]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/cavium-octeon/octeon-platform.c
Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[karo-tx-linux.git] / arch / mips / cavium-octeon / octeon-platform.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
25
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
31
32 /* Octeon Random Number Generator.  */
33 static int __init octeon_rng_device_init(void)
34 {
35         struct platform_device *pd;
36         int ret = 0;
37
38         struct resource rng_resources[] = {
39                 {
40                         .flags  = IORESOURCE_MEM,
41                         .start  = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42                         .end    = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43                 }, {
44                         .flags  = IORESOURCE_MEM,
45                         .start  = cvmx_build_io_address(8, 0),
46                         .end    = cvmx_build_io_address(8, 0) + 0x7
47                 }
48         };
49
50         pd = platform_device_alloc("octeon_rng", -1);
51         if (!pd) {
52                 ret = -ENOMEM;
53                 goto out;
54         }
55
56         ret = platform_device_add_resources(pd, rng_resources,
57                                             ARRAY_SIZE(rng_resources));
58         if (ret)
59                 goto fail;
60
61         ret = platform_device_add(pd);
62         if (ret)
63                 goto fail;
64
65         return ret;
66 fail:
67         platform_device_put(pd);
68
69 out:
70         return ret;
71 }
72 device_initcall(octeon_rng_device_init);
73
74 #ifdef CONFIG_USB
75
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77
78 static int octeon2_usb_clock_start_cnt;
79
80 static void octeon2_usb_clocks_start(struct device *dev)
81 {
82         u64 div;
83         union cvmx_uctlx_if_ena if_ena;
84         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85         union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86         union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87         int i;
88         unsigned long io_clk_64_to_ns;
89         u32 clock_rate = 12000000;
90         bool is_crystal_clock = false;
91
92
93         mutex_lock(&octeon2_usb_clocks_mutex);
94
95         octeon2_usb_clock_start_cnt++;
96         if (octeon2_usb_clock_start_cnt != 1)
97                 goto exit;
98
99         io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100
101         if (dev->of_node) {
102                 struct device_node *uctl_node;
103                 const char *clock_type;
104
105                 uctl_node = of_get_parent(dev->of_node);
106                 if (!uctl_node) {
107                         dev_err(dev, "No UCTL device node\n");
108                         goto exit;
109                 }
110                 i = of_property_read_u32(uctl_node,
111                                          "refclk-frequency", &clock_rate);
112                 if (i) {
113                         dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114                         goto exit;
115                 }
116                 i = of_property_read_string(uctl_node,
117                                             "refclk-type", &clock_type);
118
119                 if (!i && strcmp("crystal", clock_type) == 0)
120                         is_crystal_clock = true;
121         }
122
123         /*
124          * Step 1: Wait for voltages stable.  That surely happened
125          * before starting the kernel.
126          *
127          * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128          */
129         if_ena.u64 = 0;
130         if_ena.s.en = 1;
131         cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132
133         /* Step 3: Configure the reference clock, PHY, and HCLK */
134         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135
136         /*
137          * If the UCTL looks like it has already been started, skip
138          * the initialization, otherwise bus errors are obtained.
139          */
140         if (clk_rst_ctl.s.hrst)
141                 goto end_clock;
142         /* 3a */
143         clk_rst_ctl.s.p_por = 1;
144         clk_rst_ctl.s.hrst = 0;
145         clk_rst_ctl.s.p_prst = 0;
146         clk_rst_ctl.s.h_clkdiv_rst = 0;
147         clk_rst_ctl.s.o_clkdiv_rst = 0;
148         clk_rst_ctl.s.h_clkdiv_en = 0;
149         clk_rst_ctl.s.o_clkdiv_en = 0;
150         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151
152         /* 3b */
153         clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154         switch (clock_rate) {
155         default:
156                 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157                         clock_rate);
158                 /* Fall through */
159         case 12000000:
160                 clk_rst_ctl.s.p_refclk_div = 0;
161                 break;
162         case 24000000:
163                 clk_rst_ctl.s.p_refclk_div = 1;
164                 break;
165         case 48000000:
166                 clk_rst_ctl.s.p_refclk_div = 2;
167                 break;
168         }
169         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170
171         /* 3c */
172         div = octeon_get_io_clock_rate() / 130000000ull;
173
174         switch (div) {
175         case 0:
176                 div = 1;
177                 break;
178         case 1:
179         case 2:
180         case 3:
181         case 4:
182                 break;
183         case 5:
184                 div = 4;
185                 break;
186         case 6:
187         case 7:
188                 div = 6;
189                 break;
190         case 8:
191         case 9:
192         case 10:
193         case 11:
194                 div = 8;
195                 break;
196         default:
197                 div = 12;
198                 break;
199         }
200         clk_rst_ctl.s.h_div = div;
201         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202         /* Read it back, */
203         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204         clk_rst_ctl.s.h_clkdiv_en = 1;
205         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206         /* 3d */
207         clk_rst_ctl.s.h_clkdiv_rst = 1;
208         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209
210         /* 3e: delay 64 io clocks */
211         ndelay(io_clk_64_to_ns);
212
213         /*
214          * Step 4: Program the power-on reset field in the UCTL
215          * clock-reset-control register.
216          */
217         clk_rst_ctl.s.p_por = 0;
218         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220         /* Step 5:    Wait 1 ms for the PHY clock to start. */
221         mdelay(1);
222
223         /*
224          * Step 6: Program the reset input from automatic test
225          * equipment field in the UPHY CSR
226          */
227         uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228         uphy_ctl_status.s.ate_reset = 1;
229         cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230
231         /* Step 7: Wait for at least 10ns. */
232         ndelay(10);
233
234         /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235         uphy_ctl_status.s.ate_reset = 0;
236         cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237
238         /*
239          * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240          * signals and OHCI_CLK48
241          */
242         ndelay(20);
243
244         /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245         /* 10a */
246         clk_rst_ctl.s.o_clkdiv_rst = 1;
247         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248
249         /* 10b */
250         clk_rst_ctl.s.o_clkdiv_en = 1;
251         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252
253         /* 10c */
254         ndelay(io_clk_64_to_ns);
255
256         /*
257          * Step 11: Program the PHY reset field:
258          * UCTL0_CLK_RST_CTL[P_PRST] = 1
259          */
260         clk_rst_ctl.s.p_prst = 1;
261         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262
263         /* Step 12: Wait 1 uS. */
264         udelay(1);
265
266         /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267         clk_rst_ctl.s.hrst = 1;
268         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269
270 end_clock:
271         /* Now we can set some other registers.  */
272
273         for (i = 0; i <= 1; i++) {
274                 port_ctl_status.u64 =
275                         cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276                 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277                 port_ctl_status.s.txvreftune = 15;
278                 port_ctl_status.s.txrisetune = 1;
279                 port_ctl_status.s.txpreemphasistune = 1;
280                 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281                                port_ctl_status.u64);
282         }
283
284         /* Set uSOF cycle period to 60,000 bits. */
285         cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286 exit:
287         mutex_unlock(&octeon2_usb_clocks_mutex);
288 }
289
290 static void octeon2_usb_clocks_stop(void)
291 {
292         mutex_lock(&octeon2_usb_clocks_mutex);
293         octeon2_usb_clock_start_cnt--;
294         mutex_unlock(&octeon2_usb_clocks_mutex);
295 }
296
297 static int octeon_ehci_power_on(struct platform_device *pdev)
298 {
299         octeon2_usb_clocks_start(&pdev->dev);
300         return 0;
301 }
302
303 static void octeon_ehci_power_off(struct platform_device *pdev)
304 {
305         octeon2_usb_clocks_stop();
306 }
307
308 static struct usb_ehci_pdata octeon_ehci_pdata = {
309         /* Octeon EHCI matches CPU endianness. */
310 #ifdef __BIG_ENDIAN
311         .big_endian_mmio        = 1,
312 #endif
313         .dma_mask_64    = 1,
314         .power_on       = octeon_ehci_power_on,
315         .power_off      = octeon_ehci_power_off,
316 };
317
318 static void __init octeon_ehci_hw_start(struct device *dev)
319 {
320         union cvmx_uctlx_ehci_ctl ehci_ctl;
321
322         octeon2_usb_clocks_start(dev);
323
324         ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325         /* Use 64-bit addressing. */
326         ehci_ctl.s.ehci_64b_addr_en = 1;
327         ehci_ctl.s.l2c_addr_msb = 0;
328         ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
329         ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
330         cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
331
332         octeon2_usb_clocks_stop();
333 }
334
335 static int __init octeon_ehci_device_init(void)
336 {
337         struct platform_device *pd;
338         struct device_node *ehci_node;
339         int ret = 0;
340
341         ehci_node = of_find_node_by_name(NULL, "ehci");
342         if (!ehci_node)
343                 return 0;
344
345         pd = of_find_device_by_node(ehci_node);
346         if (!pd)
347                 return 0;
348
349         pd->dev.platform_data = &octeon_ehci_pdata;
350         octeon_ehci_hw_start(&pd->dev);
351
352         return ret;
353 }
354 device_initcall(octeon_ehci_device_init);
355
356 static int octeon_ohci_power_on(struct platform_device *pdev)
357 {
358         octeon2_usb_clocks_start(&pdev->dev);
359         return 0;
360 }
361
362 static void octeon_ohci_power_off(struct platform_device *pdev)
363 {
364         octeon2_usb_clocks_stop();
365 }
366
367 static struct usb_ohci_pdata octeon_ohci_pdata = {
368         /* Octeon OHCI matches CPU endianness. */
369 #ifdef __BIG_ENDIAN
370         .big_endian_mmio        = 1,
371 #endif
372         .power_on       = octeon_ohci_power_on,
373         .power_off      = octeon_ohci_power_off,
374 };
375
376 static void __init octeon_ohci_hw_start(struct device *dev)
377 {
378         union cvmx_uctlx_ohci_ctl ohci_ctl;
379
380         octeon2_usb_clocks_start(dev);
381
382         ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
383         ohci_ctl.s.l2c_addr_msb = 0;
384         ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
385         ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
386         cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
387
388         octeon2_usb_clocks_stop();
389 }
390
391 static int __init octeon_ohci_device_init(void)
392 {
393         struct platform_device *pd;
394         struct device_node *ohci_node;
395         int ret = 0;
396
397         ohci_node = of_find_node_by_name(NULL, "ohci");
398         if (!ohci_node)
399                 return 0;
400
401         pd = of_find_device_by_node(ohci_node);
402         if (!pd)
403                 return 0;
404
405         pd->dev.platform_data = &octeon_ohci_pdata;
406         octeon_ohci_hw_start(&pd->dev);
407
408         return ret;
409 }
410 device_initcall(octeon_ohci_device_init);
411
412 #endif /* CONFIG_USB */
413
414
415 static struct of_device_id __initdata octeon_ids[] = {
416         { .compatible = "simple-bus", },
417         { .compatible = "cavium,octeon-6335-uctl", },
418         { .compatible = "cavium,octeon-5750-usbn", },
419         { .compatible = "cavium,octeon-3860-bootbus", },
420         { .compatible = "cavium,mdio-mux", },
421         { .compatible = "gpio-leds", },
422         {},
423 };
424
425 static bool __init octeon_has_88e1145(void)
426 {
427         return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
428                !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
429                !OCTEON_IS_MODEL(OCTEON_CN56XX);
430 }
431
432 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
433 {
434         const __be32 *phy_handle;
435         const __be32 *alt_phy_handle;
436         const __be32 *reg;
437         u32 phandle;
438         int phy;
439         int alt_phy;
440         const char *p;
441         int current_len;
442         char new_name[20];
443
444         phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
445         if (!phy_handle)
446                 return;
447
448         phandle = be32_to_cpup(phy_handle);
449         phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
450
451         alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
452         if (alt_phy_handle) {
453                 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
454                 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
455         } else {
456                 alt_phy = -1;
457         }
458
459         if (phy_addr < 0 || phy < 0) {
460                 /* Delete the PHY things */
461                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
462                 /* This one may fail */
463                 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
464                 if (phy >= 0)
465                         fdt_nop_node(initial_boot_params, phy);
466                 if (alt_phy >= 0)
467                         fdt_nop_node(initial_boot_params, alt_phy);
468                 return;
469         }
470
471         if (phy_addr >= 256 && alt_phy > 0) {
472                 const struct fdt_property *phy_prop;
473                 struct fdt_property *alt_prop;
474                 u32 phy_handle_name;
475
476                 /* Use the alt phy node instead.*/
477                 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
478                 phy_handle_name = phy_prop->nameoff;
479                 fdt_nop_node(initial_boot_params, phy);
480                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
481                 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
482                 alt_prop->nameoff = phy_handle_name;
483                 phy = alt_phy;
484         }
485
486         phy_addr &= 0xff;
487
488         if (octeon_has_88e1145()) {
489                 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
490                 memset(new_name, 0, sizeof(new_name));
491                 strcpy(new_name, "marvell,88e1145");
492                 p = fdt_getprop(initial_boot_params, phy, "compatible",
493                                 &current_len);
494                 if (p && current_len >= strlen(new_name))
495                         fdt_setprop_inplace(initial_boot_params, phy,
496                                         "compatible", new_name, current_len);
497         }
498
499         reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
500         if (phy_addr == be32_to_cpup(reg))
501                 return;
502
503         fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
504
505         snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
506
507         p = fdt_get_name(initial_boot_params, phy, &current_len);
508         if (p && current_len == strlen(new_name))
509                 fdt_set_name(initial_boot_params, phy, new_name);
510         else
511                 pr_err("Error: could not rename ethernet phy: <%s>", p);
512 }
513
514 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
515 {
516         u8 new_mac[6];
517         u64 mac = *pmac;
518         int r;
519
520         new_mac[0] = (mac >> 40) & 0xff;
521         new_mac[1] = (mac >> 32) & 0xff;
522         new_mac[2] = (mac >> 24) & 0xff;
523         new_mac[3] = (mac >> 16) & 0xff;
524         new_mac[4] = (mac >> 8) & 0xff;
525         new_mac[5] = mac & 0xff;
526
527         r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
528                                 new_mac, sizeof(new_mac));
529
530         if (r) {
531                 pr_err("Setting \"local-mac-address\" failed %d", r);
532                 return;
533         }
534         *pmac = mac + 1;
535 }
536
537 static void __init octeon_fdt_rm_ethernet(int node)
538 {
539         const __be32 *phy_handle;
540
541         phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
542         if (phy_handle) {
543                 u32 ph = be32_to_cpup(phy_handle);
544                 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
545                 if (p >= 0)
546                         fdt_nop_node(initial_boot_params, p);
547         }
548         fdt_nop_node(initial_boot_params, node);
549 }
550
551 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
552 {
553         char name_buffer[20];
554         int eth;
555         int phy_addr;
556         int ipd_port;
557
558         snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
559         eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
560         if (eth < 0)
561                 return;
562         if (p > max) {
563                 pr_debug("Deleting port %x:%x\n", i, p);
564                 octeon_fdt_rm_ethernet(eth);
565                 return;
566         }
567         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
568                 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
569         else
570                 ipd_port = 16 * i + p;
571
572         phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
573         octeon_fdt_set_phy(eth, phy_addr);
574         octeon_fdt_set_mac_addr(eth, pmac);
575 }
576
577 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
578 {
579         char name_buffer[20];
580         int iface;
581         int p;
582         int count = 0;
583
584         snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
585         iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
586         if (iface < 0)
587                 return;
588
589         if (cvmx_helper_interface_enumerate(idx) == 0)
590                 count = cvmx_helper_ports_on_interface(idx);
591
592         for (p = 0; p < 16; p++)
593                 octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
594 }
595
596 int __init octeon_prune_device_tree(void)
597 {
598         int i, max_port, uart_mask;
599         const char *pip_path;
600         const char *alias_prop;
601         char name_buffer[20];
602         int aliases;
603         u64 mac_addr_base;
604
605         if (fdt_check_header(initial_boot_params))
606                 panic("Corrupt Device Tree.");
607
608         aliases = fdt_path_offset(initial_boot_params, "/aliases");
609         if (aliases < 0) {
610                 pr_err("Error: No /aliases node in device tree.");
611                 return -EINVAL;
612         }
613
614
615         mac_addr_base =
616                 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
617                 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
618                 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
619                 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
620                 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
621                 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
622
623         if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
624                 max_port = 2;
625         else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
626                 max_port = 1;
627         else
628                 max_port = 0;
629
630         if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
631                 max_port = 0;
632
633         for (i = 0; i < 2; i++) {
634                 int mgmt;
635                 snprintf(name_buffer, sizeof(name_buffer),
636                          "mix%d", i);
637                 alias_prop = fdt_getprop(initial_boot_params, aliases,
638                                         name_buffer, NULL);
639                 if (alias_prop) {
640                         mgmt = fdt_path_offset(initial_boot_params, alias_prop);
641                         if (mgmt < 0)
642                                 continue;
643                         if (i >= max_port) {
644                                 pr_debug("Deleting mix%d\n", i);
645                                 octeon_fdt_rm_ethernet(mgmt);
646                                 fdt_nop_property(initial_boot_params, aliases,
647                                                  name_buffer);
648                         } else {
649                                 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
650                                 octeon_fdt_set_phy(mgmt, phy_addr);
651                                 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
652                         }
653                 }
654         }
655
656         pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
657         if (pip_path) {
658                 int pip = fdt_path_offset(initial_boot_params, pip_path);
659                 if (pip  >= 0)
660                         for (i = 0; i <= 4; i++)
661                                 octeon_fdt_pip_iface(pip, i, &mac_addr_base);
662         }
663
664         /* I2C */
665         if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
666             OCTEON_IS_MODEL(OCTEON_CN63XX) ||
667             OCTEON_IS_MODEL(OCTEON_CN68XX) ||
668             OCTEON_IS_MODEL(OCTEON_CN56XX))
669                 max_port = 2;
670         else
671                 max_port = 1;
672
673         for (i = 0; i < 2; i++) {
674                 int i2c;
675                 snprintf(name_buffer, sizeof(name_buffer),
676                          "twsi%d", i);
677                 alias_prop = fdt_getprop(initial_boot_params, aliases,
678                                         name_buffer, NULL);
679
680                 if (alias_prop) {
681                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
682                         if (i2c < 0)
683                                 continue;
684                         if (i >= max_port) {
685                                 pr_debug("Deleting twsi%d\n", i);
686                                 fdt_nop_node(initial_boot_params, i2c);
687                                 fdt_nop_property(initial_boot_params, aliases,
688                                                  name_buffer);
689                         }
690                 }
691         }
692
693         /* SMI/MDIO */
694         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
695                 max_port = 4;
696         else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
697                  OCTEON_IS_MODEL(OCTEON_CN63XX) ||
698                  OCTEON_IS_MODEL(OCTEON_CN56XX))
699                 max_port = 2;
700         else
701                 max_port = 1;
702
703         for (i = 0; i < 2; i++) {
704                 int i2c;
705                 snprintf(name_buffer, sizeof(name_buffer),
706                          "smi%d", i);
707                 alias_prop = fdt_getprop(initial_boot_params, aliases,
708                                         name_buffer, NULL);
709
710                 if (alias_prop) {
711                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
712                         if (i2c < 0)
713                                 continue;
714                         if (i >= max_port) {
715                                 pr_debug("Deleting smi%d\n", i);
716                                 fdt_nop_node(initial_boot_params, i2c);
717                                 fdt_nop_property(initial_boot_params, aliases,
718                                                  name_buffer);
719                         }
720                 }
721         }
722
723         /* Serial */
724         uart_mask = 3;
725
726         /* Right now CN52XX is the only chip with a third uart */
727         if (OCTEON_IS_MODEL(OCTEON_CN52XX))
728                 uart_mask |= 4; /* uart2 */
729
730         for (i = 0; i < 3; i++) {
731                 int uart;
732                 snprintf(name_buffer, sizeof(name_buffer),
733                          "uart%d", i);
734                 alias_prop = fdt_getprop(initial_boot_params, aliases,
735                                         name_buffer, NULL);
736
737                 if (alias_prop) {
738                         uart = fdt_path_offset(initial_boot_params, alias_prop);
739                         if (uart_mask & (1 << i)) {
740                                 __be32 f;
741
742                                 f = cpu_to_be32(octeon_get_io_clock_rate());
743                                 fdt_setprop_inplace(initial_boot_params,
744                                                     uart, "clock-frequency",
745                                                     &f, sizeof(f));
746                                 continue;
747                         }
748                         pr_debug("Deleting uart%d\n", i);
749                         fdt_nop_node(initial_boot_params, uart);
750                         fdt_nop_property(initial_boot_params, aliases,
751                                          name_buffer);
752                 }
753         }
754
755         /* Compact Flash */
756         alias_prop = fdt_getprop(initial_boot_params, aliases,
757                                  "cf0", NULL);
758         if (alias_prop) {
759                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
760                 unsigned long base_ptr, region_base, region_size;
761                 unsigned long region1_base = 0;
762                 unsigned long region1_size = 0;
763                 int cs, bootbus;
764                 bool is_16bit = false;
765                 bool is_true_ide = false;
766                 __be32 new_reg[6];
767                 __be32 *ranges;
768                 int len;
769
770                 int cf = fdt_path_offset(initial_boot_params, alias_prop);
771                 base_ptr = 0;
772                 if (octeon_bootinfo->major_version == 1
773                         && octeon_bootinfo->minor_version >= 1) {
774                         if (octeon_bootinfo->compact_flash_common_base_addr)
775                                 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
776                 } else {
777                         base_ptr = 0x1d000800;
778                 }
779
780                 if (!base_ptr)
781                         goto no_cf;
782
783                 /* Find CS0 region. */
784                 for (cs = 0; cs < 8; cs++) {
785                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
786                         region_base = mio_boot_reg_cfg.s.base << 16;
787                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
788                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
789                                 && base_ptr < region_base + region_size) {
790                                 is_16bit = mio_boot_reg_cfg.s.width;
791                                 break;
792                         }
793                 }
794                 if (cs >= 7) {
795                         /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
796                         goto no_cf;
797                 }
798
799                 if (!(base_ptr & 0xfffful)) {
800                         /*
801                          * Boot loader signals availability of DMA (true_ide
802                          * mode) by setting low order bits of base_ptr to
803                          * zero.
804                          */
805
806                         /* Asume that CS1 immediately follows. */
807                         mio_boot_reg_cfg.u64 =
808                                 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
809                         region1_base = mio_boot_reg_cfg.s.base << 16;
810                         region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
811                         if (!mio_boot_reg_cfg.s.en)
812                                 goto no_cf;
813                         is_true_ide = true;
814
815                 } else {
816                         fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
817                         fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
818                         if (!is_16bit) {
819                                 __be32 width = cpu_to_be32(8);
820                                 fdt_setprop_inplace(initial_boot_params, cf,
821                                                 "cavium,bus-width", &width, sizeof(width));
822                         }
823                 }
824                 new_reg[0] = cpu_to_be32(cs);
825                 new_reg[1] = cpu_to_be32(0);
826                 new_reg[2] = cpu_to_be32(0x10000);
827                 new_reg[3] = cpu_to_be32(cs + 1);
828                 new_reg[4] = cpu_to_be32(0);
829                 new_reg[5] = cpu_to_be32(0x10000);
830                 fdt_setprop_inplace(initial_boot_params, cf,
831                                     "reg",  new_reg, sizeof(new_reg));
832
833                 bootbus = fdt_parent_offset(initial_boot_params, cf);
834                 if (bootbus < 0)
835                         goto no_cf;
836                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
837                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
838                         goto no_cf;
839
840                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
841                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
842                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
843                 if (is_true_ide) {
844                         cs++;
845                         ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
846                         ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
847                         ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
848                 }
849                 goto end_cf;
850 no_cf:
851                 fdt_nop_node(initial_boot_params, cf);
852
853 end_cf:
854                 ;
855         }
856
857         /* 8 char LED */
858         alias_prop = fdt_getprop(initial_boot_params, aliases,
859                                  "led0", NULL);
860         if (alias_prop) {
861                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
862                 unsigned long base_ptr, region_base, region_size;
863                 int cs, bootbus;
864                 __be32 new_reg[6];
865                 __be32 *ranges;
866                 int len;
867                 int led = fdt_path_offset(initial_boot_params, alias_prop);
868
869                 base_ptr = octeon_bootinfo->led_display_base_addr;
870                 if (base_ptr == 0)
871                         goto no_led;
872                 /* Find CS0 region. */
873                 for (cs = 0; cs < 8; cs++) {
874                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
875                         region_base = mio_boot_reg_cfg.s.base << 16;
876                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
877                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
878                                 && base_ptr < region_base + region_size)
879                                 break;
880                 }
881
882                 if (cs > 7)
883                         goto no_led;
884
885                 new_reg[0] = cpu_to_be32(cs);
886                 new_reg[1] = cpu_to_be32(0x20);
887                 new_reg[2] = cpu_to_be32(0x20);
888                 new_reg[3] = cpu_to_be32(cs);
889                 new_reg[4] = cpu_to_be32(0);
890                 new_reg[5] = cpu_to_be32(0x20);
891                 fdt_setprop_inplace(initial_boot_params, led,
892                                     "reg",  new_reg, sizeof(new_reg));
893
894                 bootbus = fdt_parent_offset(initial_boot_params, led);
895                 if (bootbus < 0)
896                         goto no_led;
897                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
898                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
899                         goto no_led;
900
901                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
902                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
903                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
904                 goto end_led;
905
906 no_led:
907                 fdt_nop_node(initial_boot_params, led);
908 end_led:
909                 ;
910         }
911
912         /* OHCI/UHCI USB */
913         alias_prop = fdt_getprop(initial_boot_params, aliases,
914                                  "uctl", NULL);
915         if (alias_prop) {
916                 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
917
918                 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
919                                   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
920                         pr_debug("Deleting uctl\n");
921                         fdt_nop_node(initial_boot_params, uctl);
922                         fdt_nop_property(initial_boot_params, aliases, "uctl");
923                 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
924                            octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
925                         /* Missing "refclk-type" defaults to crystal. */
926                         fdt_nop_property(initial_boot_params, uctl, "refclk-type");
927                 }
928         }
929
930         /* DWC2 USB */
931         alias_prop = fdt_getprop(initial_boot_params, aliases,
932                                  "usbn", NULL);
933         if (alias_prop) {
934                 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
935
936                 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
937                                   !octeon_has_feature(OCTEON_FEATURE_USB))) {
938                         pr_debug("Deleting usbn\n");
939                         fdt_nop_node(initial_boot_params, usbn);
940                         fdt_nop_property(initial_boot_params, aliases, "usbn");
941                 } else  {
942                         __be32 new_f[1];
943                         enum cvmx_helper_board_usb_clock_types c;
944                         c = __cvmx_helper_board_usb_get_clock_type();
945                         switch (c) {
946                         case USB_CLOCK_TYPE_REF_48:
947                                 new_f[0] = cpu_to_be32(48000000);
948                                 fdt_setprop_inplace(initial_boot_params, usbn,
949                                                     "refclk-frequency",  new_f, sizeof(new_f));
950                                 /* Fall through ...*/
951                         case USB_CLOCK_TYPE_REF_12:
952                                 /* Missing "refclk-type" defaults to external. */
953                                 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
954                                 break;
955                         default:
956                                 break;
957                         }
958                 }
959         }
960
961         return 0;
962 }
963
964 static int __init octeon_publish_devices(void)
965 {
966         return of_platform_bus_probe(NULL, octeon_ids, NULL);
967 }
968 device_initcall(octeon_publish_devices);
969
970 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
971 MODULE_LICENSE("GPL");
972 MODULE_DESCRIPTION("Platform driver for Octeon SOC");