]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/kernel/smp-cps.c
1d3188c23bb884ddf7eba39ded27c0f3cfc885f6
[karo-tx-linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/slab.h>
17 #include <linux/smp.h>
18 #include <linux/types.h>
19
20 #include <asm/bcache.h>
21 #include <asm/mips-cm.h>
22 #include <asm/mips-cpc.h>
23 #include <asm/mips_mt.h>
24 #include <asm/mipsregs.h>
25 #include <asm/pm-cps.h>
26 #include <asm/r4kcache.h>
27 #include <asm/smp-cps.h>
28 #include <asm/time.h>
29 #include <asm/uasm.h>
30
31 static bool threads_disabled;
32 static DECLARE_BITMAP(core_power, NR_CPUS);
33
34 struct core_boot_config *mips_cps_core_bootcfg;
35
36 static int __init setup_nothreads(char *s)
37 {
38         threads_disabled = true;
39         return 0;
40 }
41 early_param("nothreads", setup_nothreads);
42
43 static unsigned core_vpe_count(unsigned core)
44 {
45         unsigned cfg;
46
47         if (threads_disabled)
48                 return 1;
49
50         if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
51                 && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
52                 return 1;
53
54         mips_cm_lock_other(core, 0);
55         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
56         mips_cm_unlock_other();
57         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
58 }
59
60 static void __init cps_smp_setup(void)
61 {
62         unsigned int ncores, nvpes, core_vpes;
63         unsigned long core_entry;
64         int c, v;
65
66         /* Detect & record VPE topology */
67         ncores = mips_cm_numcores();
68         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
69         for (c = nvpes = 0; c < ncores; c++) {
70                 core_vpes = core_vpe_count(c);
71                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
72
73                 /* Use the number of VPEs in core 0 for smp_num_siblings */
74                 if (!c)
75                         smp_num_siblings = core_vpes;
76
77                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
78                         cpu_data[nvpes + v].core = c;
79 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
80                         cpu_data[nvpes + v].vpe_id = v;
81 #endif
82                 }
83
84                 nvpes += core_vpes;
85         }
86         pr_cont("} total %u\n", nvpes);
87
88         /* Indicate present CPUs (CPU being synonymous with VPE) */
89         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
90                 set_cpu_possible(v, true);
91                 set_cpu_present(v, true);
92                 __cpu_number_map[v] = v;
93                 __cpu_logical_map[v] = v;
94         }
95
96         /* Set a coherent default CCA (CWB) */
97         change_c0_config(CONF_CM_CMASK, 0x5);
98
99         /* Core 0 is powered up (we're running on it) */
100         bitmap_set(core_power, 0, 1);
101
102         /* Initialise core 0 */
103         mips_cps_core_init();
104
105         /* Make core 0 coherent with everything */
106         write_gcr_cl_coherence(0xff);
107
108         if (mips_cm_revision() >= CM_REV_CM3) {
109                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
110                 write_gcr_bev_base(core_entry);
111         }
112
113 #ifdef CONFIG_MIPS_MT_FPAFF
114         /* If we have an FPU, enroll ourselves in the FPU-full mask */
115         if (cpu_has_fpu)
116                 cpumask_set_cpu(0, &mt_fpu_cpumask);
117 #endif /* CONFIG_MIPS_MT_FPAFF */
118 }
119
120 static void __init cps_prepare_cpus(unsigned int max_cpus)
121 {
122         unsigned ncores, core_vpes, c, cca;
123         bool cca_unsuitable;
124         u32 *entry_code;
125
126         mips_mt_set_cpuoptions();
127
128         /* Detect whether the CCA is unsuited to multi-core SMP */
129         cca = read_c0_config() & CONF_CM_CMASK;
130         switch (cca) {
131         case 0x4: /* CWBE */
132         case 0x5: /* CWB */
133                 /* The CCA is coherent, multi-core is fine */
134                 cca_unsuitable = false;
135                 break;
136
137         default:
138                 /* CCA is not coherent, multi-core is not usable */
139                 cca_unsuitable = true;
140         }
141
142         /* Warn the user if the CCA prevents multi-core */
143         ncores = mips_cm_numcores();
144         if (cca_unsuitable && ncores > 1) {
145                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
146                         cca);
147
148                 for_each_present_cpu(c) {
149                         if (cpu_data[c].core)
150                                 set_cpu_present(c, false);
151                 }
152         }
153
154         /*
155          * Patch the start of mips_cps_core_entry to provide:
156          *
157          * s0 = kseg0 CCA
158          */
159         entry_code = (u32 *)&mips_cps_core_entry;
160         uasm_i_addiu(&entry_code, 16, 0, cca);
161         blast_dcache_range((unsigned long)&mips_cps_core_entry,
162                            (unsigned long)entry_code);
163         bc_wback_inv((unsigned long)&mips_cps_core_entry,
164                      (void *)entry_code - (void *)&mips_cps_core_entry);
165         __sync();
166
167         /* Allocate core boot configuration structs */
168         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
169                                         GFP_KERNEL);
170         if (!mips_cps_core_bootcfg) {
171                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
172                 goto err_out;
173         }
174
175         /* Allocate VPE boot configuration structs */
176         for (c = 0; c < ncores; c++) {
177                 core_vpes = core_vpe_count(c);
178                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
179                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
180                                 GFP_KERNEL);
181                 if (!mips_cps_core_bootcfg[c].vpe_config) {
182                         pr_err("Failed to allocate %u VPE boot configs\n",
183                                core_vpes);
184                         goto err_out;
185                 }
186         }
187
188         /* Mark this CPU as booted */
189         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
190                    1 << cpu_vpe_id(&current_cpu_data));
191
192         return;
193 err_out:
194         /* Clean up allocations */
195         if (mips_cps_core_bootcfg) {
196                 for (c = 0; c < ncores; c++)
197                         kfree(mips_cps_core_bootcfg[c].vpe_config);
198                 kfree(mips_cps_core_bootcfg);
199                 mips_cps_core_bootcfg = NULL;
200         }
201
202         /* Effectively disable SMP by declaring CPUs not present */
203         for_each_possible_cpu(c) {
204                 if (c == 0)
205                         continue;
206                 set_cpu_present(c, false);
207         }
208 }
209
210 static void boot_core(unsigned int core, unsigned int vpe_id)
211 {
212         u32 access, stat, seq_state;
213         unsigned timeout;
214
215         /* Select the appropriate core */
216         mips_cm_lock_other(core, 0);
217
218         /* Set its reset vector */
219         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
220
221         /* Ensure its coherency is disabled */
222         write_gcr_co_coherence(0);
223
224         /* Start it with the legacy memory map and exception base */
225         write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
226
227         /* Ensure the core can access the GCRs */
228         access = read_gcr_access();
229         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
230         write_gcr_access(access);
231
232         if (mips_cpc_present()) {
233                 /* Reset the core */
234                 mips_cpc_lock_other(core);
235
236                 if (mips_cm_revision() >= CM_REV_CM3) {
237                         /* Run only the requested VP following the reset */
238                         write_cpc_co_vp_stop(0xf);
239                         write_cpc_co_vp_run(1 << vpe_id);
240
241                         /*
242                          * Ensure that the VP_RUN register is written before the
243                          * core leaves reset.
244                          */
245                         wmb();
246                 }
247
248                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
249
250                 timeout = 100;
251                 while (true) {
252                         stat = read_cpc_co_stat_conf();
253                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
254
255                         /* U6 == coherent execution, ie. the core is up */
256                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
257                                 break;
258
259                         /* Delay a little while before we start warning */
260                         if (timeout) {
261                                 timeout--;
262                                 mdelay(10);
263                                 continue;
264                         }
265
266                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
267                                 core, stat);
268                         mdelay(1000);
269                 }
270
271                 mips_cpc_unlock_other();
272         } else {
273                 /* Take the core out of reset */
274                 write_gcr_co_reset_release(0);
275         }
276
277         mips_cm_unlock_other();
278
279         /* The core is now powered up */
280         bitmap_set(core_power, core, 1);
281 }
282
283 static void remote_vpe_boot(void *dummy)
284 {
285         unsigned core = current_cpu_data.core;
286         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
287
288         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
289 }
290
291 static void cps_boot_secondary(int cpu, struct task_struct *idle)
292 {
293         unsigned core = cpu_data[cpu].core;
294         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
295         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
296         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
297         unsigned long core_entry;
298         unsigned int remote;
299         int err;
300
301         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
302         vpe_cfg->sp = __KSTK_TOS(idle);
303         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
304
305         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
306
307         preempt_disable();
308
309         if (!test_bit(core, core_power)) {
310                 /* Boot a VPE on a powered down core */
311                 boot_core(core, vpe_id);
312                 goto out;
313         }
314
315         if (cpu_has_vp) {
316                 mips_cm_lock_other(core, vpe_id);
317                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
318                 write_gcr_co_reset_base(core_entry);
319                 mips_cm_unlock_other();
320         }
321
322         if (core != current_cpu_data.core) {
323                 /* Boot a VPE on another powered up core */
324                 for (remote = 0; remote < NR_CPUS; remote++) {
325                         if (cpu_data[remote].core != core)
326                                 continue;
327                         if (cpu_online(remote))
328                                 break;
329                 }
330                 if (remote >= NR_CPUS) {
331                         pr_crit("No online CPU in core %u to start CPU%d\n",
332                                 core, cpu);
333                         goto out;
334                 }
335
336                 err = smp_call_function_single(remote, remote_vpe_boot,
337                                                NULL, 1);
338                 if (err)
339                         panic("Failed to call remote CPU\n");
340                 goto out;
341         }
342
343         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
344
345         /* Boot a VPE on this core */
346         mips_cps_boot_vpes(core_cfg, vpe_id);
347 out:
348         preempt_enable();
349 }
350
351 static void cps_init_secondary(void)
352 {
353         /* Disable MT - we only want to run 1 TC per VPE */
354         if (cpu_has_mipsmt)
355                 dmt();
356
357         if (mips_cm_revision() >= CM_REV_CM3) {
358                 unsigned ident = gic_read_local_vp_id();
359
360                 /*
361                  * Ensure that our calculation of the VP ID matches up with
362                  * what the GIC reports, otherwise we'll have configured
363                  * interrupts incorrectly.
364                  */
365                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
366         }
367
368         if (cpu_has_veic)
369                 clear_c0_status(ST0_IM);
370         else
371                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
372                                          STATUSF_IP4 | STATUSF_IP5 |
373                                          STATUSF_IP6 | STATUSF_IP7);
374 }
375
376 static void cps_smp_finish(void)
377 {
378         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
379
380 #ifdef CONFIG_MIPS_MT_FPAFF
381         /* If we have an FPU, enroll ourselves in the FPU-full mask */
382         if (cpu_has_fpu)
383                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
384 #endif /* CONFIG_MIPS_MT_FPAFF */
385
386         local_irq_enable();
387 }
388
389 #ifdef CONFIG_HOTPLUG_CPU
390
391 static int cps_cpu_disable(void)
392 {
393         unsigned cpu = smp_processor_id();
394         struct core_boot_config *core_cfg;
395
396         if (!cpu)
397                 return -EBUSY;
398
399         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
400                 return -EINVAL;
401
402         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
403         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
404         smp_mb__after_atomic();
405         set_cpu_online(cpu, false);
406         calculate_cpu_foreign_map();
407
408         return 0;
409 }
410
411 static DECLARE_COMPLETION(cpu_death_chosen);
412 static unsigned cpu_death_sibling;
413 static enum {
414         CPU_DEATH_HALT,
415         CPU_DEATH_POWER,
416 } cpu_death;
417
418 void play_dead(void)
419 {
420         unsigned int cpu, core, vpe_id;
421
422         local_irq_disable();
423         idle_task_exit();
424         cpu = smp_processor_id();
425         cpu_death = CPU_DEATH_POWER;
426
427         pr_debug("CPU%d going offline\n", cpu);
428
429         if (cpu_has_mipsmt || cpu_has_vp) {
430                 core = cpu_data[cpu].core;
431
432                 /* Look for another online VPE within the core */
433                 for_each_online_cpu(cpu_death_sibling) {
434                         if (cpu_data[cpu_death_sibling].core != core)
435                                 continue;
436
437                         /*
438                          * There is an online VPE within the core. Just halt
439                          * this TC and leave the core alone.
440                          */
441                         cpu_death = CPU_DEATH_HALT;
442                         break;
443                 }
444         }
445
446         /* This CPU has chosen its way out */
447         complete(&cpu_death_chosen);
448
449         if (cpu_death == CPU_DEATH_HALT) {
450                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
451
452                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
453                 if (cpu_has_mipsmt) {
454                         /* Halt this TC */
455                         write_c0_tchalt(TCHALT_H);
456                         instruction_hazard();
457                 } else if (cpu_has_vp) {
458                         write_cpc_cl_vp_stop(1 << vpe_id);
459
460                         /* Ensure that the VP_STOP register is written */
461                         wmb();
462                 }
463         } else {
464                 pr_debug("Gating power to core %d\n", core);
465                 /* Power down the core */
466                 cps_pm_enter_state(CPS_PM_POWER_GATED);
467         }
468
469         /* This should never be reached */
470         panic("Failed to offline CPU %u", cpu);
471 }
472
473 static void wait_for_sibling_halt(void *ptr_cpu)
474 {
475         unsigned cpu = (unsigned long)ptr_cpu;
476         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
477         unsigned halted;
478         unsigned long flags;
479
480         do {
481                 local_irq_save(flags);
482                 settc(vpe_id);
483                 halted = read_tc_c0_tchalt();
484                 local_irq_restore(flags);
485         } while (!(halted & TCHALT_H));
486 }
487
488 static void cps_cpu_die(unsigned int cpu)
489 {
490         unsigned core = cpu_data[cpu].core;
491         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
492         unsigned stat;
493         int err;
494
495         /* Wait for the cpu to choose its way out */
496         if (!wait_for_completion_timeout(&cpu_death_chosen,
497                                          msecs_to_jiffies(5000))) {
498                 pr_err("CPU%u: didn't offline\n", cpu);
499                 return;
500         }
501
502         /*
503          * Now wait for the CPU to actually offline. Without doing this that
504          * offlining may race with one or more of:
505          *
506          *   - Onlining the CPU again.
507          *   - Powering down the core if another VPE within it is offlined.
508          *   - A sibling VPE entering a non-coherent state.
509          *
510          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
511          * with which we could race, so do nothing.
512          */
513         if (cpu_death == CPU_DEATH_POWER) {
514                 /*
515                  * Wait for the core to enter a powered down or clock gated
516                  * state, the latter happening when a JTAG probe is connected
517                  * in which case the CPC will refuse to power down the core.
518                  */
519                 do {
520                         mips_cm_lock_other(core, 0);
521                         mips_cpc_lock_other(core);
522                         stat = read_cpc_co_stat_conf();
523                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
524                         mips_cpc_unlock_other();
525                         mips_cm_unlock_other();
526                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
527                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
528                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
529
530                 /* Indicate the core is powered off */
531                 bitmap_clear(core_power, core, 1);
532         } else if (cpu_has_mipsmt) {
533                 /*
534                  * Have a CPU with access to the offlined CPUs registers wait
535                  * for its TC to halt.
536                  */
537                 err = smp_call_function_single(cpu_death_sibling,
538                                                wait_for_sibling_halt,
539                                                (void *)(unsigned long)cpu, 1);
540                 if (err)
541                         panic("Failed to call remote sibling CPU\n");
542         } else if (cpu_has_vp) {
543                 do {
544                         mips_cm_lock_other(core, vpe_id);
545                         stat = read_cpc_co_vp_running();
546                         mips_cm_unlock_other();
547                 } while (stat & (1 << vpe_id));
548         }
549 }
550
551 #endif /* CONFIG_HOTPLUG_CPU */
552
553 static struct plat_smp_ops cps_smp_ops = {
554         .smp_setup              = cps_smp_setup,
555         .prepare_cpus           = cps_prepare_cpus,
556         .boot_secondary         = cps_boot_secondary,
557         .init_secondary         = cps_init_secondary,
558         .smp_finish             = cps_smp_finish,
559         .send_ipi_single        = mips_smp_send_ipi_single,
560         .send_ipi_mask          = mips_smp_send_ipi_mask,
561 #ifdef CONFIG_HOTPLUG_CPU
562         .cpu_disable            = cps_cpu_disable,
563         .cpu_die                = cps_cpu_die,
564 #endif
565 };
566
567 bool mips_cps_smp_in_use(void)
568 {
569         extern struct plat_smp_ops *mp_ops;
570         return mp_ops == &cps_smp_ops;
571 }
572
573 int register_cps_smp_ops(void)
574 {
575         if (!mips_cm_present()) {
576                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
577                 return -ENODEV;
578         }
579
580         /* check we have a GIC - we need one for IPIs */
581         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
582                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
583                 return -ENODEV;
584         }
585
586         register_smp_ops(&cps_smp_ops);
587         return 0;
588 }