2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
47 #include <asm/cpu-type.h>
50 #include <asm/fpu_emulator.h>
52 #include <asm/mips-cm.h>
53 #include <asm/mips-r2-to-r6-emul.h>
54 #include <asm/mipsregs.h>
55 #include <asm/mipsmtregs.h>
56 #include <asm/module.h>
58 #include <asm/pgtable.h>
59 #include <asm/ptrace.h>
60 #include <asm/sections.h>
61 #include <asm/siginfo.h>
62 #include <asm/tlbdebug.h>
63 #include <asm/traps.h>
64 #include <linux/uaccess.h>
65 #include <asm/watch.h>
66 #include <asm/mmu_context.h>
67 #include <asm/types.h>
68 #include <asm/stacktrace.h>
71 extern void check_wait(void);
72 extern asmlinkage void rollback_handle_int(void);
73 extern asmlinkage void handle_int(void);
74 extern u32 handle_tlbl[];
75 extern u32 handle_tlbs[];
76 extern u32 handle_tlbm[];
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_vivt(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
109 static void show_raw_backtrace(unsigned long reg29)
111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
125 if (__kernel_text_address(addr))
131 #ifdef CONFIG_KALLSYMS
133 static int __init set_raw_show_trace(char *str)
138 __setup("raw_show_trace", set_raw_show_trace);
141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
145 unsigned long pc = regs->cp0_epc;
150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 show_raw_backtrace(sp);
154 printk("Call Trace:\n");
157 pc = unwind_stack(task, &sp, pc, &ra);
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
166 static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
169 const int field = 2 * sizeof(unsigned long);
172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 if (i && ((i % (64 / field)) == 0)) {
186 if (__get_user(stackdata, sp++)) {
187 pr_cont(" (Bad stack address)");
191 pr_cont(" %0*lx", field, stackdata);
195 show_backtrace(task, regs);
198 void show_stack(struct task_struct *task, unsigned long *sp)
201 mm_segment_t old_fs = get_fs();
203 regs.regs[29] = (unsigned long)sp;
207 if (task && task != current) {
208 regs.regs[29] = task->thread.reg29;
210 regs.cp0_epc = task->thread.reg31;
211 #ifdef CONFIG_KGDB_KDB
212 } else if (atomic_read(&kgdb_active) != -1 &&
214 memcpy(®s, kdb_current_regs, sizeof(regs));
215 #endif /* CONFIG_KGDB_KDB */
217 prepare_frametrace(®s);
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
225 show_stacktrace(task, ®s);
229 static void show_code(unsigned int __user *pc)
232 unsigned short __user *pc16 = NULL;
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 for(i = -3 ; i < 6 ; i++) {
240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 pr_cont(" (Bad address in epc)\n");
244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
249 static void __show_regs(const struct pt_regs *regs)
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
253 unsigned int exccode;
256 show_regs_print_info(KERN_DEFAULT);
259 * Saved main processor registers
261 for (i = 0; i < 32; ) {
265 pr_cont(" %0*lx", field, 0UL);
266 else if (i == 26 || i == 27)
267 pr_cont(" %*s", field, "");
269 pr_cont(" %0*lx", field, regs->regs[i]);
276 #ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
279 printk("Hi : %0*lx\n", field, regs->hi);
280 printk("Lo : %0*lx\n", field, regs->lo);
283 * Saved cp0 registers
285 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
286 (void *) regs->cp0_epc);
287 printk("ra : %0*lx %pS\n", field, regs->regs[31],
288 (void *) regs->regs[31]);
290 printk("Status: %08x ", (uint32_t) regs->cp0_status);
293 if (regs->cp0_status & ST0_KUO)
295 if (regs->cp0_status & ST0_IEO)
297 if (regs->cp0_status & ST0_KUP)
299 if (regs->cp0_status & ST0_IEP)
301 if (regs->cp0_status & ST0_KUC)
303 if (regs->cp0_status & ST0_IEC)
305 } else if (cpu_has_4kex) {
306 if (regs->cp0_status & ST0_KX)
308 if (regs->cp0_status & ST0_SX)
310 if (regs->cp0_status & ST0_UX)
312 switch (regs->cp0_status & ST0_KSU) {
317 pr_cont("SUPERVISOR ");
323 pr_cont("BAD_MODE ");
326 if (regs->cp0_status & ST0_ERL)
328 if (regs->cp0_status & ST0_EXL)
330 if (regs->cp0_status & ST0_IE)
335 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
336 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
338 if (1 <= exccode && exccode <= 5)
339 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
341 printk("PrId : %08x (%s)\n", read_c0_prid(),
346 * FIXME: really the generic show_regs should take a const pointer argument.
348 void show_regs(struct pt_regs *regs)
350 __show_regs((struct pt_regs *)regs);
353 void show_registers(struct pt_regs *regs)
355 const int field = 2 * sizeof(unsigned long);
356 mm_segment_t old_fs = get_fs();
360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 current->comm, current->pid, current_thread_info(), current,
362 field, current_thread_info()->tp_value);
363 if (cpu_has_userlocal) {
366 tls = read_c0_userlocal();
367 if (tls != current_thread_info()->tp_value)
368 printk("*HwTLS: %0*lx\n", field, tls);
371 if (!user_mode(regs))
372 /* Necessary for getting the correct stack content */
374 show_stacktrace(current, regs);
375 show_code((unsigned int __user *) regs->cp0_epc);
380 static DEFINE_RAW_SPINLOCK(die_lock);
382 void __noreturn die(const char *str, struct pt_regs *regs)
384 static int die_counter;
389 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390 SIGSEGV) == NOTIFY_STOP)
394 raw_spin_lock_irq(&die_lock);
397 printk("%s[#%d]:\n", str, ++die_counter);
398 show_registers(regs);
399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 raw_spin_unlock_irq(&die_lock);
405 panic("Fatal exception in interrupt");
408 panic("Fatal exception");
410 if (regs && kexec_should_crash(current))
416 extern struct exception_table_entry __start___dbe_table[];
417 extern struct exception_table_entry __stop___dbe_table[];
420 " .section __dbe_table, \"a\"\n"
423 /* Given an address, look for it in the exception tables. */
424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
426 const struct exception_table_entry *e;
428 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
430 e = search_module_dbetables(addr);
434 asmlinkage void do_be(struct pt_regs *regs)
436 const int field = 2 * sizeof(unsigned long);
437 const struct exception_table_entry *fixup = NULL;
438 int data = regs->cp0_cause & 4;
439 int action = MIPS_BE_FATAL;
440 enum ctx_state prev_state;
442 prev_state = exception_enter();
443 /* XXX For now. Fixme, this searches the wrong table ... */
444 if (data && !user_mode(regs))
445 fixup = search_dbe_tables(exception_epc(regs));
448 action = MIPS_BE_FIXUP;
450 if (board_be_handler)
451 action = board_be_handler(regs, fixup != NULL);
453 mips_cm_error_report();
456 case MIPS_BE_DISCARD:
460 regs->cp0_epc = fixup->nextinsn;
469 * Assume it would be too dangerous to continue ...
471 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
472 data ? "Data" : "Instruction",
473 field, regs->cp0_epc, field, regs->regs[31]);
474 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
475 SIGBUS) == NOTIFY_STOP)
478 die_if_kernel("Oops", regs);
479 force_sig(SIGBUS, current);
482 exception_exit(prev_state);
486 * ll/sc, rdhwr, sync emulation
489 #define OPCODE 0xfc000000
490 #define BASE 0x03e00000
491 #define RT 0x001f0000
492 #define OFFSET 0x0000ffff
493 #define LL 0xc0000000
494 #define SC 0xe0000000
495 #define SPEC0 0x00000000
496 #define SPEC3 0x7c000000
497 #define RD 0x0000f800
498 #define FUNC 0x0000003f
499 #define SYNC 0x0000000f
500 #define RDHWR 0x0000003b
502 /* microMIPS definitions */
503 #define MM_POOL32A_FUNC 0xfc00ffff
504 #define MM_RDHWR 0x00006b3c
505 #define MM_RS 0x001f0000
506 #define MM_RT 0x03e00000
509 * The ll_bit is cleared by r*_switch.S
513 struct task_struct *ll_task;
515 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
517 unsigned long value, __user *vaddr;
521 * analyse the ll instruction that just caused a ri exception
522 * and put the referenced address to addr.
525 /* sign extend offset */
526 offset = opcode & OFFSET;
530 vaddr = (unsigned long __user *)
531 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
533 if ((unsigned long)vaddr & 3)
535 if (get_user(value, vaddr))
540 if (ll_task == NULL || ll_task == current) {
549 regs->regs[(opcode & RT) >> 16] = value;
554 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
556 unsigned long __user *vaddr;
561 * analyse the sc instruction that just caused a ri exception
562 * and put the referenced address to addr.
565 /* sign extend offset */
566 offset = opcode & OFFSET;
570 vaddr = (unsigned long __user *)
571 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
572 reg = (opcode & RT) >> 16;
574 if ((unsigned long)vaddr & 3)
579 if (ll_bit == 0 || ll_task != current) {
587 if (put_user(regs->regs[reg], vaddr))
596 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
597 * opcodes are supposed to result in coprocessor unusable exceptions if
598 * executed on ll/sc-less processors. That's the theory. In practice a
599 * few processors such as NEC's VR4100 throw reserved instruction exceptions
600 * instead, so we're doing the emulation thing in both exception handlers.
602 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
604 if ((opcode & OPCODE) == LL) {
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 return simulate_ll(regs, opcode);
609 if ((opcode & OPCODE) == SC) {
610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 return simulate_sc(regs, opcode);
615 return -1; /* Must be something else ... */
619 * Simulate trapping 'rdhwr' instructions to provide user accessible
620 * registers not implemented in hardware.
622 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
624 struct thread_info *ti = task_thread_info(current);
626 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
629 case MIPS_HWR_CPUNUM: /* CPU number */
630 regs->regs[rt] = smp_processor_id();
632 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
633 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
634 current_cpu_data.icache.linesz);
636 case MIPS_HWR_CC: /* Read count register */
637 regs->regs[rt] = read_c0_count();
639 case MIPS_HWR_CCRES: /* Count register resolution */
640 switch (current_cpu_type()) {
649 case MIPS_HWR_ULR: /* Read UserLocal register */
650 regs->regs[rt] = ti->tp_value;
657 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
659 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
660 int rd = (opcode & RD) >> 11;
661 int rt = (opcode & RT) >> 16;
663 simulate_rdhwr(regs, rd, rt);
671 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
673 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
674 int rd = (opcode & MM_RS) >> 16;
675 int rt = (opcode & MM_RT) >> 21;
676 simulate_rdhwr(regs, rd, rt);
684 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
686 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
687 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 return -1; /* Must be something else ... */
695 asmlinkage void do_ov(struct pt_regs *regs)
697 enum ctx_state prev_state;
700 .si_code = FPE_INTOVF,
701 .si_addr = (void __user *)regs->cp0_epc,
704 prev_state = exception_enter();
705 die_if_kernel("Integer overflow", regs);
707 force_sig_info(SIGFPE, &info, current);
708 exception_exit(prev_state);
712 * Send SIGFPE according to FCSR Cause bits, which must have already
713 * been masked against Enable bits. This is impotant as Inexact can
714 * happen together with Overflow or Underflow, and `ptrace' can set
717 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
718 struct task_struct *tsk)
720 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
722 if (fcr31 & FPU_CSR_INV_X)
723 si.si_code = FPE_FLTINV;
724 else if (fcr31 & FPU_CSR_DIV_X)
725 si.si_code = FPE_FLTDIV;
726 else if (fcr31 & FPU_CSR_OVF_X)
727 si.si_code = FPE_FLTOVF;
728 else if (fcr31 & FPU_CSR_UDF_X)
729 si.si_code = FPE_FLTUND;
730 else if (fcr31 & FPU_CSR_INE_X)
731 si.si_code = FPE_FLTRES;
733 si.si_code = __SI_FAULT;
734 force_sig_info(SIGFPE, &si, tsk);
737 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
739 struct siginfo si = { 0 };
740 struct vm_area_struct *vma;
747 force_fcr31_sig(fcr31, fault_addr, current);
751 si.si_addr = fault_addr;
753 si.si_code = BUS_ADRERR;
754 force_sig_info(sig, &si, current);
758 si.si_addr = fault_addr;
760 down_read(¤t->mm->mmap_sem);
761 vma = find_vma(current->mm, (unsigned long)fault_addr);
762 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
763 si.si_code = SEGV_ACCERR;
765 si.si_code = SEGV_MAPERR;
766 up_read(¤t->mm->mmap_sem);
767 force_sig_info(sig, &si, current);
771 force_sig(sig, current);
776 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
777 unsigned long old_epc, unsigned long old_ra)
779 union mips_instruction inst = { .word = opcode };
780 void __user *fault_addr;
784 /* If it's obviously not an FP instruction, skip it */
785 switch (inst.i_format.opcode) {
799 * do_ri skipped over the instruction via compute_return_epc, undo
800 * that for the FPU emulator.
802 regs->cp0_epc = old_epc;
803 regs->regs[31] = old_ra;
805 /* Save the FP context to struct thread_struct */
808 /* Run the emulator */
809 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
813 * We can't allow the emulated instruction to leave any
814 * enabled Cause bits set in $fcr31.
816 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
817 current->thread.fpu.fcr31 &= ~fcr31;
819 /* Restore the hardware register state */
822 /* Send a signal if required. */
823 process_fpemu_return(sig, fault_addr, fcr31);
829 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
831 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
833 enum ctx_state prev_state;
834 void __user *fault_addr;
837 prev_state = exception_enter();
838 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
839 SIGFPE) == NOTIFY_STOP)
842 /* Clear FCSR.Cause before enabling interrupts */
843 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
846 die_if_kernel("FP exception in kernel code", regs);
848 if (fcr31 & FPU_CSR_UNI_X) {
850 * Unimplemented operation exception. If we've got the full
851 * software emulator on-board, let's use it...
853 * Force FPU to dump state into task/thread context. We're
854 * moving a lot of data here for what is probably a single
855 * instruction, but the alternative is to pre-decode the FP
856 * register operands before invoking the emulator, which seems
857 * a bit extreme for what should be an infrequent event.
859 /* Ensure 'resume' not overwrite saved fp context again. */
862 /* Run the emulator */
863 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
867 * We can't allow the emulated instruction to leave any
868 * enabled Cause bits set in $fcr31.
870 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
871 current->thread.fpu.fcr31 &= ~fcr31;
873 /* Restore the hardware register state */
874 own_fpu(1); /* Using the FPU again. */
877 fault_addr = (void __user *) regs->cp0_epc;
880 /* Send a signal if required. */
881 process_fpemu_return(sig, fault_addr, fcr31);
884 exception_exit(prev_state);
887 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
890 siginfo_t info = { 0 };
893 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
894 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
895 SIGTRAP) == NOTIFY_STOP)
897 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
899 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
900 SIGTRAP) == NOTIFY_STOP)
904 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
905 * insns, even for trap and break codes that indicate arithmetic
906 * failures. Weird ...
907 * But should we continue the brokenness??? --macro
912 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
913 die_if_kernel(b, regs);
914 if (code == BRK_DIVZERO)
915 info.si_code = FPE_INTDIV;
917 info.si_code = FPE_INTOVF;
918 info.si_signo = SIGFPE;
919 info.si_addr = (void __user *) regs->cp0_epc;
920 force_sig_info(SIGFPE, &info, current);
923 die_if_kernel("Kernel bug detected", regs);
924 force_sig(SIGTRAP, current);
928 * This breakpoint code is used by the FPU emulator to retake
929 * control of the CPU after executing the instruction from the
930 * delay slot of an emulated branch.
932 * Terminate if exception was recognized as a delay slot return
933 * otherwise handle as normal.
935 if (do_dsemulret(regs))
938 die_if_kernel("Math emu break/trap", regs);
939 force_sig(SIGTRAP, current);
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
945 info.si_signo = SIGTRAP;
946 info.si_code = si_code;
947 force_sig_info(SIGTRAP, &info, current);
949 force_sig(SIGTRAP, current);
954 asmlinkage void do_bp(struct pt_regs *regs)
956 unsigned long epc = msk_isa16_mode(exception_epc(regs));
957 unsigned int opcode, bcode;
958 enum ctx_state prev_state;
962 if (!user_mode(regs))
965 prev_state = exception_enter();
966 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
967 if (get_isa16_mode(regs->cp0_epc)) {
970 if (__get_user(instr[0], (u16 __user *)epc))
973 if (!cpu_has_mmips) {
975 bcode = (instr[0] >> 5) & 0x3f;
976 } else if (mm_insn_16bit(instr[0])) {
977 /* 16-bit microMIPS BREAK */
978 bcode = instr[0] & 0xf;
980 /* 32-bit microMIPS BREAK */
981 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
983 opcode = (instr[0] << 16) | instr[1];
984 bcode = (opcode >> 6) & ((1 << 20) - 1);
987 if (__get_user(opcode, (unsigned int __user *)epc))
989 bcode = (opcode >> 6) & ((1 << 20) - 1);
993 * There is the ancient bug in the MIPS assemblers that the break
994 * code starts left to bit 16 instead to bit 6 in the opcode.
995 * Gas is bug-compatible, but not always, grrr...
996 * We handle both cases with a simple heuristics. --macro
998 if (bcode >= (1 << 10))
999 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1002 * notify the kprobe handlers, if instruction is likely to
1007 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 case BRK_UPROBE_XOL:
1013 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1014 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1019 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1020 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1024 case BRK_KPROBE_SSTEPBP:
1025 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1026 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1034 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1038 exception_exit(prev_state);
1042 force_sig(SIGSEGV, current);
1046 asmlinkage void do_tr(struct pt_regs *regs)
1048 u32 opcode, tcode = 0;
1049 enum ctx_state prev_state;
1052 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1055 if (!user_mode(regs))
1058 prev_state = exception_enter();
1059 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1060 if (get_isa16_mode(regs->cp0_epc)) {
1061 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1062 __get_user(instr[1], (u16 __user *)(epc + 2)))
1064 opcode = (instr[0] << 16) | instr[1];
1065 /* Immediate versions don't provide a code. */
1066 if (!(opcode & OPCODE))
1067 tcode = (opcode >> 12) & ((1 << 4) - 1);
1069 if (__get_user(opcode, (u32 __user *)epc))
1071 /* Immediate versions don't provide a code. */
1072 if (!(opcode & OPCODE))
1073 tcode = (opcode >> 6) & ((1 << 10) - 1);
1076 do_trap_or_bp(regs, tcode, 0, "Trap");
1080 exception_exit(prev_state);
1084 force_sig(SIGSEGV, current);
1088 asmlinkage void do_ri(struct pt_regs *regs)
1090 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1091 unsigned long old_epc = regs->cp0_epc;
1092 unsigned long old31 = regs->regs[31];
1093 enum ctx_state prev_state;
1094 unsigned int opcode = 0;
1098 * Avoid any kernel code. Just emulate the R2 instruction
1099 * as quickly as possible.
1101 if (mipsr2_emulation && cpu_has_mips_r6 &&
1102 likely(user_mode(regs)) &&
1103 likely(get_user(opcode, epc) >= 0)) {
1104 unsigned long fcr31 = 0;
1106 status = mipsr2_decoder(regs, opcode, &fcr31);
1110 task_thread_info(current)->r2_emul_return = 1;
1115 process_fpemu_return(status,
1116 ¤t->thread.cp0_baduaddr,
1118 task_thread_info(current)->r2_emul_return = 1;
1125 prev_state = exception_enter();
1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1129 SIGILL) == NOTIFY_STOP)
1132 die_if_kernel("Reserved instruction in kernel code", regs);
1134 if (unlikely(compute_return_epc(regs) < 0))
1137 if (!get_isa16_mode(regs->cp0_epc)) {
1138 if (unlikely(get_user(opcode, epc) < 0))
1141 if (!cpu_has_llsc && status < 0)
1142 status = simulate_llsc(regs, opcode);
1145 status = simulate_rdhwr_normal(regs, opcode);
1148 status = simulate_sync(regs, opcode);
1151 status = simulate_fp(regs, opcode, old_epc, old31);
1152 } else if (cpu_has_mmips) {
1153 unsigned short mmop[2] = { 0 };
1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1160 opcode = (opcode << 16) | mmop[1];
1163 status = simulate_rdhwr_mm(regs, opcode);
1169 if (unlikely(status > 0)) {
1170 regs->cp0_epc = old_epc; /* Undo skip-over. */
1171 regs->regs[31] = old31;
1172 force_sig(status, current);
1176 exception_exit(prev_state);
1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1181 * emulated more than some threshold number of instructions, force migration to
1182 * a "CPU" that has FP support.
1184 static void mt_ase_fp_affinity(void)
1186 #ifdef CONFIG_MIPS_MT_FPAFF
1187 if (mt_fpemul_threshold > 0 &&
1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1190 * If there's no FPU present, or if the application has already
1191 * restricted the allowed set to exclude any CPUs with FPUs,
1192 * we'll skip the procedure.
1194 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
1197 current->thread.user_cpus_allowed
1198 = current->cpus_allowed;
1199 cpumask_and(&tmask, ¤t->cpus_allowed,
1201 set_cpus_allowed_ptr(current, &tmask);
1202 set_thread_flag(TIF_FPUBOUND);
1205 #endif /* CONFIG_MIPS_MT_FPAFF */
1209 * No lock; only written during early bootup by CPU 0.
1211 static RAW_NOTIFIER_HEAD(cu2_chain);
1213 int __ref register_cu2_notifier(struct notifier_block *nb)
1215 return raw_notifier_chain_register(&cu2_chain, nb);
1218 int cu2_notifier_call_chain(unsigned long val, void *v)
1220 return raw_notifier_call_chain(&cu2_chain, val, v);
1223 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1226 struct pt_regs *regs = data;
1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1229 "instruction", regs);
1230 force_sig(SIGILL, current);
1235 static int wait_on_fp_mode_switch(atomic_t *p)
1238 * The FP mode for this task is currently being switched. That may
1239 * involve modifications to the format of this tasks FP context which
1240 * make it unsafe to proceed with execution for the moment. Instead,
1241 * schedule some other task.
1247 static int enable_restore_fp_context(int msa)
1249 int err, was_fpu_owner, prior_msa;
1252 * If an FP mode switch is currently underway, wait for it to
1253 * complete before proceeding.
1255 wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
1256 wait_on_fp_mode_switch, TASK_KILLABLE);
1259 /* First time FP context user. */
1265 set_thread_flag(TIF_USEDMSA);
1266 set_thread_flag(TIF_MSA_CTX_LIVE);
1275 * This task has formerly used the FP context.
1277 * If this thread has no live MSA vector context then we can simply
1278 * restore the scalar FP context. If it has live MSA vector context
1279 * (that is, it has or may have used MSA since last performing a
1280 * function call) then we'll need to restore the vector context. This
1281 * applies even if we're currently only executing a scalar FP
1282 * instruction. This is because if we were to later execute an MSA
1283 * instruction then we'd either have to:
1285 * - Restore the vector context & clobber any registers modified by
1286 * scalar FP instructions between now & then.
1290 * - Not restore the vector context & lose the most significant bits
1291 * of all vector registers.
1293 * Neither of those options is acceptable. We cannot restore the least
1294 * significant bits of the registers now & only restore the most
1295 * significant bits later because the most significant bits of any
1296 * vector registers whose aliased FP register is modified now will have
1297 * been zeroed. We'd have no way to know that when restoring the vector
1298 * context & thus may load an outdated value for the most significant
1299 * bits of a vector register.
1301 if (!msa && !thread_msa_context_live())
1305 * This task is using or has previously used MSA. Thus we require
1306 * that Status.FR == 1.
1309 was_fpu_owner = is_fpu_owner();
1310 err = own_fpu_inatomic(0);
1315 write_msa_csr(current->thread.fpu.msacsr);
1316 set_thread_flag(TIF_USEDMSA);
1319 * If this is the first time that the task is using MSA and it has
1320 * previously used scalar FP in this time slice then we already nave
1321 * FP context which we shouldn't clobber. We do however need to clear
1322 * the upper 64b of each vector register so that this task has no
1323 * opportunity to see data left behind by another.
1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1326 if (!prior_msa && was_fpu_owner) {
1334 * Restore the least significant 64b of each vector register
1335 * from the existing scalar FP context.
1337 _restore_fp(current);
1340 * The task has not formerly used MSA, so clear the upper 64b
1341 * of each vector register such that it cannot see data left
1342 * behind by another task.
1346 /* We need to restore the vector context. */
1347 restore_msa(current);
1349 /* Restore the scalar FP control & status register */
1351 write_32bit_cp1_register(CP1_STATUS,
1352 current->thread.fpu.fcr31);
1361 asmlinkage void do_cpu(struct pt_regs *regs)
1363 enum ctx_state prev_state;
1364 unsigned int __user *epc;
1365 unsigned long old_epc, old31;
1366 void __user *fault_addr;
1367 unsigned int opcode;
1368 unsigned long fcr31;
1373 prev_state = exception_enter();
1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1377 die_if_kernel("do_cpu invoked from kernel context!", regs);
1381 epc = (unsigned int __user *)exception_epc(regs);
1382 old_epc = regs->cp0_epc;
1383 old31 = regs->regs[31];
1387 if (unlikely(compute_return_epc(regs) < 0))
1390 if (!get_isa16_mode(regs->cp0_epc)) {
1391 if (unlikely(get_user(opcode, epc) < 0))
1394 if (!cpu_has_llsc && status < 0)
1395 status = simulate_llsc(regs, opcode);
1401 if (unlikely(status > 0)) {
1402 regs->cp0_epc = old_epc; /* Undo skip-over. */
1403 regs->regs[31] = old31;
1404 force_sig(status, current);
1411 * The COP3 opcode space and consequently the CP0.Status.CU3
1412 * bit and the CP0.Cause.CE=3 encoding have been removed as
1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1414 * up the space has been reused for COP1X instructions, that
1415 * are enabled by the CP0.Status.CU1 bit and consequently
1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1417 * exceptions. Some FPU-less processors that implement one
1418 * of these ISAs however use this code erroneously for COP1X
1419 * instructions. Therefore we redirect this trap to the FP
1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1423 force_sig(SIGILL, current);
1429 err = enable_restore_fp_context(0);
1431 if (raw_cpu_has_fpu && !err)
1434 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1438 * We can't allow the emulated instruction to leave
1439 * any enabled Cause bits set in $fcr31.
1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1442 current->thread.fpu.fcr31 &= ~fcr31;
1444 /* Send a signal if required. */
1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1446 mt_ase_fp_affinity();
1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1455 exception_exit(prev_state);
1458 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1460 enum ctx_state prev_state;
1462 prev_state = exception_enter();
1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1468 /* Clear MSACSR.Cause before enabling interrupts */
1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1473 force_sig(SIGFPE, current);
1475 exception_exit(prev_state);
1478 asmlinkage void do_msa(struct pt_regs *regs)
1480 enum ctx_state prev_state;
1483 prev_state = exception_enter();
1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1486 force_sig(SIGILL, current);
1490 die_if_kernel("do_msa invoked from kernel context!", regs);
1492 err = enable_restore_fp_context(1);
1494 force_sig(SIGILL, current);
1496 exception_exit(prev_state);
1499 asmlinkage void do_mdmx(struct pt_regs *regs)
1501 enum ctx_state prev_state;
1503 prev_state = exception_enter();
1504 force_sig(SIGILL, current);
1505 exception_exit(prev_state);
1509 * Called with interrupts disabled.
1511 asmlinkage void do_watch(struct pt_regs *regs)
1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1514 enum ctx_state prev_state;
1516 prev_state = exception_enter();
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1521 clear_c0_cause(CAUSEF_WP);
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 mips_read_watch_registers();
1531 force_sig_info(SIGTRAP, &info, current);
1533 mips_clear_watch_registers();
1536 exception_exit(prev_state);
1539 asmlinkage void do_mcheck(struct pt_regs *regs)
1541 int multi_match = regs->cp0_status & ST0_TS;
1542 enum ctx_state prev_state;
1543 mm_segment_t old_fs = get_fs();
1545 prev_state = exception_enter();
1554 if (!user_mode(regs))
1557 show_code((unsigned int __user *) regs->cp0_epc);
1562 * Some chips may have other causes of machine check (e.g. SB1
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
1567 (multi_match) ? "" : "not ");
1570 asmlinkage void do_mt(struct pt_regs *regs)
1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 >> VPECONTROL_EXCPT_SHIFT;
1578 printk(KERN_DEBUG "Thread Underflow\n");
1581 printk(KERN_DEBUG "Thread Overflow\n");
1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1587 printk(KERN_DEBUG "Gating Storage Exception\n");
1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1602 force_sig(SIGILL, current);
1606 asmlinkage void do_dsp(struct pt_regs *regs)
1609 panic("Unexpected DSP exception");
1611 force_sig(SIGILL, current);
1614 asmlinkage void do_reserved(struct pt_regs *regs)
1617 * Game over - no way to handle this if it ever occurs. Most probably
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs->cp0_cause & 0x7f) >> 2);
1626 static int __initdata l1parity = 1;
1627 static int __init nol1parity(char *s)
1632 __setup("nol1par", nol1parity);
1633 static int __initdata l2parity = 1;
1634 static int __init nol2parity(char *s)
1639 __setup("nol2par", nol2parity);
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1645 static inline void parity_protection_init(void)
1647 switch (current_cpu_type()) {
1653 case CPU_INTERAPTIV:
1656 case CPU_QEMU_GENERIC:
1660 #define ERRCTL_PE 0x80000000
1661 #define ERRCTL_L2P 0x00800000
1662 unsigned long errctl;
1663 unsigned int l1parity_present, l2parity_present;
1665 errctl = read_c0_ecc();
1666 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1668 /* probe L1 parity support */
1669 write_c0_ecc(errctl | ERRCTL_PE);
1670 back_to_back_c0_hazard();
1671 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1673 /* probe L2 parity support */
1674 write_c0_ecc(errctl|ERRCTL_L2P);
1675 back_to_back_c0_hazard();
1676 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1678 if (l1parity_present && l2parity_present) {
1680 errctl |= ERRCTL_PE;
1681 if (l1parity ^ l2parity)
1682 errctl |= ERRCTL_L2P;
1683 } else if (l1parity_present) {
1685 errctl |= ERRCTL_PE;
1686 } else if (l2parity_present) {
1688 errctl |= ERRCTL_L2P;
1690 /* No parity available */
1693 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1695 write_c0_ecc(errctl);
1696 back_to_back_c0_hazard();
1697 errctl = read_c0_ecc();
1698 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1700 if (l1parity_present)
1701 printk(KERN_INFO "Cache parity protection %sabled\n",
1702 (errctl & ERRCTL_PE) ? "en" : "dis");
1704 if (l2parity_present) {
1705 if (l1parity_present && l1parity)
1706 errctl ^= ERRCTL_L2P;
1707 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1708 (errctl & ERRCTL_L2P) ? "en" : "dis");
1716 write_c0_ecc(0x80000000);
1717 back_to_back_c0_hazard();
1718 /* Set the PE bit (bit 31) in the c0_errctl register. */
1719 printk(KERN_INFO "Cache parity protection %sabled\n",
1720 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1724 /* Clear the DE bit (bit 16) in the c0_status register. */
1725 printk(KERN_INFO "Enable cache parity protection for "
1726 "MIPS 20KC/25KF CPUs.\n");
1727 clear_c0_status(ST0_DE);
1734 asmlinkage void cache_parity_error(void)
1736 const int field = 2 * sizeof(unsigned long);
1737 unsigned int reg_val;
1739 /* For the moment, report the problem and hang. */
1740 printk("Cache error exception:\n");
1741 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1742 reg_val = read_c0_cacheerr();
1743 printk("c0_cacheerr == %08x\n", reg_val);
1745 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1746 reg_val & (1<<30) ? "secondary" : "primary",
1747 reg_val & (1<<31) ? "data" : "insn");
1748 if ((cpu_has_mips_r2_r6) &&
1749 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1750 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1751 reg_val & (1<<29) ? "ED " : "",
1752 reg_val & (1<<28) ? "ET " : "",
1753 reg_val & (1<<27) ? "ES " : "",
1754 reg_val & (1<<26) ? "EE " : "",
1755 reg_val & (1<<25) ? "EB " : "",
1756 reg_val & (1<<24) ? "EI " : "",
1757 reg_val & (1<<23) ? "E1 " : "",
1758 reg_val & (1<<22) ? "E0 " : "");
1760 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1761 reg_val & (1<<29) ? "ED " : "",
1762 reg_val & (1<<28) ? "ET " : "",
1763 reg_val & (1<<26) ? "EE " : "",
1764 reg_val & (1<<25) ? "EB " : "",
1765 reg_val & (1<<24) ? "EI " : "",
1766 reg_val & (1<<23) ? "E1 " : "",
1767 reg_val & (1<<22) ? "E0 " : "");
1769 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1771 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1772 if (reg_val & (1<<22))
1773 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1775 if (reg_val & (1<<23))
1776 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1779 panic("Can't handle the cache error!");
1782 asmlinkage void do_ftlb(void)
1784 const int field = 2 * sizeof(unsigned long);
1785 unsigned int reg_val;
1787 /* For the moment, report the problem and hang. */
1788 if ((cpu_has_mips_r2_r6) &&
1789 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1790 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1791 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1793 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1794 reg_val = read_c0_cacheerr();
1795 pr_err("c0_cacheerr == %08x\n", reg_val);
1797 if ((reg_val & 0xc0000000) == 0xc0000000) {
1798 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1800 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 reg_val & (1<<30) ? "secondary" : "primary",
1802 reg_val & (1<<31) ? "data" : "insn");
1805 pr_err("FTLB error exception\n");
1807 /* Just print the cacheerr bits for now */
1808 cache_parity_error();
1812 * SDBBP EJTAG debug exception handler.
1813 * We skip the instruction and return to the next instruction.
1815 void ejtag_exception_handler(struct pt_regs *regs)
1817 const int field = 2 * sizeof(unsigned long);
1818 unsigned long depc, old_epc, old_ra;
1821 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1822 depc = read_c0_depc();
1823 debug = read_c0_debug();
1824 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1825 if (debug & 0x80000000) {
1827 * In branch delay slot.
1828 * We cheat a little bit here and use EPC to calculate the
1829 * debug return address (DEPC). EPC is restored after the
1832 old_epc = regs->cp0_epc;
1833 old_ra = regs->regs[31];
1834 regs->cp0_epc = depc;
1835 compute_return_epc(regs);
1836 depc = regs->cp0_epc;
1837 regs->cp0_epc = old_epc;
1838 regs->regs[31] = old_ra;
1841 write_c0_depc(depc);
1844 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1845 write_c0_debug(debug | 0x100);
1850 * NMI exception handler.
1851 * No lock; only written during early bootup by CPU 0.
1853 static RAW_NOTIFIER_HEAD(nmi_chain);
1855 int register_nmi_notifier(struct notifier_block *nb)
1857 return raw_notifier_chain_register(&nmi_chain, nb);
1860 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1865 raw_notifier_call_chain(&nmi_chain, 0, regs);
1867 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1868 smp_processor_id(), regs->cp0_epc);
1869 regs->cp0_epc = read_c0_errorepc();
1874 #define VECTORSPACING 0x100 /* for EI/VI mode */
1876 unsigned long ebase;
1877 EXPORT_SYMBOL_GPL(ebase);
1878 unsigned long exception_handlers[32];
1879 unsigned long vi_handlers[64];
1881 void __init *set_except_vector(int n, void *addr)
1883 unsigned long handler = (unsigned long) addr;
1884 unsigned long old_handler;
1886 #ifdef CONFIG_CPU_MICROMIPS
1888 * Only the TLB handlers are cache aligned with an even
1889 * address. All other handlers are on an odd address and
1890 * require no modification. Otherwise, MIPS32 mode will
1891 * be entered when handling any TLB exceptions. That
1892 * would be bad...since we must stay in microMIPS mode.
1894 if (!(handler & 0x1))
1897 old_handler = xchg(&exception_handlers[n], handler);
1899 if (n == 0 && cpu_has_divec) {
1900 #ifdef CONFIG_CPU_MICROMIPS
1901 unsigned long jump_mask = ~((1 << 27) - 1);
1903 unsigned long jump_mask = ~((1 << 28) - 1);
1905 u32 *buf = (u32 *)(ebase + 0x200);
1906 unsigned int k0 = 26;
1907 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1908 uasm_i_j(&buf, handler & ~jump_mask);
1911 UASM_i_LA(&buf, k0, handler);
1912 uasm_i_jr(&buf, k0);
1915 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1917 return (void *)old_handler;
1920 static void do_default_vi(void)
1922 show_regs(get_irq_regs());
1923 panic("Caught unexpected vectored interrupt.");
1926 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1928 unsigned long handler;
1929 unsigned long old_handler = vi_handlers[n];
1930 int srssets = current_cpu_data.srsets;
1934 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1937 handler = (unsigned long) do_default_vi;
1940 handler = (unsigned long) addr;
1941 vi_handlers[n] = handler;
1943 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1946 panic("Shadow register set %d not supported", srs);
1949 if (board_bind_eic_interrupt)
1950 board_bind_eic_interrupt(n, srs);
1951 } else if (cpu_has_vint) {
1952 /* SRSMap is only defined if shadow sets are implemented */
1954 change_c0_srsmap(0xf << n*4, srs << n*4);
1959 * If no shadow set is selected then use the default handler
1960 * that does normal register saving and standard interrupt exit
1962 extern char except_vec_vi, except_vec_vi_lui;
1963 extern char except_vec_vi_ori, except_vec_vi_end;
1964 extern char rollback_except_vec_vi;
1965 char *vec_start = using_rollback_handler() ?
1966 &rollback_except_vec_vi : &except_vec_vi;
1967 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1968 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1969 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1971 const int lui_offset = &except_vec_vi_lui - vec_start;
1972 const int ori_offset = &except_vec_vi_ori - vec_start;
1974 const int handler_len = &except_vec_vi_end - vec_start;
1976 if (handler_len > VECTORSPACING) {
1978 * Sigh... panicing won't help as the console
1979 * is probably not configured :(
1981 panic("VECTORSPACING too small");
1984 set_handler(((unsigned long)b - ebase), vec_start,
1985 #ifdef CONFIG_CPU_MICROMIPS
1990 h = (u16 *)(b + lui_offset);
1991 *h = (handler >> 16) & 0xffff;
1992 h = (u16 *)(b + ori_offset);
1993 *h = (handler & 0xffff);
1994 local_flush_icache_range((unsigned long)b,
1995 (unsigned long)(b+handler_len));
1999 * In other cases jump directly to the interrupt handler. It
2000 * is the handler's responsibility to save registers if required
2001 * (eg hi/lo) and return from the exception using "eret".
2007 #ifdef CONFIG_CPU_MICROMIPS
2008 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2010 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2012 h[0] = (insn >> 16) & 0xffff;
2013 h[1] = insn & 0xffff;
2016 local_flush_icache_range((unsigned long)b,
2017 (unsigned long)(b+8));
2020 return (void *)old_handler;
2023 void *set_vi_handler(int n, vi_handler_t addr)
2025 return set_vi_srs_handler(n, addr, 0);
2028 extern void tlb_init(void);
2033 int cp0_compare_irq;
2034 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2035 int cp0_compare_irq_shift;
2038 * Performance counter IRQ or -1 if shared with timer
2040 int cp0_perfcount_irq;
2041 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2044 * Fast debug channel IRQ or -1 if not present
2047 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2051 static int __init ulri_disable(char *s)
2053 pr_info("Disabling ulri\n");
2058 __setup("noulri", ulri_disable);
2060 /* configure STATUS register */
2061 static void configure_status(void)
2064 * Disable coprocessors and select 32-bit or 64-bit addressing
2065 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2066 * flag that some firmware may have left set and the TS bit (for
2067 * IP27). Set XX for ISA IV code to work.
2069 unsigned int status_set = ST0_CU0;
2071 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2073 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2074 status_set |= ST0_XX;
2076 status_set |= ST0_MX;
2078 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2082 unsigned int hwrena;
2083 EXPORT_SYMBOL_GPL(hwrena);
2085 /* configure HWRENA register */
2086 static void configure_hwrena(void)
2088 hwrena = cpu_hwrena_impl_bits;
2090 if (cpu_has_mips_r2_r6)
2091 hwrena |= MIPS_HWRENA_CPUNUM |
2092 MIPS_HWRENA_SYNCISTEP |
2096 if (!noulri && cpu_has_userlocal)
2097 hwrena |= MIPS_HWRENA_ULR;
2100 write_c0_hwrena(hwrena);
2103 static void configure_exception_vector(void)
2105 if (cpu_has_veic || cpu_has_vint) {
2106 unsigned long sr = set_c0_status(ST0_BEV);
2107 /* If available, use WG to set top bits of EBASE */
2108 if (cpu_has_ebase_wg) {
2110 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2112 write_c0_ebase(ebase | MIPS_EBASE_WG);
2115 write_c0_ebase(ebase);
2116 write_c0_status(sr);
2117 /* Setting vector spacing enables EI/VI mode */
2118 change_c0_intctl(0x3e0, VECTORSPACING);
2120 if (cpu_has_divec) {
2121 if (cpu_has_mipsmt) {
2122 unsigned int vpflags = dvpe();
2123 set_c0_cause(CAUSEF_IV);
2126 set_c0_cause(CAUSEF_IV);
2130 void per_cpu_trap_init(bool is_boot_cpu)
2132 unsigned int cpu = smp_processor_id();
2137 configure_exception_vector();
2140 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2142 * o read IntCtl.IPTI to determine the timer interrupt
2143 * o read IntCtl.IPPCI to determine the performance counter interrupt
2144 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2146 if (cpu_has_mips_r2_r6) {
2148 * We shouldn't trust a secondary core has a sane EBASE register
2149 * so use the one calculated by the boot CPU.
2152 /* If available, use WG to set top bits of EBASE */
2153 if (cpu_has_ebase_wg) {
2155 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2157 write_c0_ebase(ebase | MIPS_EBASE_WG);
2160 write_c0_ebase(ebase);
2163 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2164 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2165 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2166 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2171 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2172 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2173 cp0_perfcount_irq = -1;
2177 if (!cpu_data[cpu].asid_cache)
2178 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2180 atomic_inc(&init_mm.mm_count);
2181 current->active_mm = &init_mm;
2182 BUG_ON(current->mm);
2183 enter_lazy_tlb(&init_mm, current);
2185 /* Boot CPU's cache setup in setup_arch(). */
2189 TLBMISS_HANDLER_SETUP();
2192 /* Install CPU exception handler */
2193 void set_handler(unsigned long offset, void *addr, unsigned long size)
2195 #ifdef CONFIG_CPU_MICROMIPS
2196 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2198 memcpy((void *)(ebase + offset), addr, size);
2200 local_flush_icache_range(ebase + offset, ebase + offset + size);
2203 static char panic_null_cerr[] =
2204 "Trying to set NULL cache error exception handler";
2207 * Install uncached CPU exception handler.
2208 * This is suitable only for the cache error exception which is the only
2209 * exception handler that is being run uncached.
2211 void set_uncached_handler(unsigned long offset, void *addr,
2214 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2217 panic(panic_null_cerr);
2219 memcpy((void *)(uncached_ebase + offset), addr, size);
2222 static int __initdata rdhwr_noopt;
2223 static int __init set_rdhwr_noopt(char *str)
2229 __setup("rdhwr_noopt", set_rdhwr_noopt);
2231 void __init trap_init(void)
2233 extern char except_vec3_generic;
2234 extern char except_vec4;
2235 extern char except_vec3_r4000;
2240 if (cpu_has_veic || cpu_has_vint) {
2241 unsigned long size = 0x200 + VECTORSPACING*64;
2242 phys_addr_t ebase_pa;
2244 ebase = (unsigned long)
2245 __alloc_bootmem(size, 1 << fls(size), 0);
2248 * Try to ensure ebase resides in KSeg0 if possible.
2250 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2251 * hitting a poorly defined exception base for Cache Errors.
2252 * The allocation is likely to be in the low 512MB of physical,
2253 * in which case we should be able to convert to KSeg0.
2255 * EVA is special though as it allows segments to be rearranged
2256 * and to become uncached during cache error handling.
2258 ebase_pa = __pa(ebase);
2259 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2260 ebase = CKSEG0ADDR(ebase_pa);
2264 if (cpu_has_mips_r2_r6) {
2265 if (cpu_has_ebase_wg) {
2267 ebase = (read_c0_ebase_64() & ~0xfff);
2269 ebase = (read_c0_ebase() & ~0xfff);
2272 ebase += (read_c0_ebase() & 0x3ffff000);
2277 if (cpu_has_mmips) {
2278 unsigned int config3 = read_c0_config3();
2280 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2281 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2283 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2286 if (board_ebase_setup)
2287 board_ebase_setup();
2288 per_cpu_trap_init(true);
2291 * Copy the generic exception handlers to their final destination.
2292 * This will be overridden later as suitable for a particular
2295 set_handler(0x180, &except_vec3_generic, 0x80);
2298 * Setup default vectors
2300 for (i = 0; i <= 31; i++)
2301 set_except_vector(i, handle_reserved);
2304 * Copy the EJTAG debug exception vector handler code to it's final
2307 if (cpu_has_ejtag && board_ejtag_handler_setup)
2308 board_ejtag_handler_setup();
2311 * Only some CPUs have the watch exceptions.
2314 set_except_vector(EXCCODE_WATCH, handle_watch);
2317 * Initialise interrupt handlers
2319 if (cpu_has_veic || cpu_has_vint) {
2320 int nvec = cpu_has_veic ? 64 : 8;
2321 for (i = 0; i < nvec; i++)
2322 set_vi_handler(i, NULL);
2324 else if (cpu_has_divec)
2325 set_handler(0x200, &except_vec4, 0x8);
2328 * Some CPUs can enable/disable for cache parity detection, but does
2329 * it different ways.
2331 parity_protection_init();
2334 * The Data Bus Errors / Instruction Bus Errors are signaled
2335 * by external hardware. Therefore these two exceptions
2336 * may have board specific handlers.
2341 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2342 rollback_handle_int : handle_int);
2343 set_except_vector(EXCCODE_MOD, handle_tlbm);
2344 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2345 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2347 set_except_vector(EXCCODE_ADEL, handle_adel);
2348 set_except_vector(EXCCODE_ADES, handle_ades);
2350 set_except_vector(EXCCODE_IBE, handle_ibe);
2351 set_except_vector(EXCCODE_DBE, handle_dbe);
2353 set_except_vector(EXCCODE_SYS, handle_sys);
2354 set_except_vector(EXCCODE_BP, handle_bp);
2355 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2356 (cpu_has_vtag_icache ?
2357 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2358 set_except_vector(EXCCODE_CPU, handle_cpu);
2359 set_except_vector(EXCCODE_OV, handle_ov);
2360 set_except_vector(EXCCODE_TR, handle_tr);
2361 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2363 if (current_cpu_type() == CPU_R6000 ||
2364 current_cpu_type() == CPU_R6000A) {
2366 * The R6000 is the only R-series CPU that features a machine
2367 * check exception (similar to the R4000 cache error) and
2368 * unaligned ldc1/sdc1 exception. The handlers have not been
2369 * written yet. Well, anyway there is no R6000 machine on the
2370 * current list of targets for Linux/MIPS.
2371 * (Duh, crap, there is someone with a triple R6k machine)
2373 //set_except_vector(14, handle_mc);
2374 //set_except_vector(15, handle_ndc);
2378 if (board_nmi_handler_setup)
2379 board_nmi_handler_setup();
2381 if (cpu_has_fpu && !cpu_has_nofpuex)
2382 set_except_vector(EXCCODE_FPE, handle_fpe);
2384 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2386 if (cpu_has_rixiex) {
2387 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2388 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2391 set_except_vector(EXCCODE_MSADIS, handle_msa);
2392 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2395 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2398 set_except_vector(EXCCODE_THREAD, handle_mt);
2400 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2402 if (board_cache_error_setup)
2403 board_cache_error_setup();
2406 /* Special exception: R4[04]00 uses also the divec space. */
2407 set_handler(0x180, &except_vec3_r4000, 0x100);
2408 else if (cpu_has_4kex)
2409 set_handler(0x180, &except_vec3_generic, 0x80);
2411 set_handler(0x080, &except_vec3_generic, 0x80);
2413 local_flush_icache_range(ebase, ebase + 0x400);
2415 sort_extable(__start___dbe_table, __stop___dbe_table);
2417 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2420 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2424 case CPU_PM_ENTER_FAILED:
2428 configure_exception_vector();
2430 /* Restore register with CPU number for TLB handlers */
2431 TLBMISS_HANDLER_RESTORE();
2439 static struct notifier_block trap_pm_notifier_block = {
2440 .notifier_call = trap_pm_notifier,
2443 static int __init trap_pm_init(void)
2445 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2447 arch_initcall(trap_pm_init);