]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/kernel/setup.c
Merge tag 'xfs-4.12-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[karo-tx-linux.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49
50 EXPORT_SYMBOL(cpu_data);
51
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62
63 EXPORT_SYMBOL(mips_machtype);
64
65 struct boot_mem_map boot_mem_map;
66
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 const unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83
84 static void *detect_magic __initdata = detect_memory_region;
85
86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
87 {
88         int x = boot_mem_map.nr_map;
89         int i;
90
91         /*
92          * If the region reaches the top of the physical address space, adjust
93          * the size slightly so that (start + size) doesn't overflow
94          */
95         if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
96                 --size;
97
98         /* Sanity check */
99         if (start + size < start) {
100                 pr_warn("Trying to add an invalid memory region, skipped\n");
101                 return;
102         }
103
104         /*
105          * Try to merge with existing entry, if any.
106          */
107         for (i = 0; i < boot_mem_map.nr_map; i++) {
108                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
109                 unsigned long top;
110
111                 if (entry->type != type)
112                         continue;
113
114                 if (start + size < entry->addr)
115                         continue;                       /* no overlap */
116
117                 if (entry->addr + entry->size < start)
118                         continue;                       /* no overlap */
119
120                 top = max(entry->addr + entry->size, start + size);
121                 entry->addr = min(entry->addr, start);
122                 entry->size = top - entry->addr;
123
124                 return;
125         }
126
127         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
128                 pr_err("Ooops! Too many entries in the memory map!\n");
129                 return;
130         }
131
132         boot_mem_map.map[x].addr = start;
133         boot_mem_map.map[x].size = size;
134         boot_mem_map.map[x].type = type;
135         boot_mem_map.nr_map++;
136 }
137
138 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
139 {
140         void *dm = &detect_magic;
141         phys_addr_t size;
142
143         for (size = sz_min; size < sz_max; size <<= 1) {
144                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
145                         break;
146         }
147
148         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
149                 ((unsigned long long) size) / SZ_1M,
150                 (unsigned long long) start,
151                 ((unsigned long long) sz_min) / SZ_1M,
152                 ((unsigned long long) sz_max) / SZ_1M);
153
154         add_memory_region(start, size, BOOT_MEM_RAM);
155 }
156
157 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
158 {
159         int i;
160         bool in_ram = false, free = true;
161
162         for (i = 0; i < boot_mem_map.nr_map; i++) {
163                 phys_addr_t start_, end_;
164
165                 start_ = boot_mem_map.map[i].addr;
166                 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
167
168                 switch (boot_mem_map.map[i].type) {
169                 case BOOT_MEM_RAM:
170                         if (start >= start_ && start + size <= end_)
171                                 in_ram = true;
172                         break;
173                 case BOOT_MEM_RESERVED:
174                         if ((start >= start_ && start < end_) ||
175                             (start < start_ && start + size >= start_))
176                                 free = false;
177                         break;
178                 default:
179                         continue;
180                 }
181         }
182
183         return in_ram && free;
184 }
185
186 static void __init print_memory_map(void)
187 {
188         int i;
189         const int field = 2 * sizeof(unsigned long);
190
191         for (i = 0; i < boot_mem_map.nr_map; i++) {
192                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
193                        field, (unsigned long long) boot_mem_map.map[i].size,
194                        field, (unsigned long long) boot_mem_map.map[i].addr);
195
196                 switch (boot_mem_map.map[i].type) {
197                 case BOOT_MEM_RAM:
198                         printk(KERN_CONT "(usable)\n");
199                         break;
200                 case BOOT_MEM_INIT_RAM:
201                         printk(KERN_CONT "(usable after init)\n");
202                         break;
203                 case BOOT_MEM_ROM_DATA:
204                         printk(KERN_CONT "(ROM data)\n");
205                         break;
206                 case BOOT_MEM_RESERVED:
207                         printk(KERN_CONT "(reserved)\n");
208                         break;
209                 default:
210                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
211                         break;
212                 }
213         }
214 }
215
216 /*
217  * Manage initrd
218  */
219 #ifdef CONFIG_BLK_DEV_INITRD
220
221 static int __init rd_start_early(char *p)
222 {
223         unsigned long start = memparse(p, &p);
224
225 #ifdef CONFIG_64BIT
226         /* Guess if the sign extension was forgotten by bootloader */
227         if (start < XKPHYS)
228                 start = (int)start;
229 #endif
230         initrd_start = start;
231         initrd_end += start;
232         return 0;
233 }
234 early_param("rd_start", rd_start_early);
235
236 static int __init rd_size_early(char *p)
237 {
238         initrd_end += memparse(p, &p);
239         return 0;
240 }
241 early_param("rd_size", rd_size_early);
242
243 /* it returns the next free pfn after initrd */
244 static unsigned long __init init_initrd(void)
245 {
246         unsigned long end;
247
248         /*
249          * Board specific code or command line parser should have
250          * already set up initrd_start and initrd_end. In these cases
251          * perfom sanity checks and use them if all looks good.
252          */
253         if (!initrd_start || initrd_end <= initrd_start)
254                 goto disable;
255
256         if (initrd_start & ~PAGE_MASK) {
257                 pr_err("initrd start must be page aligned\n");
258                 goto disable;
259         }
260         if (initrd_start < PAGE_OFFSET) {
261                 pr_err("initrd start < PAGE_OFFSET\n");
262                 goto disable;
263         }
264
265         /*
266          * Sanitize initrd addresses. For example firmware
267          * can't guess if they need to pass them through
268          * 64-bits values if the kernel has been built in pure
269          * 32-bit. We need also to switch from KSEG0 to XKPHYS
270          * addresses now, so the code can now safely use __pa().
271          */
272         end = __pa(initrd_end);
273         initrd_end = (unsigned long)__va(end);
274         initrd_start = (unsigned long)__va(__pa(initrd_start));
275
276         ROOT_DEV = Root_RAM0;
277         return PFN_UP(end);
278 disable:
279         initrd_start = 0;
280         initrd_end = 0;
281         return 0;
282 }
283
284 /* In some conditions (e.g. big endian bootloader with a little endian
285    kernel), the initrd might appear byte swapped.  Try to detect this and
286    byte swap it if needed.  */
287 static void __init maybe_bswap_initrd(void)
288 {
289 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
290         u64 buf;
291
292         /* Check for CPIO signature */
293         if (!memcmp((void *)initrd_start, "070701", 6))
294                 return;
295
296         /* Check for compressed initrd */
297         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
298                 return;
299
300         /* Try again with a byte swapped header */
301         buf = swab64p((u64 *)initrd_start);
302         if (!memcmp(&buf, "070701", 6) ||
303             decompress_method((unsigned char *)(&buf), 8, NULL)) {
304                 unsigned long i;
305
306                 pr_info("Byteswapped initrd detected\n");
307                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
308                         swab64s((u64 *)i);
309         }
310 #endif
311 }
312
313 static void __init finalize_initrd(void)
314 {
315         unsigned long size = initrd_end - initrd_start;
316
317         if (size == 0) {
318                 printk(KERN_INFO "Initrd not found or empty");
319                 goto disable;
320         }
321         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
322                 printk(KERN_ERR "Initrd extends beyond end of memory");
323                 goto disable;
324         }
325
326         maybe_bswap_initrd();
327
328         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
329         initrd_below_start_ok = 1;
330
331         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
332                 initrd_start, size);
333         return;
334 disable:
335         printk(KERN_CONT " - disabling initrd\n");
336         initrd_start = 0;
337         initrd_end = 0;
338 }
339
340 #else  /* !CONFIG_BLK_DEV_INITRD */
341
342 static unsigned long __init init_initrd(void)
343 {
344         return 0;
345 }
346
347 #define finalize_initrd()       do {} while (0)
348
349 #endif
350
351 /*
352  * Initialize the bootmem allocator. It also setup initrd related data
353  * if needed.
354  */
355 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
356
357 static void __init bootmem_init(void)
358 {
359         init_initrd();
360         finalize_initrd();
361 }
362
363 #else  /* !CONFIG_SGI_IP27 */
364
365 static unsigned long __init bootmap_bytes(unsigned long pages)
366 {
367         unsigned long bytes = DIV_ROUND_UP(pages, 8);
368
369         return ALIGN(bytes, sizeof(long));
370 }
371
372 static void __init bootmem_init(void)
373 {
374         unsigned long reserved_end;
375         unsigned long mapstart = ~0UL;
376         unsigned long bootmap_size;
377         bool bootmap_valid = false;
378         int i;
379
380         /*
381          * Sanity check any INITRD first. We don't take it into account
382          * for bootmem setup initially, rely on the end-of-kernel-code
383          * as our memory range starting point. Once bootmem is inited we
384          * will reserve the area used for the initrd.
385          */
386         init_initrd();
387         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
388
389         /*
390          * max_low_pfn is not a number of pages. The number of pages
391          * of the system is given by 'max_low_pfn - min_low_pfn'.
392          */
393         min_low_pfn = ~0UL;
394         max_low_pfn = 0;
395
396         /*
397          * Find the highest page frame number we have available.
398          */
399         for (i = 0; i < boot_mem_map.nr_map; i++) {
400                 unsigned long start, end;
401
402                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
403                         continue;
404
405                 start = PFN_UP(boot_mem_map.map[i].addr);
406                 end = PFN_DOWN(boot_mem_map.map[i].addr
407                                 + boot_mem_map.map[i].size);
408
409 #ifndef CONFIG_HIGHMEM
410                 /*
411                  * Skip highmem here so we get an accurate max_low_pfn if low
412                  * memory stops short of high memory.
413                  * If the region overlaps HIGHMEM_START, end is clipped so
414                  * max_pfn excludes the highmem portion.
415                  */
416                 if (start >= PFN_DOWN(HIGHMEM_START))
417                         continue;
418                 if (end > PFN_DOWN(HIGHMEM_START))
419                         end = PFN_DOWN(HIGHMEM_START);
420 #endif
421
422                 if (end > max_low_pfn)
423                         max_low_pfn = end;
424                 if (start < min_low_pfn)
425                         min_low_pfn = start;
426                 if (end <= reserved_end)
427                         continue;
428 #ifdef CONFIG_BLK_DEV_INITRD
429                 /* Skip zones before initrd and initrd itself */
430                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
431                         continue;
432 #endif
433                 if (start >= mapstart)
434                         continue;
435                 mapstart = max(reserved_end, start);
436         }
437
438         if (min_low_pfn >= max_low_pfn)
439                 panic("Incorrect memory mapping !!!");
440         if (min_low_pfn > ARCH_PFN_OFFSET) {
441                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
442                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
443                         min_low_pfn - ARCH_PFN_OFFSET);
444         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
445                 pr_info("%lu free pages won't be used\n",
446                         ARCH_PFN_OFFSET - min_low_pfn);
447         }
448         min_low_pfn = ARCH_PFN_OFFSET;
449
450         /*
451          * Determine low and high memory ranges
452          */
453         max_pfn = max_low_pfn;
454         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
455 #ifdef CONFIG_HIGHMEM
456                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
457                 highend_pfn = max_low_pfn;
458 #endif
459                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
460         }
461
462 #ifdef CONFIG_BLK_DEV_INITRD
463         /*
464          * mapstart should be after initrd_end
465          */
466         if (initrd_end)
467                 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
468 #endif
469
470         /*
471          * check that mapstart doesn't overlap with any of
472          * memory regions that have been reserved through eg. DTB
473          */
474         bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
475
476         bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
477                                                 bootmap_size);
478         for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
479                 unsigned long mapstart_addr;
480
481                 switch (boot_mem_map.map[i].type) {
482                 case BOOT_MEM_RESERVED:
483                         mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
484                                                 boot_mem_map.map[i].size);
485                         if (PHYS_PFN(mapstart_addr) < mapstart)
486                                 break;
487
488                         bootmap_valid = memory_region_available(mapstart_addr,
489                                                                 bootmap_size);
490                         if (bootmap_valid)
491                                 mapstart = PHYS_PFN(mapstart_addr);
492                         break;
493                 default:
494                         break;
495                 }
496         }
497
498         if (!bootmap_valid)
499                 panic("No memory area to place a bootmap bitmap");
500
501         /*
502          * Initialize the boot-time allocator with low memory only.
503          */
504         if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
505                                          min_low_pfn, max_low_pfn))
506                 panic("Unexpected memory size required for bootmap");
507
508         for (i = 0; i < boot_mem_map.nr_map; i++) {
509                 unsigned long start, end;
510
511                 start = PFN_UP(boot_mem_map.map[i].addr);
512                 end = PFN_DOWN(boot_mem_map.map[i].addr
513                                 + boot_mem_map.map[i].size);
514
515                 if (start <= min_low_pfn)
516                         start = min_low_pfn;
517                 if (start >= end)
518                         continue;
519
520 #ifndef CONFIG_HIGHMEM
521                 if (end > max_low_pfn)
522                         end = max_low_pfn;
523
524                 /*
525                  * ... finally, is the area going away?
526                  */
527                 if (end <= start)
528                         continue;
529 #endif
530
531                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
532         }
533
534         /*
535          * Register fully available low RAM pages with the bootmem allocator.
536          */
537         for (i = 0; i < boot_mem_map.nr_map; i++) {
538                 unsigned long start, end, size;
539
540                 start = PFN_UP(boot_mem_map.map[i].addr);
541                 end   = PFN_DOWN(boot_mem_map.map[i].addr
542                                     + boot_mem_map.map[i].size);
543
544                 /*
545                  * Reserve usable memory.
546                  */
547                 switch (boot_mem_map.map[i].type) {
548                 case BOOT_MEM_RAM:
549                         break;
550                 case BOOT_MEM_INIT_RAM:
551                         memory_present(0, start, end);
552                         continue;
553                 default:
554                         /* Not usable memory */
555                         if (start > min_low_pfn && end < max_low_pfn)
556                                 reserve_bootmem(boot_mem_map.map[i].addr,
557                                                 boot_mem_map.map[i].size,
558                                                 BOOTMEM_DEFAULT);
559                         continue;
560                 }
561
562                 /*
563                  * We are rounding up the start address of usable memory
564                  * and at the end of the usable range downwards.
565                  */
566                 if (start >= max_low_pfn)
567                         continue;
568                 if (start < reserved_end)
569                         start = reserved_end;
570                 if (end > max_low_pfn)
571                         end = max_low_pfn;
572
573                 /*
574                  * ... finally, is the area going away?
575                  */
576                 if (end <= start)
577                         continue;
578                 size = end - start;
579
580                 /* Register lowmem ranges */
581                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
582                 memory_present(0, start, end);
583         }
584
585         /*
586          * Reserve the bootmap memory.
587          */
588         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
589
590 #ifdef CONFIG_RELOCATABLE
591         /*
592          * The kernel reserves all memory below its _end symbol as bootmem,
593          * but the kernel may now be at a much higher address. The memory
594          * between the original and new locations may be returned to the system.
595          */
596         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
597                 unsigned long offset;
598                 extern void show_kernel_relocation(const char *level);
599
600                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
601                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
602
603 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
604                 /*
605                  * This information is necessary when debugging the kernel
606                  * But is a security vulnerability otherwise!
607                  */
608                 show_kernel_relocation(KERN_INFO);
609 #endif
610         }
611 #endif
612
613         /*
614          * Reserve initrd memory if needed.
615          */
616         finalize_initrd();
617 }
618
619 #endif  /* CONFIG_SGI_IP27 */
620
621 /*
622  * arch_mem_init - initialize memory management subsystem
623  *
624  *  o plat_mem_setup() detects the memory configuration and will record detected
625  *    memory areas using add_memory_region.
626  *
627  * At this stage the memory configuration of the system is known to the
628  * kernel but generic memory management system is still entirely uninitialized.
629  *
630  *  o bootmem_init()
631  *  o sparse_init()
632  *  o paging_init()
633  *  o dma_contiguous_reserve()
634  *
635  * At this stage the bootmem allocator is ready to use.
636  *
637  * NOTE: historically plat_mem_setup did the entire platform initialization.
638  *       This was rather impractical because it meant plat_mem_setup had to
639  * get away without any kind of memory allocator.  To keep old code from
640  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
641  * initialization hook for anything else was introduced.
642  */
643
644 static int usermem __initdata;
645
646 static int __init early_parse_mem(char *p)
647 {
648         phys_addr_t start, size;
649
650         /*
651          * If a user specifies memory size, we
652          * blow away any automatically generated
653          * size.
654          */
655         if (usermem == 0) {
656                 boot_mem_map.nr_map = 0;
657                 usermem = 1;
658         }
659         start = 0;
660         size = memparse(p, &p);
661         if (*p == '@')
662                 start = memparse(p + 1, &p);
663
664         add_memory_region(start, size, BOOT_MEM_RAM);
665
666         if (start && start > PHYS_OFFSET)
667                 add_memory_region(PHYS_OFFSET, start - PHYS_OFFSET,
668                                 BOOT_MEM_RESERVED);
669         return 0;
670 }
671 early_param("mem", early_parse_mem);
672
673 #ifdef CONFIG_PROC_VMCORE
674 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
675 static int __init early_parse_elfcorehdr(char *p)
676 {
677         int i;
678
679         setup_elfcorehdr = memparse(p, &p);
680
681         for (i = 0; i < boot_mem_map.nr_map; i++) {
682                 unsigned long start = boot_mem_map.map[i].addr;
683                 unsigned long end = (boot_mem_map.map[i].addr +
684                                      boot_mem_map.map[i].size);
685                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
686                         /*
687                          * Reserve from the elf core header to the end of
688                          * the memory segment, that should all be kdump
689                          * reserved memory.
690                          */
691                         setup_elfcorehdr_size = end - setup_elfcorehdr;
692                         break;
693                 }
694         }
695         /*
696          * If we don't find it in the memory map, then we shouldn't
697          * have to worry about it, as the new kernel won't use it.
698          */
699         return 0;
700 }
701 early_param("elfcorehdr", early_parse_elfcorehdr);
702 #endif
703
704 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
705 {
706         phys_addr_t size;
707         int i;
708
709         size = end - mem;
710         if (!size)
711                 return;
712
713         /* Make sure it is in the boot_mem_map */
714         for (i = 0; i < boot_mem_map.nr_map; i++) {
715                 if (mem >= boot_mem_map.map[i].addr &&
716                     mem < (boot_mem_map.map[i].addr +
717                            boot_mem_map.map[i].size))
718                         return;
719         }
720         add_memory_region(mem, size, type);
721 }
722
723 #ifdef CONFIG_KEXEC
724 static inline unsigned long long get_total_mem(void)
725 {
726         unsigned long long total;
727
728         total = max_pfn - min_low_pfn;
729         return total << PAGE_SHIFT;
730 }
731
732 static void __init mips_parse_crashkernel(void)
733 {
734         unsigned long long total_mem;
735         unsigned long long crash_size, crash_base;
736         int ret;
737
738         total_mem = get_total_mem();
739         ret = parse_crashkernel(boot_command_line, total_mem,
740                                 &crash_size, &crash_base);
741         if (ret != 0 || crash_size <= 0)
742                 return;
743
744         if (!memory_region_available(crash_base, crash_size)) {
745                 pr_warn("Invalid memory region reserved for crash kernel\n");
746                 return;
747         }
748
749         crashk_res.start = crash_base;
750         crashk_res.end   = crash_base + crash_size - 1;
751 }
752
753 static void __init request_crashkernel(struct resource *res)
754 {
755         int ret;
756
757         if (crashk_res.start == crashk_res.end)
758                 return;
759
760         ret = request_resource(res, &crashk_res);
761         if (!ret)
762                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
763                         (unsigned long)((crashk_res.end -
764                                          crashk_res.start + 1) >> 20),
765                         (unsigned long)(crashk_res.start  >> 20));
766 }
767 #else /* !defined(CONFIG_KEXEC)         */
768 static void __init mips_parse_crashkernel(void)
769 {
770 }
771
772 static void __init request_crashkernel(struct resource *res)
773 {
774 }
775 #endif /* !defined(CONFIG_KEXEC)  */
776
777 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
778 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
779 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
780 #define BUILTIN_EXTEND_WITH_PROM        \
781         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
782
783 static void __init arch_mem_init(char **cmdline_p)
784 {
785         struct memblock_region *reg;
786         extern void plat_mem_setup(void);
787
788         /* call board setup routine */
789         plat_mem_setup();
790
791         /*
792          * Make sure all kernel memory is in the maps.  The "UP" and
793          * "DOWN" are opposite for initdata since if it crosses over
794          * into another memory section you don't want that to be
795          * freed when the initdata is freed.
796          */
797         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
798                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
799                          BOOT_MEM_RAM);
800         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
801                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
802                          BOOT_MEM_INIT_RAM);
803
804         pr_info("Determined physical RAM map:\n");
805         print_memory_map();
806
807 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
808         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
809 #else
810         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
811             (USE_DTB_CMDLINE && !boot_command_line[0]))
812                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
813
814         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
815                 if (boot_command_line[0])
816                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
817                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
818         }
819
820 #if defined(CONFIG_CMDLINE_BOOL)
821         if (builtin_cmdline[0]) {
822                 if (boot_command_line[0])
823                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
824                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
825         }
826
827         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
828                 if (boot_command_line[0])
829                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
830                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
831         }
832 #endif
833 #endif
834         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
835
836         *cmdline_p = command_line;
837
838         parse_early_param();
839
840         if (usermem) {
841                 pr_info("User-defined physical RAM map:\n");
842                 print_memory_map();
843         }
844
845         early_init_fdt_reserve_self();
846         early_init_fdt_scan_reserved_mem();
847
848         bootmem_init();
849 #ifdef CONFIG_PROC_VMCORE
850         if (setup_elfcorehdr && setup_elfcorehdr_size) {
851                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
852                        setup_elfcorehdr, setup_elfcorehdr_size);
853                 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
854                                 BOOTMEM_DEFAULT);
855         }
856 #endif
857
858         mips_parse_crashkernel();
859 #ifdef CONFIG_KEXEC
860         if (crashk_res.start != crashk_res.end)
861                 reserve_bootmem(crashk_res.start,
862                                 crashk_res.end - crashk_res.start + 1,
863                                 BOOTMEM_DEFAULT);
864 #endif
865         device_tree_init();
866         sparse_init();
867         plat_swiotlb_setup();
868
869         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
870         /* Tell bootmem about cma reserved memblock section */
871         for_each_memblock(reserved, reg)
872                 if (reg->size != 0)
873                         reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
874
875         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
876                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
877 }
878
879 static void __init resource_init(void)
880 {
881         int i;
882
883         if (UNCAC_BASE != IO_BASE)
884                 return;
885
886         code_resource.start = __pa_symbol(&_text);
887         code_resource.end = __pa_symbol(&_etext) - 1;
888         data_resource.start = __pa_symbol(&_etext);
889         data_resource.end = __pa_symbol(&_edata) - 1;
890
891         for (i = 0; i < boot_mem_map.nr_map; i++) {
892                 struct resource *res;
893                 unsigned long start, end;
894
895                 start = boot_mem_map.map[i].addr;
896                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
897                 if (start >= HIGHMEM_START)
898                         continue;
899                 if (end >= HIGHMEM_START)
900                         end = HIGHMEM_START - 1;
901
902                 res = alloc_bootmem(sizeof(struct resource));
903
904                 res->start = start;
905                 res->end = end;
906                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
907
908                 switch (boot_mem_map.map[i].type) {
909                 case BOOT_MEM_RAM:
910                 case BOOT_MEM_INIT_RAM:
911                 case BOOT_MEM_ROM_DATA:
912                         res->name = "System RAM";
913                         res->flags |= IORESOURCE_SYSRAM;
914                         break;
915                 case BOOT_MEM_RESERVED:
916                 default:
917                         res->name = "reserved";
918                 }
919
920                 request_resource(&iomem_resource, res);
921
922                 /*
923                  *  We don't know which RAM region contains kernel data,
924                  *  so we try it repeatedly and let the resource manager
925                  *  test it.
926                  */
927                 request_resource(res, &code_resource);
928                 request_resource(res, &data_resource);
929                 request_crashkernel(res);
930         }
931 }
932
933 #ifdef CONFIG_SMP
934 static void __init prefill_possible_map(void)
935 {
936         int i, possible = num_possible_cpus();
937
938         if (possible > nr_cpu_ids)
939                 possible = nr_cpu_ids;
940
941         for (i = 0; i < possible; i++)
942                 set_cpu_possible(i, true);
943         for (; i < NR_CPUS; i++)
944                 set_cpu_possible(i, false);
945
946         nr_cpu_ids = possible;
947 }
948 #else
949 static inline void prefill_possible_map(void) {}
950 #endif
951
952 void __init setup_arch(char **cmdline_p)
953 {
954         cpu_probe();
955         mips_cm_probe();
956         prom_init();
957
958         setup_early_fdc_console();
959 #ifdef CONFIG_EARLY_PRINTK
960         setup_early_printk();
961 #endif
962         cpu_report();
963         check_bugs_early();
964
965 #if defined(CONFIG_VT)
966 #if defined(CONFIG_VGA_CONSOLE)
967         conswitchp = &vga_con;
968 #elif defined(CONFIG_DUMMY_CONSOLE)
969         conswitchp = &dummy_con;
970 #endif
971 #endif
972
973         arch_mem_init(cmdline_p);
974
975         resource_init();
976         plat_smp_setup();
977         prefill_possible_map();
978
979         cpu_cache_init();
980         paging_init();
981 }
982
983 unsigned long kernelsp[NR_CPUS];
984 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
985
986 #ifdef CONFIG_USE_OF
987 unsigned long fw_passed_dtb;
988 #endif
989
990 #ifdef CONFIG_DEBUG_FS
991 struct dentry *mips_debugfs_dir;
992 static int __init debugfs_mips(void)
993 {
994         struct dentry *d;
995
996         d = debugfs_create_dir("mips", NULL);
997         if (!d)
998                 return -ENOMEM;
999         mips_debugfs_dir = d;
1000         return 0;
1001 }
1002 arch_initcall(debugfs_mips);
1003 #endif