]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/kvm/mips.c
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[karo-tx-linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
63         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
64         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
65         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
66         {NULL}
67 };
68
69 /*
70  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
71  * Config7, so we are "runnable" if interrupts are pending
72  */
73 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
74 {
75         return !!(vcpu->arch.pending_exceptions);
76 }
77
78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79 {
80         return 1;
81 }
82
83 int kvm_arch_hardware_enable(void)
84 {
85         return 0;
86 }
87
88 int kvm_arch_hardware_setup(void)
89 {
90         return 0;
91 }
92
93 void kvm_arch_check_processor_compat(void *rtn)
94 {
95         *(int *)rtn = 0;
96 }
97
98 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
99 {
100         /* Allocate page table to map GPA -> RPA */
101         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
102         if (!kvm->arch.gpa_mm.pgd)
103                 return -ENOMEM;
104
105         return 0;
106 }
107
108 bool kvm_arch_has_vcpu_debugfs(void)
109 {
110         return false;
111 }
112
113 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
114 {
115         return 0;
116 }
117
118 void kvm_mips_free_vcpus(struct kvm *kvm)
119 {
120         unsigned int i;
121         struct kvm_vcpu *vcpu;
122
123         kvm_for_each_vcpu(i, vcpu, kvm) {
124                 kvm_arch_vcpu_free(vcpu);
125         }
126
127         mutex_lock(&kvm->lock);
128
129         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
130                 kvm->vcpus[i] = NULL;
131
132         atomic_set(&kvm->online_vcpus, 0);
133
134         mutex_unlock(&kvm->lock);
135 }
136
137 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
138 {
139         /* It should always be safe to remove after flushing the whole range */
140         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
141         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
142 }
143
144 void kvm_arch_destroy_vm(struct kvm *kvm)
145 {
146         kvm_mips_free_vcpus(kvm);
147         kvm_mips_free_gpa_pt(kvm);
148 }
149
150 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
151                         unsigned long arg)
152 {
153         return -ENOIOCTLCMD;
154 }
155
156 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
157                             unsigned long npages)
158 {
159         return 0;
160 }
161
162 void kvm_arch_flush_shadow_all(struct kvm *kvm)
163 {
164         /* Flush whole GPA */
165         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
166
167         /* Let implementation do the rest */
168         kvm_mips_callbacks->flush_shadow_all(kvm);
169 }
170
171 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
172                                    struct kvm_memory_slot *slot)
173 {
174         /*
175          * The slot has been made invalid (ready for moving or deletion), so we
176          * need to ensure that it can no longer be accessed by any guest VCPUs.
177          */
178
179         spin_lock(&kvm->mmu_lock);
180         /* Flush slot from GPA */
181         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
182                               slot->base_gfn + slot->npages - 1);
183         /* Let implementation do the rest */
184         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
185         spin_unlock(&kvm->mmu_lock);
186 }
187
188 int kvm_arch_prepare_memory_region(struct kvm *kvm,
189                                    struct kvm_memory_slot *memslot,
190                                    const struct kvm_userspace_memory_region *mem,
191                                    enum kvm_mr_change change)
192 {
193         return 0;
194 }
195
196 void kvm_arch_commit_memory_region(struct kvm *kvm,
197                                    const struct kvm_userspace_memory_region *mem,
198                                    const struct kvm_memory_slot *old,
199                                    const struct kvm_memory_slot *new,
200                                    enum kvm_mr_change change)
201 {
202         int needs_flush;
203
204         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
205                   __func__, kvm, mem->slot, mem->guest_phys_addr,
206                   mem->memory_size, mem->userspace_addr);
207
208         /*
209          * If dirty page logging is enabled, write protect all pages in the slot
210          * ready for dirty logging.
211          *
212          * There is no need to do this in any of the following cases:
213          * CREATE:      No dirty mappings will already exist.
214          * MOVE/DELETE: The old mappings will already have been cleaned up by
215          *              kvm_arch_flush_shadow_memslot()
216          */
217         if (change == KVM_MR_FLAGS_ONLY &&
218             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
219              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
220                 spin_lock(&kvm->mmu_lock);
221                 /* Write protect GPA page table entries */
222                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
223                                         new->base_gfn + new->npages - 1);
224                 /* Let implementation do the rest */
225                 if (needs_flush)
226                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
227                 spin_unlock(&kvm->mmu_lock);
228         }
229 }
230
231 static inline void dump_handler(const char *symbol, void *start, void *end)
232 {
233         u32 *p;
234
235         pr_debug("LEAF(%s)\n", symbol);
236
237         pr_debug("\t.set push\n");
238         pr_debug("\t.set noreorder\n");
239
240         for (p = start; p < (u32 *)end; ++p)
241                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
242
243         pr_debug("\t.set\tpop\n");
244
245         pr_debug("\tEND(%s)\n", symbol);
246 }
247
248 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
249 {
250         int err, size;
251         void *gebase, *p, *handler, *refill_start, *refill_end;
252         int i;
253
254         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
255
256         if (!vcpu) {
257                 err = -ENOMEM;
258                 goto out;
259         }
260
261         err = kvm_vcpu_init(vcpu, kvm, id);
262
263         if (err)
264                 goto out_free_cpu;
265
266         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
267
268         /*
269          * Allocate space for host mode exception handlers that handle
270          * guest mode exits
271          */
272         if (cpu_has_veic || cpu_has_vint)
273                 size = 0x200 + VECTORSPACING * 64;
274         else
275                 size = 0x4000;
276
277         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
278
279         if (!gebase) {
280                 err = -ENOMEM;
281                 goto out_uninit_cpu;
282         }
283         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284                   ALIGN(size, PAGE_SIZE), gebase);
285
286         /*
287          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
288          * limits us to the low 512MB of physical address space. If the memory
289          * we allocate is out of range, just give up now.
290          */
291         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
292                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
293                         gebase);
294                 err = -ENOMEM;
295                 goto out_free_gebase;
296         }
297
298         /* Save new ebase */
299         vcpu->arch.guest_ebase = gebase;
300
301         /* Build guest exception vectors dynamically in unmapped memory */
302         handler = gebase + 0x2000;
303
304         /* TLB refill */
305         refill_start = gebase;
306         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
307
308         /* General Exception Entry point */
309         kvm_mips_build_exception(gebase + 0x180, handler);
310
311         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
312         for (i = 0; i < 8; i++) {
313                 kvm_debug("L1 Vectored handler @ %p\n",
314                           gebase + 0x200 + (i * VECTORSPACING));
315                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
316                                          handler);
317         }
318
319         /* General exit handler */
320         p = handler;
321         p = kvm_mips_build_exit(p);
322
323         /* Guest entry routine */
324         vcpu->arch.vcpu_run = p;
325         p = kvm_mips_build_vcpu_run(p);
326
327         /* Dump the generated code */
328         pr_debug("#include <asm/asm.h>\n");
329         pr_debug("#include <asm/regdef.h>\n");
330         pr_debug("\n");
331         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
332         dump_handler("kvm_tlb_refill", refill_start, refill_end);
333         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
334         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
335
336         /* Invalidate the icache for these ranges */
337         flush_icache_range((unsigned long)gebase,
338                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
339
340         /*
341          * Allocate comm page for guest kernel, a TLB will be reserved for
342          * mapping GVA @ 0xFFFF8000 to this page
343          */
344         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
345
346         if (!vcpu->arch.kseg0_commpage) {
347                 err = -ENOMEM;
348                 goto out_free_gebase;
349         }
350
351         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
352         kvm_mips_commpage_init(vcpu);
353
354         /* Init */
355         vcpu->arch.last_sched_cpu = -1;
356
357         /* Start off the timer */
358         kvm_mips_init_count(vcpu);
359
360         return vcpu;
361
362 out_free_gebase:
363         kfree(gebase);
364
365 out_uninit_cpu:
366         kvm_vcpu_uninit(vcpu);
367
368 out_free_cpu:
369         kfree(vcpu);
370
371 out:
372         return ERR_PTR(err);
373 }
374
375 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
376 {
377         hrtimer_cancel(&vcpu->arch.comparecount_timer);
378
379         kvm_vcpu_uninit(vcpu);
380
381         kvm_mips_dump_stats(vcpu);
382
383         kvm_mmu_free_memory_caches(vcpu);
384         kfree(vcpu->arch.guest_ebase);
385         kfree(vcpu->arch.kseg0_commpage);
386         kfree(vcpu);
387 }
388
389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
390 {
391         kvm_arch_vcpu_free(vcpu);
392 }
393
394 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
395                                         struct kvm_guest_debug *dbg)
396 {
397         return -ENOIOCTLCMD;
398 }
399
400 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
401 {
402         int r = -EINTR;
403         sigset_t sigsaved;
404
405         if (vcpu->sigset_active)
406                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
407
408         if (vcpu->mmio_needed) {
409                 if (!vcpu->mmio_is_write)
410                         kvm_mips_complete_mmio_load(vcpu, run);
411                 vcpu->mmio_needed = 0;
412         }
413
414         if (run->immediate_exit)
415                 goto out;
416
417         lose_fpu(1);
418
419         local_irq_disable();
420         guest_enter_irqoff();
421         trace_kvm_enter(vcpu);
422
423         /*
424          * Make sure the read of VCPU requests in vcpu_run() callback is not
425          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
426          * flush request while the requester sees the VCPU as outside of guest
427          * mode and not needing an IPI.
428          */
429         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
430
431         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
432
433         trace_kvm_out(vcpu);
434         guest_exit_irqoff();
435         local_irq_enable();
436
437 out:
438         if (vcpu->sigset_active)
439                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
440
441         return r;
442 }
443
444 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
445                              struct kvm_mips_interrupt *irq)
446 {
447         int intr = (int)irq->irq;
448         struct kvm_vcpu *dvcpu = NULL;
449
450         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
451                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
452                           (int)intr);
453
454         if (irq->cpu == -1)
455                 dvcpu = vcpu;
456         else
457                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
458
459         if (intr == 2 || intr == 3 || intr == 4) {
460                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
461
462         } else if (intr == -2 || intr == -3 || intr == -4) {
463                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
464         } else {
465                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
466                         irq->cpu, irq->irq);
467                 return -EINVAL;
468         }
469
470         dvcpu->arch.wait = 0;
471
472         if (swait_active(&dvcpu->wq))
473                 swake_up(&dvcpu->wq);
474
475         return 0;
476 }
477
478 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
479                                     struct kvm_mp_state *mp_state)
480 {
481         return -ENOIOCTLCMD;
482 }
483
484 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
485                                     struct kvm_mp_state *mp_state)
486 {
487         return -ENOIOCTLCMD;
488 }
489
490 static u64 kvm_mips_get_one_regs[] = {
491         KVM_REG_MIPS_R0,
492         KVM_REG_MIPS_R1,
493         KVM_REG_MIPS_R2,
494         KVM_REG_MIPS_R3,
495         KVM_REG_MIPS_R4,
496         KVM_REG_MIPS_R5,
497         KVM_REG_MIPS_R6,
498         KVM_REG_MIPS_R7,
499         KVM_REG_MIPS_R8,
500         KVM_REG_MIPS_R9,
501         KVM_REG_MIPS_R10,
502         KVM_REG_MIPS_R11,
503         KVM_REG_MIPS_R12,
504         KVM_REG_MIPS_R13,
505         KVM_REG_MIPS_R14,
506         KVM_REG_MIPS_R15,
507         KVM_REG_MIPS_R16,
508         KVM_REG_MIPS_R17,
509         KVM_REG_MIPS_R18,
510         KVM_REG_MIPS_R19,
511         KVM_REG_MIPS_R20,
512         KVM_REG_MIPS_R21,
513         KVM_REG_MIPS_R22,
514         KVM_REG_MIPS_R23,
515         KVM_REG_MIPS_R24,
516         KVM_REG_MIPS_R25,
517         KVM_REG_MIPS_R26,
518         KVM_REG_MIPS_R27,
519         KVM_REG_MIPS_R28,
520         KVM_REG_MIPS_R29,
521         KVM_REG_MIPS_R30,
522         KVM_REG_MIPS_R31,
523
524 #ifndef CONFIG_CPU_MIPSR6
525         KVM_REG_MIPS_HI,
526         KVM_REG_MIPS_LO,
527 #endif
528         KVM_REG_MIPS_PC,
529 };
530
531 static u64 kvm_mips_get_one_regs_fpu[] = {
532         KVM_REG_MIPS_FCR_IR,
533         KVM_REG_MIPS_FCR_CSR,
534 };
535
536 static u64 kvm_mips_get_one_regs_msa[] = {
537         KVM_REG_MIPS_MSA_IR,
538         KVM_REG_MIPS_MSA_CSR,
539 };
540
541 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
542 {
543         unsigned long ret;
544
545         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
546         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
547                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
548                 /* odd doubles */
549                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
550                         ret += 16;
551         }
552         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
553                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
554         ret += kvm_mips_callbacks->num_regs(vcpu);
555
556         return ret;
557 }
558
559 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
560 {
561         u64 index;
562         unsigned int i;
563
564         if (copy_to_user(indices, kvm_mips_get_one_regs,
565                          sizeof(kvm_mips_get_one_regs)))
566                 return -EFAULT;
567         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
568
569         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
570                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
571                                  sizeof(kvm_mips_get_one_regs_fpu)))
572                         return -EFAULT;
573                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
574
575                 for (i = 0; i < 32; ++i) {
576                         index = KVM_REG_MIPS_FPR_32(i);
577                         if (copy_to_user(indices, &index, sizeof(index)))
578                                 return -EFAULT;
579                         ++indices;
580
581                         /* skip odd doubles if no F64 */
582                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
583                                 continue;
584
585                         index = KVM_REG_MIPS_FPR_64(i);
586                         if (copy_to_user(indices, &index, sizeof(index)))
587                                 return -EFAULT;
588                         ++indices;
589                 }
590         }
591
592         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
593                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
594                                  sizeof(kvm_mips_get_one_regs_msa)))
595                         return -EFAULT;
596                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
597
598                 for (i = 0; i < 32; ++i) {
599                         index = KVM_REG_MIPS_VEC_128(i);
600                         if (copy_to_user(indices, &index, sizeof(index)))
601                                 return -EFAULT;
602                         ++indices;
603                 }
604         }
605
606         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
607 }
608
609 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
610                             const struct kvm_one_reg *reg)
611 {
612         struct mips_coproc *cop0 = vcpu->arch.cop0;
613         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
614         int ret;
615         s64 v;
616         s64 vs[2];
617         unsigned int idx;
618
619         switch (reg->id) {
620         /* General purpose registers */
621         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
622                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
623                 break;
624 #ifndef CONFIG_CPU_MIPSR6
625         case KVM_REG_MIPS_HI:
626                 v = (long)vcpu->arch.hi;
627                 break;
628         case KVM_REG_MIPS_LO:
629                 v = (long)vcpu->arch.lo;
630                 break;
631 #endif
632         case KVM_REG_MIPS_PC:
633                 v = (long)vcpu->arch.pc;
634                 break;
635
636         /* Floating point registers */
637         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
638                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
639                         return -EINVAL;
640                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
641                 /* Odd singles in top of even double when FR=0 */
642                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
643                         v = get_fpr32(&fpu->fpr[idx], 0);
644                 else
645                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
646                 break;
647         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
648                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
649                         return -EINVAL;
650                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
651                 /* Can't access odd doubles in FR=0 mode */
652                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
653                         return -EINVAL;
654                 v = get_fpr64(&fpu->fpr[idx], 0);
655                 break;
656         case KVM_REG_MIPS_FCR_IR:
657                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
658                         return -EINVAL;
659                 v = boot_cpu_data.fpu_id;
660                 break;
661         case KVM_REG_MIPS_FCR_CSR:
662                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
663                         return -EINVAL;
664                 v = fpu->fcr31;
665                 break;
666
667         /* MIPS SIMD Architecture (MSA) registers */
668         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
669                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
670                         return -EINVAL;
671                 /* Can't access MSA registers in FR=0 mode */
672                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
673                         return -EINVAL;
674                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
675 #ifdef CONFIG_CPU_LITTLE_ENDIAN
676                 /* least significant byte first */
677                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
678                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
679 #else
680                 /* most significant byte first */
681                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
682                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
683 #endif
684                 break;
685         case KVM_REG_MIPS_MSA_IR:
686                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
687                         return -EINVAL;
688                 v = boot_cpu_data.msa_id;
689                 break;
690         case KVM_REG_MIPS_MSA_CSR:
691                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
692                         return -EINVAL;
693                 v = fpu->msacsr;
694                 break;
695
696         /* registers to be handled specially */
697         default:
698                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
699                 if (ret)
700                         return ret;
701                 break;
702         }
703         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
704                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
705
706                 return put_user(v, uaddr64);
707         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
708                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
709                 u32 v32 = (u32)v;
710
711                 return put_user(v32, uaddr32);
712         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
713                 void __user *uaddr = (void __user *)(long)reg->addr;
714
715                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
716         } else {
717                 return -EINVAL;
718         }
719 }
720
721 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
722                             const struct kvm_one_reg *reg)
723 {
724         struct mips_coproc *cop0 = vcpu->arch.cop0;
725         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
726         s64 v;
727         s64 vs[2];
728         unsigned int idx;
729
730         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
731                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
732
733                 if (get_user(v, uaddr64) != 0)
734                         return -EFAULT;
735         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
736                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
737                 s32 v32;
738
739                 if (get_user(v32, uaddr32) != 0)
740                         return -EFAULT;
741                 v = (s64)v32;
742         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
743                 void __user *uaddr = (void __user *)(long)reg->addr;
744
745                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
746         } else {
747                 return -EINVAL;
748         }
749
750         switch (reg->id) {
751         /* General purpose registers */
752         case KVM_REG_MIPS_R0:
753                 /* Silently ignore requests to set $0 */
754                 break;
755         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
756                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
757                 break;
758 #ifndef CONFIG_CPU_MIPSR6
759         case KVM_REG_MIPS_HI:
760                 vcpu->arch.hi = v;
761                 break;
762         case KVM_REG_MIPS_LO:
763                 vcpu->arch.lo = v;
764                 break;
765 #endif
766         case KVM_REG_MIPS_PC:
767                 vcpu->arch.pc = v;
768                 break;
769
770         /* Floating point registers */
771         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
772                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
773                         return -EINVAL;
774                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
775                 /* Odd singles in top of even double when FR=0 */
776                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
777                         set_fpr32(&fpu->fpr[idx], 0, v);
778                 else
779                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
780                 break;
781         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
782                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
783                         return -EINVAL;
784                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
785                 /* Can't access odd doubles in FR=0 mode */
786                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
787                         return -EINVAL;
788                 set_fpr64(&fpu->fpr[idx], 0, v);
789                 break;
790         case KVM_REG_MIPS_FCR_IR:
791                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
792                         return -EINVAL;
793                 /* Read-only */
794                 break;
795         case KVM_REG_MIPS_FCR_CSR:
796                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
797                         return -EINVAL;
798                 fpu->fcr31 = v;
799                 break;
800
801         /* MIPS SIMD Architecture (MSA) registers */
802         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
803                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
804                         return -EINVAL;
805                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
806 #ifdef CONFIG_CPU_LITTLE_ENDIAN
807                 /* least significant byte first */
808                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
809                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
810 #else
811                 /* most significant byte first */
812                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
813                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
814 #endif
815                 break;
816         case KVM_REG_MIPS_MSA_IR:
817                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
818                         return -EINVAL;
819                 /* Read-only */
820                 break;
821         case KVM_REG_MIPS_MSA_CSR:
822                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
823                         return -EINVAL;
824                 fpu->msacsr = v;
825                 break;
826
827         /* registers to be handled specially */
828         default:
829                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
830         }
831         return 0;
832 }
833
834 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
835                                      struct kvm_enable_cap *cap)
836 {
837         int r = 0;
838
839         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
840                 return -EINVAL;
841         if (cap->flags)
842                 return -EINVAL;
843         if (cap->args[0])
844                 return -EINVAL;
845
846         switch (cap->cap) {
847         case KVM_CAP_MIPS_FPU:
848                 vcpu->arch.fpu_enabled = true;
849                 break;
850         case KVM_CAP_MIPS_MSA:
851                 vcpu->arch.msa_enabled = true;
852                 break;
853         default:
854                 r = -EINVAL;
855                 break;
856         }
857
858         return r;
859 }
860
861 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
862                          unsigned long arg)
863 {
864         struct kvm_vcpu *vcpu = filp->private_data;
865         void __user *argp = (void __user *)arg;
866         long r;
867
868         switch (ioctl) {
869         case KVM_SET_ONE_REG:
870         case KVM_GET_ONE_REG: {
871                 struct kvm_one_reg reg;
872
873                 if (copy_from_user(&reg, argp, sizeof(reg)))
874                         return -EFAULT;
875                 if (ioctl == KVM_SET_ONE_REG)
876                         return kvm_mips_set_reg(vcpu, &reg);
877                 else
878                         return kvm_mips_get_reg(vcpu, &reg);
879         }
880         case KVM_GET_REG_LIST: {
881                 struct kvm_reg_list __user *user_list = argp;
882                 struct kvm_reg_list reg_list;
883                 unsigned n;
884
885                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
886                         return -EFAULT;
887                 n = reg_list.n;
888                 reg_list.n = kvm_mips_num_regs(vcpu);
889                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
890                         return -EFAULT;
891                 if (n < reg_list.n)
892                         return -E2BIG;
893                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
894         }
895         case KVM_INTERRUPT:
896                 {
897                         struct kvm_mips_interrupt irq;
898
899                         if (copy_from_user(&irq, argp, sizeof(irq)))
900                                 return -EFAULT;
901                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
902                                   irq.irq);
903
904                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
905                         break;
906                 }
907         case KVM_ENABLE_CAP: {
908                 struct kvm_enable_cap cap;
909
910                 if (copy_from_user(&cap, argp, sizeof(cap)))
911                         return -EFAULT;
912                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
913                 break;
914         }
915         default:
916                 r = -ENOIOCTLCMD;
917         }
918         return r;
919 }
920
921 /**
922  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
923  * @kvm: kvm instance
924  * @log: slot id and address to which we copy the log
925  *
926  * Steps 1-4 below provide general overview of dirty page logging. See
927  * kvm_get_dirty_log_protect() function description for additional details.
928  *
929  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
930  * always flush the TLB (step 4) even if previous step failed  and the dirty
931  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
932  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
933  * writes will be marked dirty for next log read.
934  *
935  *   1. Take a snapshot of the bit and clear it if needed.
936  *   2. Write protect the corresponding page.
937  *   3. Copy the snapshot to the userspace.
938  *   4. Flush TLB's if needed.
939  */
940 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
941 {
942         struct kvm_memslots *slots;
943         struct kvm_memory_slot *memslot;
944         bool is_dirty = false;
945         int r;
946
947         mutex_lock(&kvm->slots_lock);
948
949         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
950
951         if (is_dirty) {
952                 slots = kvm_memslots(kvm);
953                 memslot = id_to_memslot(slots, log->slot);
954
955                 /* Let implementation handle TLB/GVA invalidation */
956                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
957         }
958
959         mutex_unlock(&kvm->slots_lock);
960         return r;
961 }
962
963 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
964 {
965         long r;
966
967         switch (ioctl) {
968         default:
969                 r = -ENOIOCTLCMD;
970         }
971
972         return r;
973 }
974
975 int kvm_arch_init(void *opaque)
976 {
977         if (kvm_mips_callbacks) {
978                 kvm_err("kvm: module already exists\n");
979                 return -EEXIST;
980         }
981
982         return kvm_mips_emulation_init(&kvm_mips_callbacks);
983 }
984
985 void kvm_arch_exit(void)
986 {
987         kvm_mips_callbacks = NULL;
988 }
989
990 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
991                                   struct kvm_sregs *sregs)
992 {
993         return -ENOIOCTLCMD;
994 }
995
996 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
997                                   struct kvm_sregs *sregs)
998 {
999         return -ENOIOCTLCMD;
1000 }
1001
1002 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1003 {
1004 }
1005
1006 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1007 {
1008         return -ENOIOCTLCMD;
1009 }
1010
1011 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1012 {
1013         return -ENOIOCTLCMD;
1014 }
1015
1016 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1017 {
1018         return VM_FAULT_SIGBUS;
1019 }
1020
1021 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1022 {
1023         int r;
1024
1025         switch (ext) {
1026         case KVM_CAP_ONE_REG:
1027         case KVM_CAP_ENABLE_CAP:
1028         case KVM_CAP_READONLY_MEM:
1029         case KVM_CAP_SYNC_MMU:
1030         case KVM_CAP_IMMEDIATE_EXIT:
1031                 r = 1;
1032                 break;
1033         case KVM_CAP_COALESCED_MMIO:
1034                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1035                 break;
1036         case KVM_CAP_NR_VCPUS:
1037                 r = num_online_cpus();
1038                 break;
1039         case KVM_CAP_MAX_VCPUS:
1040                 r = KVM_MAX_VCPUS;
1041                 break;
1042         case KVM_CAP_MIPS_FPU:
1043                 /* We don't handle systems with inconsistent cpu_has_fpu */
1044                 r = !!raw_cpu_has_fpu;
1045                 break;
1046         case KVM_CAP_MIPS_MSA:
1047                 /*
1048                  * We don't support MSA vector partitioning yet:
1049                  * 1) It would require explicit support which can't be tested
1050                  *    yet due to lack of support in current hardware.
1051                  * 2) It extends the state that would need to be saved/restored
1052                  *    by e.g. QEMU for migration.
1053                  *
1054                  * When vector partitioning hardware becomes available, support
1055                  * could be added by requiring a flag when enabling
1056                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1057                  * to save/restore the appropriate extra state.
1058                  */
1059                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1060                 break;
1061         default:
1062                 r = 0;
1063                 break;
1064         }
1065         return r;
1066 }
1067
1068 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1069 {
1070         return kvm_mips_pending_timer(vcpu);
1071 }
1072
1073 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1074 {
1075         int i;
1076         struct mips_coproc *cop0;
1077
1078         if (!vcpu)
1079                 return -1;
1080
1081         kvm_debug("VCPU Register Dump:\n");
1082         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1083         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1084
1085         for (i = 0; i < 32; i += 4) {
1086                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1087                        vcpu->arch.gprs[i],
1088                        vcpu->arch.gprs[i + 1],
1089                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1090         }
1091         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1092         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1093
1094         cop0 = vcpu->arch.cop0;
1095         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1096                   kvm_read_c0_guest_status(cop0),
1097                   kvm_read_c0_guest_cause(cop0));
1098
1099         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1100
1101         return 0;
1102 }
1103
1104 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1105 {
1106         int i;
1107
1108         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1109                 vcpu->arch.gprs[i] = regs->gpr[i];
1110         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1111         vcpu->arch.hi = regs->hi;
1112         vcpu->arch.lo = regs->lo;
1113         vcpu->arch.pc = regs->pc;
1114
1115         return 0;
1116 }
1117
1118 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1119 {
1120         int i;
1121
1122         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1123                 regs->gpr[i] = vcpu->arch.gprs[i];
1124
1125         regs->hi = vcpu->arch.hi;
1126         regs->lo = vcpu->arch.lo;
1127         regs->pc = vcpu->arch.pc;
1128
1129         return 0;
1130 }
1131
1132 static void kvm_mips_comparecount_func(unsigned long data)
1133 {
1134         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1135
1136         kvm_mips_callbacks->queue_timer_int(vcpu);
1137
1138         vcpu->arch.wait = 0;
1139         if (swait_active(&vcpu->wq))
1140                 swake_up(&vcpu->wq);
1141 }
1142
1143 /* low level hrtimer wake routine */
1144 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1145 {
1146         struct kvm_vcpu *vcpu;
1147
1148         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1149         kvm_mips_comparecount_func((unsigned long) vcpu);
1150         return kvm_mips_count_timeout(vcpu);
1151 }
1152
1153 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1154 {
1155         int err;
1156
1157         err = kvm_mips_callbacks->vcpu_init(vcpu);
1158         if (err)
1159                 return err;
1160
1161         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1162                      HRTIMER_MODE_REL);
1163         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1164         return 0;
1165 }
1166
1167 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1168 {
1169         kvm_mips_callbacks->vcpu_uninit(vcpu);
1170 }
1171
1172 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1173                                   struct kvm_translation *tr)
1174 {
1175         return 0;
1176 }
1177
1178 /* Initial guest state */
1179 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1180 {
1181         return kvm_mips_callbacks->vcpu_setup(vcpu);
1182 }
1183
1184 static void kvm_mips_set_c0_status(void)
1185 {
1186         u32 status = read_c0_status();
1187
1188         if (cpu_has_dsp)
1189                 status |= (ST0_MX);
1190
1191         write_c0_status(status);
1192         ehb();
1193 }
1194
1195 /*
1196  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1197  */
1198 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1199 {
1200         u32 cause = vcpu->arch.host_cp0_cause;
1201         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1202         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1203         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1204         enum emulation_result er = EMULATE_DONE;
1205         u32 inst;
1206         int ret = RESUME_GUEST;
1207
1208         vcpu->mode = OUTSIDE_GUEST_MODE;
1209
1210         /* re-enable HTW before enabling interrupts */
1211         htw_start();
1212
1213         /* Set a default exit reason */
1214         run->exit_reason = KVM_EXIT_UNKNOWN;
1215         run->ready_for_interrupt_injection = 1;
1216
1217         /*
1218          * Set the appropriate status bits based on host CPU features,
1219          * before we hit the scheduler
1220          */
1221         kvm_mips_set_c0_status();
1222
1223         local_irq_enable();
1224
1225         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1226                         cause, opc, run, vcpu);
1227         trace_kvm_exit(vcpu, exccode);
1228
1229         /*
1230          * Do a privilege check, if in UM most of these exit conditions end up
1231          * causing an exception to be delivered to the Guest Kernel
1232          */
1233         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1234         if (er == EMULATE_PRIV_FAIL) {
1235                 goto skip_emul;
1236         } else if (er == EMULATE_FAIL) {
1237                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1238                 ret = RESUME_HOST;
1239                 goto skip_emul;
1240         }
1241
1242         switch (exccode) {
1243         case EXCCODE_INT:
1244                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1245
1246                 ++vcpu->stat.int_exits;
1247
1248                 if (need_resched())
1249                         cond_resched();
1250
1251                 ret = RESUME_GUEST;
1252                 break;
1253
1254         case EXCCODE_CPU:
1255                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1256
1257                 ++vcpu->stat.cop_unusable_exits;
1258                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1259                 /* XXXKYMA: Might need to return to user space */
1260                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1261                         ret = RESUME_HOST;
1262                 break;
1263
1264         case EXCCODE_MOD:
1265                 ++vcpu->stat.tlbmod_exits;
1266                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1267                 break;
1268
1269         case EXCCODE_TLBS:
1270                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1271                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1272                           badvaddr);
1273
1274                 ++vcpu->stat.tlbmiss_st_exits;
1275                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1276                 break;
1277
1278         case EXCCODE_TLBL:
1279                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1280                           cause, opc, badvaddr);
1281
1282                 ++vcpu->stat.tlbmiss_ld_exits;
1283                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1284                 break;
1285
1286         case EXCCODE_ADES:
1287                 ++vcpu->stat.addrerr_st_exits;
1288                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1289                 break;
1290
1291         case EXCCODE_ADEL:
1292                 ++vcpu->stat.addrerr_ld_exits;
1293                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1294                 break;
1295
1296         case EXCCODE_SYS:
1297                 ++vcpu->stat.syscall_exits;
1298                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1299                 break;
1300
1301         case EXCCODE_RI:
1302                 ++vcpu->stat.resvd_inst_exits;
1303                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1304                 break;
1305
1306         case EXCCODE_BP:
1307                 ++vcpu->stat.break_inst_exits;
1308                 ret = kvm_mips_callbacks->handle_break(vcpu);
1309                 break;
1310
1311         case EXCCODE_TR:
1312                 ++vcpu->stat.trap_inst_exits;
1313                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1314                 break;
1315
1316         case EXCCODE_MSAFPE:
1317                 ++vcpu->stat.msa_fpe_exits;
1318                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1319                 break;
1320
1321         case EXCCODE_FPE:
1322                 ++vcpu->stat.fpe_exits;
1323                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1324                 break;
1325
1326         case EXCCODE_MSADIS:
1327                 ++vcpu->stat.msa_disabled_exits;
1328                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1329                 break;
1330
1331         default:
1332                 if (cause & CAUSEF_BD)
1333                         opc += 1;
1334                 inst = 0;
1335                 kvm_get_badinstr(opc, vcpu, &inst);
1336                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1337                         exccode, opc, inst, badvaddr,
1338                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1339                 kvm_arch_vcpu_dump_regs(vcpu);
1340                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1341                 ret = RESUME_HOST;
1342                 break;
1343
1344         }
1345
1346 skip_emul:
1347         local_irq_disable();
1348
1349         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1350                 kvm_mips_deliver_interrupts(vcpu, cause);
1351
1352         if (!(ret & RESUME_HOST)) {
1353                 /* Only check for signals if not already exiting to userspace */
1354                 if (signal_pending(current)) {
1355                         run->exit_reason = KVM_EXIT_INTR;
1356                         ret = (-EINTR << 2) | RESUME_HOST;
1357                         ++vcpu->stat.signal_exits;
1358                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1359                 }
1360         }
1361
1362         if (ret == RESUME_GUEST) {
1363                 trace_kvm_reenter(vcpu);
1364
1365                 /*
1366                  * Make sure the read of VCPU requests in vcpu_reenter()
1367                  * callback is not reordered ahead of the write to vcpu->mode,
1368                  * or we could miss a TLB flush request while the requester sees
1369                  * the VCPU as outside of guest mode and not needing an IPI.
1370                  */
1371                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1372
1373                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1374
1375                 /*
1376                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1377                  * is live), restore FCR31 / MSACSR.
1378                  *
1379                  * This should be before returning to the guest exception
1380                  * vector, as it may well cause an [MSA] FP exception if there
1381                  * are pending exception bits unmasked. (see
1382                  * kvm_mips_csr_die_notifier() for how that is handled).
1383                  */
1384                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1385                     read_c0_status() & ST0_CU1)
1386                         __kvm_restore_fcsr(&vcpu->arch);
1387
1388                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1389                     read_c0_config5() & MIPS_CONF5_MSAEN)
1390                         __kvm_restore_msacsr(&vcpu->arch);
1391         }
1392
1393         /* Disable HTW before returning to guest or host */
1394         htw_stop();
1395
1396         return ret;
1397 }
1398
1399 /* Enable FPU for guest and restore context */
1400 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1401 {
1402         struct mips_coproc *cop0 = vcpu->arch.cop0;
1403         unsigned int sr, cfg5;
1404
1405         preempt_disable();
1406
1407         sr = kvm_read_c0_guest_status(cop0);
1408
1409         /*
1410          * If MSA state is already live, it is undefined how it interacts with
1411          * FR=0 FPU state, and we don't want to hit reserved instruction
1412          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1413          * play it safe and save it first.
1414          *
1415          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1416          * get called when guest CU1 is set, however we can't trust the guest
1417          * not to clobber the status register directly via the commpage.
1418          */
1419         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1420             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1421                 kvm_lose_fpu(vcpu);
1422
1423         /*
1424          * Enable FPU for guest
1425          * We set FR and FRE according to guest context
1426          */
1427         change_c0_status(ST0_CU1 | ST0_FR, sr);
1428         if (cpu_has_fre) {
1429                 cfg5 = kvm_read_c0_guest_config5(cop0);
1430                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1431         }
1432         enable_fpu_hazard();
1433
1434         /* If guest FPU state not active, restore it now */
1435         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1436                 __kvm_restore_fpu(&vcpu->arch);
1437                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1438                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1439         } else {
1440                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1441         }
1442
1443         preempt_enable();
1444 }
1445
1446 #ifdef CONFIG_CPU_HAS_MSA
1447 /* Enable MSA for guest and restore context */
1448 void kvm_own_msa(struct kvm_vcpu *vcpu)
1449 {
1450         struct mips_coproc *cop0 = vcpu->arch.cop0;
1451         unsigned int sr, cfg5;
1452
1453         preempt_disable();
1454
1455         /*
1456          * Enable FPU if enabled in guest, since we're restoring FPU context
1457          * anyway. We set FR and FRE according to guest context.
1458          */
1459         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1460                 sr = kvm_read_c0_guest_status(cop0);
1461
1462                 /*
1463                  * If FR=0 FPU state is already live, it is undefined how it
1464                  * interacts with MSA state, so play it safe and save it first.
1465                  */
1466                 if (!(sr & ST0_FR) &&
1467                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1468                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1469                         kvm_lose_fpu(vcpu);
1470
1471                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1472                 if (sr & ST0_CU1 && cpu_has_fre) {
1473                         cfg5 = kvm_read_c0_guest_config5(cop0);
1474                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1475                 }
1476         }
1477
1478         /* Enable MSA for guest */
1479         set_c0_config5(MIPS_CONF5_MSAEN);
1480         enable_fpu_hazard();
1481
1482         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1483         case KVM_MIPS_AUX_FPU:
1484                 /*
1485                  * Guest FPU state already loaded, only restore upper MSA state
1486                  */
1487                 __kvm_restore_msa_upper(&vcpu->arch);
1488                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1489                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1490                 break;
1491         case 0:
1492                 /* Neither FPU or MSA already active, restore full MSA state */
1493                 __kvm_restore_msa(&vcpu->arch);
1494                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1495                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1496                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1497                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1498                               KVM_TRACE_AUX_FPU_MSA);
1499                 break;
1500         default:
1501                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1502                 break;
1503         }
1504
1505         preempt_enable();
1506 }
1507 #endif
1508
1509 /* Drop FPU & MSA without saving it */
1510 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1511 {
1512         preempt_disable();
1513         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1514                 disable_msa();
1515                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1516                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1517         }
1518         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1519                 clear_c0_status(ST0_CU1 | ST0_FR);
1520                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1521                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1522         }
1523         preempt_enable();
1524 }
1525
1526 /* Save and disable FPU & MSA */
1527 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1528 {
1529         /*
1530          * FPU & MSA get disabled in root context (hardware) when it is disabled
1531          * in guest context (software), but the register state in the hardware
1532          * may still be in use. This is why we explicitly re-enable the hardware
1533          * before saving.
1534          */
1535
1536         preempt_disable();
1537         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1538                 set_c0_config5(MIPS_CONF5_MSAEN);
1539                 enable_fpu_hazard();
1540
1541                 __kvm_save_msa(&vcpu->arch);
1542                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1543
1544                 /* Disable MSA & FPU */
1545                 disable_msa();
1546                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1547                         clear_c0_status(ST0_CU1 | ST0_FR);
1548                         disable_fpu_hazard();
1549                 }
1550                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1551         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1552                 set_c0_status(ST0_CU1);
1553                 enable_fpu_hazard();
1554
1555                 __kvm_save_fpu(&vcpu->arch);
1556                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1557                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1558
1559                 /* Disable FPU */
1560                 clear_c0_status(ST0_CU1 | ST0_FR);
1561                 disable_fpu_hazard();
1562         }
1563         preempt_enable();
1564 }
1565
1566 /*
1567  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1568  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1569  * exception if cause bits are set in the value being written.
1570  */
1571 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1572                                    unsigned long cmd, void *ptr)
1573 {
1574         struct die_args *args = (struct die_args *)ptr;
1575         struct pt_regs *regs = args->regs;
1576         unsigned long pc;
1577
1578         /* Only interested in FPE and MSAFPE */
1579         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1580                 return NOTIFY_DONE;
1581
1582         /* Return immediately if guest context isn't active */
1583         if (!(current->flags & PF_VCPU))
1584                 return NOTIFY_DONE;
1585
1586         /* Should never get here from user mode */
1587         BUG_ON(user_mode(regs));
1588
1589         pc = instruction_pointer(regs);
1590         switch (cmd) {
1591         case DIE_FP:
1592                 /* match 2nd instruction in __kvm_restore_fcsr */
1593                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1594                         return NOTIFY_DONE;
1595                 break;
1596         case DIE_MSAFP:
1597                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1598                 if (!cpu_has_msa ||
1599                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1600                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1601                         return NOTIFY_DONE;
1602                 break;
1603         }
1604
1605         /* Move PC forward a little and continue executing */
1606         instruction_pointer(regs) += 4;
1607
1608         return NOTIFY_STOP;
1609 }
1610
1611 static struct notifier_block kvm_mips_csr_die_notifier = {
1612         .notifier_call = kvm_mips_csr_die_notify,
1613 };
1614
1615 static int __init kvm_mips_init(void)
1616 {
1617         int ret;
1618
1619         ret = kvm_mips_entry_setup();
1620         if (ret)
1621                 return ret;
1622
1623         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624
1625         if (ret)
1626                 return ret;
1627
1628         register_die_notifier(&kvm_mips_csr_die_notifier);
1629
1630         return 0;
1631 }
1632
1633 static void __exit kvm_mips_exit(void)
1634 {
1635         kvm_exit();
1636
1637         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1638 }
1639
1640 module_init(kvm_mips_init);
1641 module_exit(kvm_mips_exit);
1642
1643 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);