctx.DX[1].U1;
237
238 #ifdef CONFIG_METAG_FPU
239         if (tsk->thread.fpu_context) {
240                 struct meta_fpu_context *ctx;
241
242                 ctx = kmemdup(tsk->thread.fpu_context,
243                               sizeof(struct meta_fpu_context), GFP_ATOMIC);
244                 tsk->thread.fpu_context = ctx;
245         }
246 #endif
247
248 #ifdef CONFIG_METAG_DSP
249         if (tsk->thread.dsp_context) {
250                 struct meta_ext_context *ctx;
251                 int i;
252
253                 ctx = kmemdup(tsk->thread.dsp_context,
254                               sizeof(struct meta_ext_context), GFP_ATOMIC);
255                 for (i = 0; i < 2; i++)
256                         ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
257                                               GFP_ATOMIC);
258                 tsk->thread.dsp_context = ctx;
259         }
260 #endif
261
262         return 0;
263 }
264
265 #ifdef CONFIG_METAG_FPU
266 static void alloc_fpu_context(struct thread_struct *thread)
267 {
268         thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
269                                       GFP_ATOMIC);
270 }
271
272 static void clear_fpu(struct thread_struct *thread)
273 {
274         thread->user_flags &= ~TBICTX_FPAC_BIT;
275         kfree(thread->fpu_context);
276         thread->fpu_context = NULL;
277 }
278 #else
279 static void clear_fpu(struct thread_struct *thread)
280 {
281 }
282 #endif
283
284 #ifdef CONFIG_METAG_DSP
285 static void clear_dsp(struct thread_struct *thread)
286 {
287         if (thread->dsp_context) {
288                 kfree(thread->dsp_context->ram[0]);
289                 kfree(thread->dsp_context->ram[1]);
290
291                 kfree(thread->dsp_context);
292
293                 thread->dsp_context = NULL;
294         }
295
296         __core_reg_set(D0.8, 0);
297 }
298 #else
299 static void clear_dsp(struct thread_struct *thread)
300 {
301 }
302 #endif
303
304 struct task_struct *__sched __switch_to(struct task_struct *prev,
305                                         struct task_struct *next)
306 {
307         TBIRES to, from;
308
309         to.Switch.pCtx = next->thread.kernel_context;
310         to.Switch.pPara = prev;
311
312 #ifdef CONFIG_METAG_FPU
313         if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
314                 struct pt_regs *regs = task_pt_regs(prev);
315                 TBIRES state;
316
317                 state.Sig.SaveMask = prev->thread.user_flags;
318                 state.Sig.pCtx = &regs->ctx;
319
320                 if (!prev->thread.fpu_context)
321                         alloc_fpu_context(&prev->thread);
322                 if (prev->thread.fpu_context)
323                         __TBICtxFPUSave(state, prev->thread.fpu_context);
324         }
325         /*
326          * Force a restore of the FPU context next time this process is
327          * scheduled.
328          */
329         if (prev->thread.fpu_context)
330                 prev->thread.fpu_context->needs_restore = true;
331 #endif
332
333
334         from = __TBISwitch(to, &prev->thread.kernel_context);
335
336         /* Restore TLS pointer for this process. */
337         set_gateway_tls(current->thread.tls_ptr);
338
339         return (struct task_struct *) from.Switch.pPara;
340 }
341
342 void flush_thread(void)
343 {
344         clear_fpu(&current->thread);
345         clear_dsp(&current->thread);
346 }
347
348 /*
349  * Free current thread data structures etc.
350  */
351 void exit_thread(struct task_struct *tsk)
352 {
353         clear_fpu(&tsk->thread);
354         clear_dsp(&tsk->thread);
355 }
356
357 /* TODO: figure out how to unwind the kernel stack here to figure out
358  * where we went to sleep. */
359 unsigned long get_wchan(struct task_struct *p)
360 {
361         return 0;
362 }
363
364 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
365 {
366         /* Returning 0 indicates that the FPU state was not stored (as it was
367          * not in use) */
368         return 0;
369 }
370
371 #ifdef CONFIG_METAG_USER_TCM
372
373 #define ELF_MIN_ALIGN   PAGE_SIZE
374
375 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
376 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
377 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
378
379 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
380
381 unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
382                               struct elf_phdr *eppnt, int prot, int type,
383                               unsigned long total_size)
384 {
385         unsigned long map_addr, size;
386         unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
387         unsigned long raw_size = eppnt->p_filesz + page_off;
388         unsigned long off = eppnt->p_offset - page_off;
389         unsigned int tcm_tag;
390         addr = ELF_PAGESTART(addr);
391         size = ELF_PAGEALIGN(raw_size);
392
393         /* mmap() will return -EINVAL if given a zero size, but a
394          * segment with zero filesize is perfectly valid */
395         if (!size)
396                 return addr;
397
398         tcm_tag = tcm_lookup_tag(addr);
399
400         if (tcm_tag != TCM_INVALID_TAG)
401                 type &= ~MAP_FIXED;
402
403         /*
404         * total_size is the size of the ELF (interpreter) image.
405         * The _first_ mmap needs to know the full size, otherwise
406         * randomization might put this image into an overlapping
407         * position with the ELF binary image. (since size < total_size)
408         * So we first map the 'big' image - and unmap the remainder at
409         * the end. (which unmap is needed for ELF images with holes.)
410         */
411         if (total_size) {
412                 total_size = ELF_PAGEALIGN(total_size);
413                 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
414                 if (!BAD_ADDR(map_addr))
415                         vm_munmap(map_addr+size, total_size-size);
416         } else
417                 map_addr = vm_mmap(filep, addr, size, prot, type, off);
418
419         if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
420                 struct tcm_allocation *tcm;
421                 unsigned long tcm_addr;
422
423                 tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
424                 if (!tcm)
425                         return -ENOMEM;
426
427                 tcm_addr = tcm_alloc(tcm_tag, raw_size);
428                 if (tcm_addr != addr) {
429                         kfree(tcm);
430                         return -ENOMEM;
431                 }
432
433                 tcm->tag = tcm_tag;
434                 tcm->addr = tcm_addr;
435                 tcm->size = raw_size;
436
437                 list_add(&tcm->list, &current->mm->context.tcm);
438
439                 eppnt->p_vaddr = map_addr;
440                 if (copy_from_user((void *) addr, (void __user *) map_addr,
441                                    raw_size))
442                         return -EFAULT;
443         }
444
445         return map_addr;
446 }
447 #endif