]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/kernel/smp-bmips.c
ARM: exynos_defconfig: Increase CONFIG_CMA_SIZE_MBYTES to 96
[karo-tx-linux.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/reboot.h>
22 #include <linux/io.h>
23 #include <linux/compiler.h>
24 #include <linux/linkage.h>
25 #include <linux/bug.h>
26 #include <linux/kernel.h>
27
28 #include <asm/time.h>
29 #include <asm/pgtable.h>
30 #include <asm/processor.h>
31 #include <asm/bootinfo.h>
32 #include <asm/pmon.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40
41 static int __maybe_unused max_cpus = 1;
42
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48
49 #define RESET_FROM_KSEG0                0x80080800
50 #define RESET_FROM_KSEG1                0xa0080800
51
52 static void bmips_set_reset_vec(int cpu, u32 val);
53
54 #ifdef CONFIG_SMP
55
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
68
69 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
73
74 static void __init bmips_smp_setup(void)
75 {
76         int i, cpu = 1, boot_cpu = 0;
77         int cpu_hw_intr;
78
79         switch (current_cpu_type()) {
80         case CPU_BMIPS4350:
81         case CPU_BMIPS4380:
82                 /* arbitration priority */
83                 clear_c0_brcm_cmt_ctrl(0x30);
84
85                 /* NBK and weak order flags */
86                 set_c0_brcm_config_0(0x30000);
87
88                 /* Find out if we are running on TP0 or TP1 */
89                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90
91                 /*
92                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93                  * thread
94                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96                  */
97                 if (boot_cpu == 0)
98                         cpu_hw_intr = 0x02;
99                 else
100                         cpu_hw_intr = 0x1d;
101
102                 change_c0_brcm_cmt_intr(0xf8018000,
103                                         (cpu_hw_intr << 27) | (0x03 << 15));
104
105                 /* single core, 2 threads (2 pipelines) */
106                 max_cpus = 2;
107
108                 break;
109         case CPU_BMIPS5000:
110                 /* enable raceless SW interrupts */
111                 set_c0_brcm_config(0x03 << 22);
112
113                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116                 /* N cores, 2 threads per core */
117                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119                 /* clear any pending SW interrupts */
120                 for (i = 0; i < max_cpus; i++) {
121                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123                 }
124
125                 break;
126         default:
127                 max_cpus = 1;
128         }
129
130         if (!bmips_smp_enabled)
131                 max_cpus = 1;
132
133         /* this can be overridden by the BSP */
134         if (!board_ebase_setup)
135                 board_ebase_setup = &bmips_ebase_setup;
136
137         __cpu_number_map[boot_cpu] = 0;
138         __cpu_logical_map[0] = boot_cpu;
139
140         for (i = 0; i < max_cpus; i++) {
141                 if (i != boot_cpu) {
142                         __cpu_number_map[i] = cpu;
143                         __cpu_logical_map[cpu] = i;
144                         cpu++;
145                 }
146                 set_cpu_possible(i, 1);
147                 set_cpu_present(i, 1);
148         }
149 }
150
151 /*
152  * IPI IRQ setup - runs on CPU0
153  */
154 static void bmips_prepare_cpus(unsigned int max_cpus)
155 {
156         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157
158         switch (current_cpu_type()) {
159         case CPU_BMIPS4350:
160         case CPU_BMIPS4380:
161                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162                 break;
163         case CPU_BMIPS5000:
164                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165                 break;
166         default:
167                 return;
168         }
169
170         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
171                         "smp_ipi0", NULL))
172                 panic("Can't request IPI0 interrupt");
173         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
174                         "smp_ipi1", NULL))
175                 panic("Can't request IPI1 interrupt");
176 }
177
178 /*
179  * Tell the hardware to boot CPUx - runs on CPU0
180  */
181 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
182 {
183         bmips_smp_boot_sp = __KSTK_TOS(idle);
184         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185         mb();
186
187         /*
188          * Initial boot sequence for secondary CPU:
189          *   bmips_reset_nmi_vec @ a000_0000 ->
190          *   bmips_smp_entry ->
191          *   plat_wired_tlb_setup (cached function call; optional) ->
192          *   start_secondary (cached jump)
193          *
194          * Warm restart sequence:
195          *   play_dead WAIT loop ->
196          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197          *   eret to play_dead ->
198          *   bmips_secondary_reentry ->
199          *   start_secondary
200          */
201
202         pr_info("SMP: Booting CPU%d...\n", cpu);
203
204         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
205                 /* kseg1 might not exist if this CPU enabled XKS01 */
206                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207
208                 switch (current_cpu_type()) {
209                 case CPU_BMIPS4350:
210                 case CPU_BMIPS4380:
211                         bmips43xx_send_ipi_single(cpu, 0);
212                         break;
213                 case CPU_BMIPS5000:
214                         bmips5000_send_ipi_single(cpu, 0);
215                         break;
216                 }
217         } else {
218                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219
220                 switch (current_cpu_type()) {
221                 case CPU_BMIPS4350:
222                 case CPU_BMIPS4380:
223                         /* Reset slave TP1 if booting from TP0 */
224                         if (cpu_logical_map(cpu) == 1)
225                                 set_c0_brcm_cmt_ctrl(0x01);
226                         break;
227                 case CPU_BMIPS5000:
228                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
229                         break;
230                 }
231                 cpumask_set_cpu(cpu, &bmips_booted_mask);
232         }
233 }
234
235 /*
236  * Early setup - runs on secondary CPU after cache probe
237  */
238 static void bmips_init_secondary(void)
239 {
240         switch (current_cpu_type()) {
241         case CPU_BMIPS4350:
242         case CPU_BMIPS4380:
243                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
244                 break;
245         case CPU_BMIPS5000:
246                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
247                 current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
248                 break;
249         }
250 }
251
252 /*
253  * Late setup - runs on secondary CPU before entering the idle loop
254  */
255 static void bmips_smp_finish(void)
256 {
257         pr_info("SMP: CPU%d is running\n", smp_processor_id());
258
259         /* make sure there won't be a timer interrupt for a little while */
260         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
261
262         irq_enable_hazard();
263         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
264         irq_enable_hazard();
265 }
266
267 /*
268  * BMIPS5000 raceless IPIs
269  *
270  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
271  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
272  * IPI1 is used for SMP_CALL_FUNCTION
273  */
274
275 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
276 {
277         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
278 }
279
280 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
281 {
282         int action = irq - IPI0_IRQ;
283
284         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
285
286         if (action == 0)
287                 scheduler_ipi();
288         else
289                 generic_smp_call_function_interrupt();
290
291         return IRQ_HANDLED;
292 }
293
294 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
295         unsigned int action)
296 {
297         unsigned int i;
298
299         for_each_cpu(i, mask)
300                 bmips5000_send_ipi_single(i, action);
301 }
302
303 /*
304  * BMIPS43xx racey IPIs
305  *
306  * We use one inbound SW IRQ for each CPU.
307  *
308  * A spinlock must be held in order to keep CPUx from accidentally clearing
309  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
310  * same spinlock is used to protect the action masks.
311  */
312
313 static DEFINE_SPINLOCK(ipi_lock);
314 static DEFINE_PER_CPU(int, ipi_action_mask);
315
316 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
317 {
318         unsigned long flags;
319
320         spin_lock_irqsave(&ipi_lock, flags);
321         set_c0_cause(cpu ? C_SW1 : C_SW0);
322         per_cpu(ipi_action_mask, cpu) |= action;
323         irq_enable_hazard();
324         spin_unlock_irqrestore(&ipi_lock, flags);
325 }
326
327 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
328 {
329         unsigned long flags;
330         int action, cpu = irq - IPI0_IRQ;
331
332         spin_lock_irqsave(&ipi_lock, flags);
333         action = __this_cpu_read(ipi_action_mask);
334         per_cpu(ipi_action_mask, cpu) = 0;
335         clear_c0_cause(cpu ? C_SW1 : C_SW0);
336         spin_unlock_irqrestore(&ipi_lock, flags);
337
338         if (action & SMP_RESCHEDULE_YOURSELF)
339                 scheduler_ipi();
340         if (action & SMP_CALL_FUNCTION)
341                 generic_smp_call_function_interrupt();
342
343         return IRQ_HANDLED;
344 }
345
346 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
347         unsigned int action)
348 {
349         unsigned int i;
350
351         for_each_cpu(i, mask)
352                 bmips43xx_send_ipi_single(i, action);
353 }
354
355 #ifdef CONFIG_HOTPLUG_CPU
356
357 static int bmips_cpu_disable(void)
358 {
359         unsigned int cpu = smp_processor_id();
360
361         if (cpu == 0)
362                 return -EBUSY;
363
364         pr_info("SMP: CPU%d is offline\n", cpu);
365
366         set_cpu_online(cpu, false);
367         calculate_cpu_foreign_map();
368         irq_cpu_offline();
369         clear_c0_status(IE_IRQ5);
370
371         local_flush_tlb_all();
372         local_flush_icache_range(0, ~0);
373
374         return 0;
375 }
376
377 static void bmips_cpu_die(unsigned int cpu)
378 {
379 }
380
381 void __ref play_dead(void)
382 {
383         idle_task_exit();
384
385         /* flush data cache */
386         _dma_cache_wback_inv(0, ~0);
387
388         /*
389          * Wakeup is on SW0 or SW1; disable everything else
390          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
391          * IRQ handlers; this clears ST0_IE and returns immediately.
392          */
393         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
394         change_c0_status(
395                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
396                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
397         irq_disable_hazard();
398
399         /*
400          * wait for SW interrupt from bmips_boot_secondary(), then jump
401          * back to start_secondary()
402          */
403         __asm__ __volatile__(
404         "       wait\n"
405         "       j       bmips_secondary_reentry\n"
406         : : : "memory");
407 }
408
409 #endif /* CONFIG_HOTPLUG_CPU */
410
411 struct plat_smp_ops bmips43xx_smp_ops = {
412         .smp_setup              = bmips_smp_setup,
413         .prepare_cpus           = bmips_prepare_cpus,
414         .boot_secondary         = bmips_boot_secondary,
415         .smp_finish             = bmips_smp_finish,
416         .init_secondary         = bmips_init_secondary,
417         .send_ipi_single        = bmips43xx_send_ipi_single,
418         .send_ipi_mask          = bmips43xx_send_ipi_mask,
419 #ifdef CONFIG_HOTPLUG_CPU
420         .cpu_disable            = bmips_cpu_disable,
421         .cpu_die                = bmips_cpu_die,
422 #endif
423 };
424
425 struct plat_smp_ops bmips5000_smp_ops = {
426         .smp_setup              = bmips_smp_setup,
427         .prepare_cpus           = bmips_prepare_cpus,
428         .boot_secondary         = bmips_boot_secondary,
429         .smp_finish             = bmips_smp_finish,
430         .init_secondary         = bmips_init_secondary,
431         .send_ipi_single        = bmips5000_send_ipi_single,
432         .send_ipi_mask          = bmips5000_send_ipi_mask,
433 #ifdef CONFIG_HOTPLUG_CPU
434         .cpu_disable            = bmips_cpu_disable,
435         .cpu_die                = bmips_cpu_die,
436 #endif
437 };
438
439 #endif /* CONFIG_SMP */
440
441 /***********************************************************************
442  * BMIPS vector relocation
443  * This is primarily used for SMP boot, but it is applicable to some
444  * UP BMIPS systems as well.
445  ***********************************************************************/
446
447 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
448 {
449         memcpy((void *)dst, start, end - start);
450         dma_cache_wback(dst, end - start);
451         local_flush_icache_range(dst, dst + (end - start));
452         instruction_hazard();
453 }
454
455 static inline void bmips_nmi_handler_setup(void)
456 {
457         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
458                 &bmips_reset_nmi_vec_end);
459         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
460                 &bmips_smp_int_vec_end);
461 }
462
463 struct reset_vec_info {
464         int cpu;
465         u32 val;
466 };
467
468 static void bmips_set_reset_vec_remote(void *vinfo)
469 {
470         struct reset_vec_info *info = vinfo;
471         int shift = info->cpu & 0x01 ? 16 : 0;
472         u32 mask = ~(0xffff << shift), val = info->val >> 16;
473
474         preempt_disable();
475         if (smp_processor_id() > 0) {
476                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
477                                          info, 1);
478         } else {
479                 if (info->cpu & 0x02) {
480                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
481                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
482                         bmips_read_zscm_reg(0xa0);
483                 } else {
484                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
485                                               (val << shift));
486                 }
487         }
488         preempt_enable();
489 }
490
491 static void bmips_set_reset_vec(int cpu, u32 val)
492 {
493         struct reset_vec_info info;
494
495         if (current_cpu_type() == CPU_BMIPS5000) {
496                 /* this needs to run from CPU0 (which is always online) */
497                 info.cpu = cpu;
498                 info.val = val;
499                 bmips_set_reset_vec_remote(&info);
500         } else {
501                 void __iomem *cbr = BMIPS_GET_CBR();
502
503                 if (cpu == 0)
504                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
505                 else {
506                         if (current_cpu_type() != CPU_BMIPS4380)
507                                 return;
508                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
509                 }
510         }
511         __sync();
512         back_to_back_c0_hazard();
513 }
514
515 void bmips_ebase_setup(void)
516 {
517         unsigned long new_ebase = ebase;
518
519         BUG_ON(ebase != CKSEG0);
520
521         switch (current_cpu_type()) {
522         case CPU_BMIPS4350:
523                 /*
524                  * BMIPS4350 cannot relocate the normal vectors, but it
525                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
526                  * the relocated BEV=1, IV=0 general exception vector @
527                  * 0xa000_0380.
528                  *
529                  * set_uncached_handler() is used here because:
530                  *  - CPU1 will run this from uncached space
531                  *  - None of the cacheflush functions are set up yet
532                  */
533                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
534                         &bmips_smp_int_vec, 0x80);
535                 __sync();
536                 return;
537         case CPU_BMIPS3300:
538         case CPU_BMIPS4380:
539                 /*
540                  * 0x8000_0000: reset/NMI (initially in kseg1)
541                  * 0x8000_0400: normal vectors
542                  */
543                 new_ebase = 0x80000400;
544                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
545                 break;
546         case CPU_BMIPS5000:
547                 /*
548                  * 0x8000_0000: reset/NMI (initially in kseg1)
549                  * 0x8000_1000: normal vectors
550                  */
551                 new_ebase = 0x80001000;
552                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
553                 write_c0_ebase(new_ebase);
554                 break;
555         default:
556                 return;
557         }
558
559         board_nmi_handler_setup = &bmips_nmi_handler_setup;
560         ebase = new_ebase;
561 }
562
563 asmlinkage void __weak plat_wired_tlb_setup(void)
564 {
565         /*
566          * Called when starting/restarting a secondary CPU.
567          * Kernel stacks and other important data might only be accessible
568          * once the wired entries are present.
569          */
570 }
571
572 void __init bmips_cpu_setup(void)
573 {
574         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
575         u32 __maybe_unused cfg;
576
577         switch (current_cpu_type()) {
578         case CPU_BMIPS3300:
579                 /* Set BIU to async mode */
580                 set_c0_brcm_bus_pll(BIT(22));
581                 __sync();
582
583                 /* put the BIU back in sync mode */
584                 clear_c0_brcm_bus_pll(BIT(22));
585
586                 /* clear BHTD to enable branch history table */
587                 clear_c0_brcm_reset(BIT(16));
588
589                 /* Flush and enable RAC */
590                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
591                 __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
592                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
593
594                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
595                 __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
596                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
597
598                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
599                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
600                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
601                 break;
602
603         case CPU_BMIPS4380:
604                 /* CBG workaround for early BMIPS4380 CPUs */
605                 switch (read_c0_prid()) {
606                 case 0x2a040:
607                 case 0x2a042:
608                 case 0x2a044:
609                 case 0x2a060:
610                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
611                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
612                         __raw_readl(cbr + BMIPS_L2_CONFIG);
613                 }
614
615                 /* clear BHTD to enable branch history table */
616                 clear_c0_brcm_config_0(BIT(21));
617
618                 /* XI/ROTR enable */
619                 set_c0_brcm_config_0(BIT(23));
620                 set_c0_brcm_cmt_ctrl(BIT(15));
621                 break;
622
623         case CPU_BMIPS5000:
624                 /* enable RDHWR, BRDHWR */
625                 set_c0_brcm_config(BIT(17) | BIT(21));
626
627                 /* Disable JTB */
628                 __asm__ __volatile__(
629                 "       .set    noreorder\n"
630                 "       li      $8, 0x5a455048\n"
631                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
632                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
633                 "       li      $9, 0x00008000\n"
634                 "       or      $8, $8, $9\n"
635                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
636                 "       sync\n"
637                 "       li      $8, 0x0\n"
638                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
639                 "       .set    reorder\n"
640                 : : : "$8", "$9");
641
642                 /* XI enable */
643                 set_c0_brcm_config(BIT(27));
644
645                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
646                 __asm__ __volatile__(
647                 "       li      $8, 0x5a455048\n"
648                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
649                 "       nop; nop; nop\n"
650                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
651                 "       lui     $9, 0x0100\n"
652                 "       or      $8, $9\n"
653                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
654                 : : : "$8", "$9");
655                 break;
656         }
657 }