]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/kvm/mips.c
MIPS; KVM: Convert exception entry to uasm
[karo-tx-linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25
26 #include <linux/kvm_host.h>
27
28 #include "interrupt.h"
29 #include "commpage.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100     /* for EI/VI mode */
36 #endif
37
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
41         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
42         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
43         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
44         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
46         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
47         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
50         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
51         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
52         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
53         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
54         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
55         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
56         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
62         {NULL}
63 };
64
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67         int i;
68
69         for_each_possible_cpu(i) {
70                 vcpu->arch.guest_kernel_asid[i] = 0;
71                 vcpu->arch.guest_user_asid[i] = 0;
72         }
73
74         return 0;
75 }
76
77 /*
78  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79  * Config7, so we are "runnable" if interrupts are pending
80  */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83         return !!(vcpu->arch.pending_exceptions);
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return 1;
89 }
90
91 int kvm_arch_hardware_enable(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_hardware_setup(void)
97 {
98         return 0;
99 }
100
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103         *(int *)rtn = 0;
104 }
105
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108         unsigned long wired;
109
110         /*
111          * Add a wired entry to the TLB, it is used to map the commpage to
112          * the Guest kernel
113          */
114         wired = read_c0_wired();
115         write_c0_wired(wired + 1);
116         mtc0_tlbw_hazard();
117         kvm->arch.commpage_tlb = wired;
118
119         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120                   kvm->arch.commpage_tlb);
121 }
122
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125         struct kvm *kvm = (struct kvm *)arg;
126
127         kvm_mips_init_tlbs(kvm);
128         kvm_mips_callbacks->vm_init(kvm);
129
130 }
131
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134         if (atomic_inc_return(&kvm_mips_instance) == 1) {
135                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136                           __func__);
137                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138         }
139
140         return 0;
141 }
142
143 void kvm_mips_free_vcpus(struct kvm *kvm)
144 {
145         unsigned int i;
146         struct kvm_vcpu *vcpu;
147
148         /* Put the pages we reserved for the guest pmap */
149         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
150                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
151                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
152         }
153         kfree(kvm->arch.guest_pmap);
154
155         kvm_for_each_vcpu(i, vcpu, kvm) {
156                 kvm_arch_vcpu_free(vcpu);
157         }
158
159         mutex_lock(&kvm->lock);
160
161         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
162                 kvm->vcpus[i] = NULL;
163
164         atomic_set(&kvm->online_vcpus, 0);
165
166         mutex_unlock(&kvm->lock);
167 }
168
169 static void kvm_mips_uninit_tlbs(void *arg)
170 {
171         /* Restore wired count */
172         write_c0_wired(0);
173         mtc0_tlbw_hazard();
174         /* Clear out all the TLBs */
175         kvm_local_flush_tlb_all();
176 }
177
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180         kvm_mips_free_vcpus(kvm);
181
182         /* If this is the last instance, restore wired count */
183         if (atomic_dec_return(&kvm_mips_instance) == 0) {
184                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
185                           __func__);
186                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
187         }
188 }
189
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191                         unsigned long arg)
192 {
193         return -ENOIOCTLCMD;
194 }
195
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197                             unsigned long npages)
198 {
199         return 0;
200 }
201
202 int kvm_arch_prepare_memory_region(struct kvm *kvm,
203                                    struct kvm_memory_slot *memslot,
204                                    const struct kvm_userspace_memory_region *mem,
205                                    enum kvm_mr_change change)
206 {
207         return 0;
208 }
209
210 void kvm_arch_commit_memory_region(struct kvm *kvm,
211                                    const struct kvm_userspace_memory_region *mem,
212                                    const struct kvm_memory_slot *old,
213                                    const struct kvm_memory_slot *new,
214                                    enum kvm_mr_change change)
215 {
216         unsigned long npages = 0;
217         int i;
218
219         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
220                   __func__, kvm, mem->slot, mem->guest_phys_addr,
221                   mem->memory_size, mem->userspace_addr);
222
223         /* Setup Guest PMAP table */
224         if (!kvm->arch.guest_pmap) {
225                 if (mem->slot == 0)
226                         npages = mem->memory_size >> PAGE_SHIFT;
227
228                 if (npages) {
229                         kvm->arch.guest_pmap_npages = npages;
230                         kvm->arch.guest_pmap =
231                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
232
233                         if (!kvm->arch.guest_pmap) {
234                                 kvm_err("Failed to allocate guest PMAP\n");
235                                 return;
236                         }
237
238                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
239                                   npages, kvm->arch.guest_pmap);
240
241                         /* Now setup the page table */
242                         for (i = 0; i < npages; i++)
243                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
244                 }
245         }
246 }
247
248 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
249 {
250         int err, size;
251         void *gebase, *p;
252         int i;
253
254         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
255
256         if (!vcpu) {
257                 err = -ENOMEM;
258                 goto out;
259         }
260
261         err = kvm_vcpu_init(vcpu, kvm, id);
262
263         if (err)
264                 goto out_free_cpu;
265
266         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
267
268         /*
269          * Allocate space for host mode exception handlers that handle
270          * guest mode exits
271          */
272         if (cpu_has_veic || cpu_has_vint)
273                 size = 0x200 + VECTORSPACING * 64;
274         else
275                 size = 0x4000;
276
277         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
278
279         if (!gebase) {
280                 err = -ENOMEM;
281                 goto out_uninit_cpu;
282         }
283         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284                   ALIGN(size, PAGE_SIZE), gebase);
285
286         /* Save new ebase */
287         vcpu->arch.guest_ebase = gebase;
288
289         /* Build guest exception vectors dynamically in unmapped memory */
290
291         /* TLB Refill, EXL = 0 */
292         kvm_mips_build_exception(gebase);
293
294         /* General Exception Entry point */
295         kvm_mips_build_exception(gebase + 0x180);
296
297         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
298         for (i = 0; i < 8; i++) {
299                 kvm_debug("L1 Vectored handler @ %p\n",
300                           gebase + 0x200 + (i * VECTORSPACING));
301                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING);
302         }
303
304         /* General exit handler */
305         p = gebase + 0x2000;
306         p = kvm_mips_build_exit(p);
307
308         /* Guest entry routine */
309         vcpu->arch.vcpu_run = p;
310         p = kvm_mips_build_vcpu_run(p);
311
312         /* Invalidate the icache for these ranges */
313         local_flush_icache_range((unsigned long)gebase,
314                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
315
316         /*
317          * Allocate comm page for guest kernel, a TLB will be reserved for
318          * mapping GVA @ 0xFFFF8000 to this page
319          */
320         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
321
322         if (!vcpu->arch.kseg0_commpage) {
323                 err = -ENOMEM;
324                 goto out_free_gebase;
325         }
326
327         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
328         kvm_mips_commpage_init(vcpu);
329
330         /* Init */
331         vcpu->arch.last_sched_cpu = -1;
332
333         /* Start off the timer */
334         kvm_mips_init_count(vcpu);
335
336         return vcpu;
337
338 out_free_gebase:
339         kfree(gebase);
340
341 out_uninit_cpu:
342         kvm_vcpu_uninit(vcpu);
343
344 out_free_cpu:
345         kfree(vcpu);
346
347 out:
348         return ERR_PTR(err);
349 }
350
351 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
352 {
353         hrtimer_cancel(&vcpu->arch.comparecount_timer);
354
355         kvm_vcpu_uninit(vcpu);
356
357         kvm_mips_dump_stats(vcpu);
358
359         kfree(vcpu->arch.guest_ebase);
360         kfree(vcpu->arch.kseg0_commpage);
361         kfree(vcpu);
362 }
363
364 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366         kvm_arch_vcpu_free(vcpu);
367 }
368
369 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
370                                         struct kvm_guest_debug *dbg)
371 {
372         return -ENOIOCTLCMD;
373 }
374
375 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
376 {
377         int r = 0;
378         sigset_t sigsaved;
379
380         if (vcpu->sigset_active)
381                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
382
383         if (vcpu->mmio_needed) {
384                 if (!vcpu->mmio_is_write)
385                         kvm_mips_complete_mmio_load(vcpu, run);
386                 vcpu->mmio_needed = 0;
387         }
388
389         lose_fpu(1);
390
391         local_irq_disable();
392         /* Check if we have any exceptions/interrupts pending */
393         kvm_mips_deliver_interrupts(vcpu,
394                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
395
396         guest_enter_irqoff();
397
398         /* Disable hardware page table walking while in guest */
399         htw_stop();
400
401         trace_kvm_enter(vcpu);
402         r = vcpu->arch.vcpu_run(run, vcpu);
403         trace_kvm_out(vcpu);
404
405         /* Re-enable HTW before enabling interrupts */
406         htw_start();
407
408         guest_exit_irqoff();
409         local_irq_enable();
410
411         if (vcpu->sigset_active)
412                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
413
414         return r;
415 }
416
417 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
418                              struct kvm_mips_interrupt *irq)
419 {
420         int intr = (int)irq->irq;
421         struct kvm_vcpu *dvcpu = NULL;
422
423         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
424                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
425                           (int)intr);
426
427         if (irq->cpu == -1)
428                 dvcpu = vcpu;
429         else
430                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
431
432         if (intr == 2 || intr == 3 || intr == 4) {
433                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
434
435         } else if (intr == -2 || intr == -3 || intr == -4) {
436                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
437         } else {
438                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
439                         irq->cpu, irq->irq);
440                 return -EINVAL;
441         }
442
443         dvcpu->arch.wait = 0;
444
445         if (swait_active(&dvcpu->wq))
446                 swake_up(&dvcpu->wq);
447
448         return 0;
449 }
450
451 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
452                                     struct kvm_mp_state *mp_state)
453 {
454         return -ENOIOCTLCMD;
455 }
456
457 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
458                                     struct kvm_mp_state *mp_state)
459 {
460         return -ENOIOCTLCMD;
461 }
462
463 static u64 kvm_mips_get_one_regs[] = {
464         KVM_REG_MIPS_R0,
465         KVM_REG_MIPS_R1,
466         KVM_REG_MIPS_R2,
467         KVM_REG_MIPS_R3,
468         KVM_REG_MIPS_R4,
469         KVM_REG_MIPS_R5,
470         KVM_REG_MIPS_R6,
471         KVM_REG_MIPS_R7,
472         KVM_REG_MIPS_R8,
473         KVM_REG_MIPS_R9,
474         KVM_REG_MIPS_R10,
475         KVM_REG_MIPS_R11,
476         KVM_REG_MIPS_R12,
477         KVM_REG_MIPS_R13,
478         KVM_REG_MIPS_R14,
479         KVM_REG_MIPS_R15,
480         KVM_REG_MIPS_R16,
481         KVM_REG_MIPS_R17,
482         KVM_REG_MIPS_R18,
483         KVM_REG_MIPS_R19,
484         KVM_REG_MIPS_R20,
485         KVM_REG_MIPS_R21,
486         KVM_REG_MIPS_R22,
487         KVM_REG_MIPS_R23,
488         KVM_REG_MIPS_R24,
489         KVM_REG_MIPS_R25,
490         KVM_REG_MIPS_R26,
491         KVM_REG_MIPS_R27,
492         KVM_REG_MIPS_R28,
493         KVM_REG_MIPS_R29,
494         KVM_REG_MIPS_R30,
495         KVM_REG_MIPS_R31,
496
497         KVM_REG_MIPS_HI,
498         KVM_REG_MIPS_LO,
499         KVM_REG_MIPS_PC,
500
501         KVM_REG_MIPS_CP0_INDEX,
502         KVM_REG_MIPS_CP0_CONTEXT,
503         KVM_REG_MIPS_CP0_USERLOCAL,
504         KVM_REG_MIPS_CP0_PAGEMASK,
505         KVM_REG_MIPS_CP0_WIRED,
506         KVM_REG_MIPS_CP0_HWRENA,
507         KVM_REG_MIPS_CP0_BADVADDR,
508         KVM_REG_MIPS_CP0_COUNT,
509         KVM_REG_MIPS_CP0_ENTRYHI,
510         KVM_REG_MIPS_CP0_COMPARE,
511         KVM_REG_MIPS_CP0_STATUS,
512         KVM_REG_MIPS_CP0_CAUSE,
513         KVM_REG_MIPS_CP0_EPC,
514         KVM_REG_MIPS_CP0_PRID,
515         KVM_REG_MIPS_CP0_CONFIG,
516         KVM_REG_MIPS_CP0_CONFIG1,
517         KVM_REG_MIPS_CP0_CONFIG2,
518         KVM_REG_MIPS_CP0_CONFIG3,
519         KVM_REG_MIPS_CP0_CONFIG4,
520         KVM_REG_MIPS_CP0_CONFIG5,
521         KVM_REG_MIPS_CP0_CONFIG7,
522         KVM_REG_MIPS_CP0_ERROREPC,
523
524         KVM_REG_MIPS_COUNT_CTL,
525         KVM_REG_MIPS_COUNT_RESUME,
526         KVM_REG_MIPS_COUNT_HZ,
527 };
528
529 static u64 kvm_mips_get_one_regs_fpu[] = {
530         KVM_REG_MIPS_FCR_IR,
531         KVM_REG_MIPS_FCR_CSR,
532 };
533
534 static u64 kvm_mips_get_one_regs_msa[] = {
535         KVM_REG_MIPS_MSA_IR,
536         KVM_REG_MIPS_MSA_CSR,
537 };
538
539 static u64 kvm_mips_get_one_regs_kscratch[] = {
540         KVM_REG_MIPS_CP0_KSCRATCH1,
541         KVM_REG_MIPS_CP0_KSCRATCH2,
542         KVM_REG_MIPS_CP0_KSCRATCH3,
543         KVM_REG_MIPS_CP0_KSCRATCH4,
544         KVM_REG_MIPS_CP0_KSCRATCH5,
545         KVM_REG_MIPS_CP0_KSCRATCH6,
546 };
547
548 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
549 {
550         unsigned long ret;
551
552         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
553         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
554                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
555                 /* odd doubles */
556                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
557                         ret += 16;
558         }
559         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
560                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
561         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
562         ret += kvm_mips_callbacks->num_regs(vcpu);
563
564         return ret;
565 }
566
567 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
568 {
569         u64 index;
570         unsigned int i;
571
572         if (copy_to_user(indices, kvm_mips_get_one_regs,
573                          sizeof(kvm_mips_get_one_regs)))
574                 return -EFAULT;
575         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
576
577         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
578                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
579                                  sizeof(kvm_mips_get_one_regs_fpu)))
580                         return -EFAULT;
581                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
582
583                 for (i = 0; i < 32; ++i) {
584                         index = KVM_REG_MIPS_FPR_32(i);
585                         if (copy_to_user(indices, &index, sizeof(index)))
586                                 return -EFAULT;
587                         ++indices;
588
589                         /* skip odd doubles if no F64 */
590                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
591                                 continue;
592
593                         index = KVM_REG_MIPS_FPR_64(i);
594                         if (copy_to_user(indices, &index, sizeof(index)))
595                                 return -EFAULT;
596                         ++indices;
597                 }
598         }
599
600         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
601                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
602                                  sizeof(kvm_mips_get_one_regs_msa)))
603                         return -EFAULT;
604                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
605
606                 for (i = 0; i < 32; ++i) {
607                         index = KVM_REG_MIPS_VEC_128(i);
608                         if (copy_to_user(indices, &index, sizeof(index)))
609                                 return -EFAULT;
610                         ++indices;
611                 }
612         }
613
614         for (i = 0; i < 6; ++i) {
615                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
616                         continue;
617
618                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
619                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
620                         return -EFAULT;
621                 ++indices;
622         }
623
624         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
625 }
626
627 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
628                             const struct kvm_one_reg *reg)
629 {
630         struct mips_coproc *cop0 = vcpu->arch.cop0;
631         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
632         int ret;
633         s64 v;
634         s64 vs[2];
635         unsigned int idx;
636
637         switch (reg->id) {
638         /* General purpose registers */
639         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
640                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
641                 break;
642         case KVM_REG_MIPS_HI:
643                 v = (long)vcpu->arch.hi;
644                 break;
645         case KVM_REG_MIPS_LO:
646                 v = (long)vcpu->arch.lo;
647                 break;
648         case KVM_REG_MIPS_PC:
649                 v = (long)vcpu->arch.pc;
650                 break;
651
652         /* Floating point registers */
653         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
654                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
655                         return -EINVAL;
656                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
657                 /* Odd singles in top of even double when FR=0 */
658                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
659                         v = get_fpr32(&fpu->fpr[idx], 0);
660                 else
661                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
662                 break;
663         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
664                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
665                         return -EINVAL;
666                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
667                 /* Can't access odd doubles in FR=0 mode */
668                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
669                         return -EINVAL;
670                 v = get_fpr64(&fpu->fpr[idx], 0);
671                 break;
672         case KVM_REG_MIPS_FCR_IR:
673                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
674                         return -EINVAL;
675                 v = boot_cpu_data.fpu_id;
676                 break;
677         case KVM_REG_MIPS_FCR_CSR:
678                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
679                         return -EINVAL;
680                 v = fpu->fcr31;
681                 break;
682
683         /* MIPS SIMD Architecture (MSA) registers */
684         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
685                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
686                         return -EINVAL;
687                 /* Can't access MSA registers in FR=0 mode */
688                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
689                         return -EINVAL;
690                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
691 #ifdef CONFIG_CPU_LITTLE_ENDIAN
692                 /* least significant byte first */
693                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
694                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
695 #else
696                 /* most significant byte first */
697                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
698                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
699 #endif
700                 break;
701         case KVM_REG_MIPS_MSA_IR:
702                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
703                         return -EINVAL;
704                 v = boot_cpu_data.msa_id;
705                 break;
706         case KVM_REG_MIPS_MSA_CSR:
707                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
708                         return -EINVAL;
709                 v = fpu->msacsr;
710                 break;
711
712         /* Co-processor 0 registers */
713         case KVM_REG_MIPS_CP0_INDEX:
714                 v = (long)kvm_read_c0_guest_index(cop0);
715                 break;
716         case KVM_REG_MIPS_CP0_CONTEXT:
717                 v = (long)kvm_read_c0_guest_context(cop0);
718                 break;
719         case KVM_REG_MIPS_CP0_USERLOCAL:
720                 v = (long)kvm_read_c0_guest_userlocal(cop0);
721                 break;
722         case KVM_REG_MIPS_CP0_PAGEMASK:
723                 v = (long)kvm_read_c0_guest_pagemask(cop0);
724                 break;
725         case KVM_REG_MIPS_CP0_WIRED:
726                 v = (long)kvm_read_c0_guest_wired(cop0);
727                 break;
728         case KVM_REG_MIPS_CP0_HWRENA:
729                 v = (long)kvm_read_c0_guest_hwrena(cop0);
730                 break;
731         case KVM_REG_MIPS_CP0_BADVADDR:
732                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
733                 break;
734         case KVM_REG_MIPS_CP0_ENTRYHI:
735                 v = (long)kvm_read_c0_guest_entryhi(cop0);
736                 break;
737         case KVM_REG_MIPS_CP0_COMPARE:
738                 v = (long)kvm_read_c0_guest_compare(cop0);
739                 break;
740         case KVM_REG_MIPS_CP0_STATUS:
741                 v = (long)kvm_read_c0_guest_status(cop0);
742                 break;
743         case KVM_REG_MIPS_CP0_CAUSE:
744                 v = (long)kvm_read_c0_guest_cause(cop0);
745                 break;
746         case KVM_REG_MIPS_CP0_EPC:
747                 v = (long)kvm_read_c0_guest_epc(cop0);
748                 break;
749         case KVM_REG_MIPS_CP0_PRID:
750                 v = (long)kvm_read_c0_guest_prid(cop0);
751                 break;
752         case KVM_REG_MIPS_CP0_CONFIG:
753                 v = (long)kvm_read_c0_guest_config(cop0);
754                 break;
755         case KVM_REG_MIPS_CP0_CONFIG1:
756                 v = (long)kvm_read_c0_guest_config1(cop0);
757                 break;
758         case KVM_REG_MIPS_CP0_CONFIG2:
759                 v = (long)kvm_read_c0_guest_config2(cop0);
760                 break;
761         case KVM_REG_MIPS_CP0_CONFIG3:
762                 v = (long)kvm_read_c0_guest_config3(cop0);
763                 break;
764         case KVM_REG_MIPS_CP0_CONFIG4:
765                 v = (long)kvm_read_c0_guest_config4(cop0);
766                 break;
767         case KVM_REG_MIPS_CP0_CONFIG5:
768                 v = (long)kvm_read_c0_guest_config5(cop0);
769                 break;
770         case KVM_REG_MIPS_CP0_CONFIG7:
771                 v = (long)kvm_read_c0_guest_config7(cop0);
772                 break;
773         case KVM_REG_MIPS_CP0_ERROREPC:
774                 v = (long)kvm_read_c0_guest_errorepc(cop0);
775                 break;
776         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
777                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
778                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
779                         return -EINVAL;
780                 switch (idx) {
781                 case 2:
782                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
783                         break;
784                 case 3:
785                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
786                         break;
787                 case 4:
788                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
789                         break;
790                 case 5:
791                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
792                         break;
793                 case 6:
794                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
795                         break;
796                 case 7:
797                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
798                         break;
799                 }
800                 break;
801         /* registers to be handled specially */
802         default:
803                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
804                 if (ret)
805                         return ret;
806                 break;
807         }
808         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
809                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
810
811                 return put_user(v, uaddr64);
812         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
813                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
814                 u32 v32 = (u32)v;
815
816                 return put_user(v32, uaddr32);
817         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
818                 void __user *uaddr = (void __user *)(long)reg->addr;
819
820                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
821         } else {
822                 return -EINVAL;
823         }
824 }
825
826 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
827                             const struct kvm_one_reg *reg)
828 {
829         struct mips_coproc *cop0 = vcpu->arch.cop0;
830         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
831         s64 v;
832         s64 vs[2];
833         unsigned int idx;
834
835         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
836                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
837
838                 if (get_user(v, uaddr64) != 0)
839                         return -EFAULT;
840         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
841                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
842                 s32 v32;
843
844                 if (get_user(v32, uaddr32) != 0)
845                         return -EFAULT;
846                 v = (s64)v32;
847         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
848                 void __user *uaddr = (void __user *)(long)reg->addr;
849
850                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
851         } else {
852                 return -EINVAL;
853         }
854
855         switch (reg->id) {
856         /* General purpose registers */
857         case KVM_REG_MIPS_R0:
858                 /* Silently ignore requests to set $0 */
859                 break;
860         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
861                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
862                 break;
863         case KVM_REG_MIPS_HI:
864                 vcpu->arch.hi = v;
865                 break;
866         case KVM_REG_MIPS_LO:
867                 vcpu->arch.lo = v;
868                 break;
869         case KVM_REG_MIPS_PC:
870                 vcpu->arch.pc = v;
871                 break;
872
873         /* Floating point registers */
874         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
875                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
876                         return -EINVAL;
877                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
878                 /* Odd singles in top of even double when FR=0 */
879                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
880                         set_fpr32(&fpu->fpr[idx], 0, v);
881                 else
882                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
883                 break;
884         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
885                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
886                         return -EINVAL;
887                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
888                 /* Can't access odd doubles in FR=0 mode */
889                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
890                         return -EINVAL;
891                 set_fpr64(&fpu->fpr[idx], 0, v);
892                 break;
893         case KVM_REG_MIPS_FCR_IR:
894                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
895                         return -EINVAL;
896                 /* Read-only */
897                 break;
898         case KVM_REG_MIPS_FCR_CSR:
899                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
900                         return -EINVAL;
901                 fpu->fcr31 = v;
902                 break;
903
904         /* MIPS SIMD Architecture (MSA) registers */
905         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
906                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
907                         return -EINVAL;
908                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
909 #ifdef CONFIG_CPU_LITTLE_ENDIAN
910                 /* least significant byte first */
911                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
912                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
913 #else
914                 /* most significant byte first */
915                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
916                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
917 #endif
918                 break;
919         case KVM_REG_MIPS_MSA_IR:
920                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
921                         return -EINVAL;
922                 /* Read-only */
923                 break;
924         case KVM_REG_MIPS_MSA_CSR:
925                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
926                         return -EINVAL;
927                 fpu->msacsr = v;
928                 break;
929
930         /* Co-processor 0 registers */
931         case KVM_REG_MIPS_CP0_INDEX:
932                 kvm_write_c0_guest_index(cop0, v);
933                 break;
934         case KVM_REG_MIPS_CP0_CONTEXT:
935                 kvm_write_c0_guest_context(cop0, v);
936                 break;
937         case KVM_REG_MIPS_CP0_USERLOCAL:
938                 kvm_write_c0_guest_userlocal(cop0, v);
939                 break;
940         case KVM_REG_MIPS_CP0_PAGEMASK:
941                 kvm_write_c0_guest_pagemask(cop0, v);
942                 break;
943         case KVM_REG_MIPS_CP0_WIRED:
944                 kvm_write_c0_guest_wired(cop0, v);
945                 break;
946         case KVM_REG_MIPS_CP0_HWRENA:
947                 kvm_write_c0_guest_hwrena(cop0, v);
948                 break;
949         case KVM_REG_MIPS_CP0_BADVADDR:
950                 kvm_write_c0_guest_badvaddr(cop0, v);
951                 break;
952         case KVM_REG_MIPS_CP0_ENTRYHI:
953                 kvm_write_c0_guest_entryhi(cop0, v);
954                 break;
955         case KVM_REG_MIPS_CP0_STATUS:
956                 kvm_write_c0_guest_status(cop0, v);
957                 break;
958         case KVM_REG_MIPS_CP0_EPC:
959                 kvm_write_c0_guest_epc(cop0, v);
960                 break;
961         case KVM_REG_MIPS_CP0_PRID:
962                 kvm_write_c0_guest_prid(cop0, v);
963                 break;
964         case KVM_REG_MIPS_CP0_ERROREPC:
965                 kvm_write_c0_guest_errorepc(cop0, v);
966                 break;
967         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
968                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
969                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
970                         return -EINVAL;
971                 switch (idx) {
972                 case 2:
973                         kvm_write_c0_guest_kscratch1(cop0, v);
974                         break;
975                 case 3:
976                         kvm_write_c0_guest_kscratch2(cop0, v);
977                         break;
978                 case 4:
979                         kvm_write_c0_guest_kscratch3(cop0, v);
980                         break;
981                 case 5:
982                         kvm_write_c0_guest_kscratch4(cop0, v);
983                         break;
984                 case 6:
985                         kvm_write_c0_guest_kscratch5(cop0, v);
986                         break;
987                 case 7:
988                         kvm_write_c0_guest_kscratch6(cop0, v);
989                         break;
990                 }
991                 break;
992         /* registers to be handled specially */
993         default:
994                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
995         }
996         return 0;
997 }
998
999 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1000                                      struct kvm_enable_cap *cap)
1001 {
1002         int r = 0;
1003
1004         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1005                 return -EINVAL;
1006         if (cap->flags)
1007                 return -EINVAL;
1008         if (cap->args[0])
1009                 return -EINVAL;
1010
1011         switch (cap->cap) {
1012         case KVM_CAP_MIPS_FPU:
1013                 vcpu->arch.fpu_enabled = true;
1014                 break;
1015         case KVM_CAP_MIPS_MSA:
1016                 vcpu->arch.msa_enabled = true;
1017                 break;
1018         default:
1019                 r = -EINVAL;
1020                 break;
1021         }
1022
1023         return r;
1024 }
1025
1026 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1027                          unsigned long arg)
1028 {
1029         struct kvm_vcpu *vcpu = filp->private_data;
1030         void __user *argp = (void __user *)arg;
1031         long r;
1032
1033         switch (ioctl) {
1034         case KVM_SET_ONE_REG:
1035         case KVM_GET_ONE_REG: {
1036                 struct kvm_one_reg reg;
1037
1038                 if (copy_from_user(&reg, argp, sizeof(reg)))
1039                         return -EFAULT;
1040                 if (ioctl == KVM_SET_ONE_REG)
1041                         return kvm_mips_set_reg(vcpu, &reg);
1042                 else
1043                         return kvm_mips_get_reg(vcpu, &reg);
1044         }
1045         case KVM_GET_REG_LIST: {
1046                 struct kvm_reg_list __user *user_list = argp;
1047                 struct kvm_reg_list reg_list;
1048                 unsigned n;
1049
1050                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1051                         return -EFAULT;
1052                 n = reg_list.n;
1053                 reg_list.n = kvm_mips_num_regs(vcpu);
1054                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1055                         return -EFAULT;
1056                 if (n < reg_list.n)
1057                         return -E2BIG;
1058                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1059         }
1060         case KVM_NMI:
1061                 /* Treat the NMI as a CPU reset */
1062                 r = kvm_mips_reset_vcpu(vcpu);
1063                 break;
1064         case KVM_INTERRUPT:
1065                 {
1066                         struct kvm_mips_interrupt irq;
1067
1068                         r = -EFAULT;
1069                         if (copy_from_user(&irq, argp, sizeof(irq)))
1070                                 goto out;
1071
1072                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1073                                   irq.irq);
1074
1075                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1076                         break;
1077                 }
1078         case KVM_ENABLE_CAP: {
1079                 struct kvm_enable_cap cap;
1080
1081                 r = -EFAULT;
1082                 if (copy_from_user(&cap, argp, sizeof(cap)))
1083                         goto out;
1084                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1085                 break;
1086         }
1087         default:
1088                 r = -ENOIOCTLCMD;
1089         }
1090
1091 out:
1092         return r;
1093 }
1094
1095 /* Get (and clear) the dirty memory log for a memory slot. */
1096 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1097 {
1098         struct kvm_memslots *slots;
1099         struct kvm_memory_slot *memslot;
1100         unsigned long ga, ga_end;
1101         int is_dirty = 0;
1102         int r;
1103         unsigned long n;
1104
1105         mutex_lock(&kvm->slots_lock);
1106
1107         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1108         if (r)
1109                 goto out;
1110
1111         /* If nothing is dirty, don't bother messing with page tables. */
1112         if (is_dirty) {
1113                 slots = kvm_memslots(kvm);
1114                 memslot = id_to_memslot(slots, log->slot);
1115
1116                 ga = memslot->base_gfn << PAGE_SHIFT;
1117                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1118
1119                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1120                          ga_end);
1121
1122                 n = kvm_dirty_bitmap_bytes(memslot);
1123                 memset(memslot->dirty_bitmap, 0, n);
1124         }
1125
1126         r = 0;
1127 out:
1128         mutex_unlock(&kvm->slots_lock);
1129         return r;
1130
1131 }
1132
1133 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1134 {
1135         long r;
1136
1137         switch (ioctl) {
1138         default:
1139                 r = -ENOIOCTLCMD;
1140         }
1141
1142         return r;
1143 }
1144
1145 int kvm_arch_init(void *opaque)
1146 {
1147         if (kvm_mips_callbacks) {
1148                 kvm_err("kvm: module already exists\n");
1149                 return -EEXIST;
1150         }
1151
1152         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1153 }
1154
1155 void kvm_arch_exit(void)
1156 {
1157         kvm_mips_callbacks = NULL;
1158 }
1159
1160 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1161                                   struct kvm_sregs *sregs)
1162 {
1163         return -ENOIOCTLCMD;
1164 }
1165
1166 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1167                                   struct kvm_sregs *sregs)
1168 {
1169         return -ENOIOCTLCMD;
1170 }
1171
1172 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1173 {
1174 }
1175
1176 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1177 {
1178         return -ENOIOCTLCMD;
1179 }
1180
1181 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1182 {
1183         return -ENOIOCTLCMD;
1184 }
1185
1186 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1187 {
1188         return VM_FAULT_SIGBUS;
1189 }
1190
1191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1192 {
1193         int r;
1194
1195         switch (ext) {
1196         case KVM_CAP_ONE_REG:
1197         case KVM_CAP_ENABLE_CAP:
1198                 r = 1;
1199                 break;
1200         case KVM_CAP_COALESCED_MMIO:
1201                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1202                 break;
1203         case KVM_CAP_MIPS_FPU:
1204                 /* We don't handle systems with inconsistent cpu_has_fpu */
1205                 r = !!raw_cpu_has_fpu;
1206                 break;
1207         case KVM_CAP_MIPS_MSA:
1208                 /*
1209                  * We don't support MSA vector partitioning yet:
1210                  * 1) It would require explicit support which can't be tested
1211                  *    yet due to lack of support in current hardware.
1212                  * 2) It extends the state that would need to be saved/restored
1213                  *    by e.g. QEMU for migration.
1214                  *
1215                  * When vector partitioning hardware becomes available, support
1216                  * could be added by requiring a flag when enabling
1217                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1218                  * to save/restore the appropriate extra state.
1219                  */
1220                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1221                 break;
1222         default:
1223                 r = 0;
1224                 break;
1225         }
1226         return r;
1227 }
1228
1229 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1230 {
1231         return kvm_mips_pending_timer(vcpu);
1232 }
1233
1234 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1235 {
1236         int i;
1237         struct mips_coproc *cop0;
1238
1239         if (!vcpu)
1240                 return -1;
1241
1242         kvm_debug("VCPU Register Dump:\n");
1243         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1244         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1245
1246         for (i = 0; i < 32; i += 4) {
1247                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1248                        vcpu->arch.gprs[i],
1249                        vcpu->arch.gprs[i + 1],
1250                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1251         }
1252         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1253         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1254
1255         cop0 = vcpu->arch.cop0;
1256         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1257                   kvm_read_c0_guest_status(cop0),
1258                   kvm_read_c0_guest_cause(cop0));
1259
1260         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1261
1262         return 0;
1263 }
1264
1265 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1266 {
1267         int i;
1268
1269         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1270                 vcpu->arch.gprs[i] = regs->gpr[i];
1271         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1272         vcpu->arch.hi = regs->hi;
1273         vcpu->arch.lo = regs->lo;
1274         vcpu->arch.pc = regs->pc;
1275
1276         return 0;
1277 }
1278
1279 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1280 {
1281         int i;
1282
1283         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1284                 regs->gpr[i] = vcpu->arch.gprs[i];
1285
1286         regs->hi = vcpu->arch.hi;
1287         regs->lo = vcpu->arch.lo;
1288         regs->pc = vcpu->arch.pc;
1289
1290         return 0;
1291 }
1292
1293 static void kvm_mips_comparecount_func(unsigned long data)
1294 {
1295         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1296
1297         kvm_mips_callbacks->queue_timer_int(vcpu);
1298
1299         vcpu->arch.wait = 0;
1300         if (swait_active(&vcpu->wq))
1301                 swake_up(&vcpu->wq);
1302 }
1303
1304 /* low level hrtimer wake routine */
1305 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1306 {
1307         struct kvm_vcpu *vcpu;
1308
1309         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1310         kvm_mips_comparecount_func((unsigned long) vcpu);
1311         return kvm_mips_count_timeout(vcpu);
1312 }
1313
1314 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1315 {
1316         kvm_mips_callbacks->vcpu_init(vcpu);
1317         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1318                      HRTIMER_MODE_REL);
1319         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1320         return 0;
1321 }
1322
1323 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1324                                   struct kvm_translation *tr)
1325 {
1326         return 0;
1327 }
1328
1329 /* Initial guest state */
1330 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1331 {
1332         return kvm_mips_callbacks->vcpu_setup(vcpu);
1333 }
1334
1335 static void kvm_mips_set_c0_status(void)
1336 {
1337         u32 status = read_c0_status();
1338
1339         if (cpu_has_dsp)
1340                 status |= (ST0_MX);
1341
1342         write_c0_status(status);
1343         ehb();
1344 }
1345
1346 /*
1347  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1348  */
1349 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1350 {
1351         u32 cause = vcpu->arch.host_cp0_cause;
1352         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1353         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1354         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1355         enum emulation_result er = EMULATE_DONE;
1356         int ret = RESUME_GUEST;
1357
1358         /* re-enable HTW before enabling interrupts */
1359         htw_start();
1360
1361         /* Set a default exit reason */
1362         run->exit_reason = KVM_EXIT_UNKNOWN;
1363         run->ready_for_interrupt_injection = 1;
1364
1365         /*
1366          * Set the appropriate status bits based on host CPU features,
1367          * before we hit the scheduler
1368          */
1369         kvm_mips_set_c0_status();
1370
1371         local_irq_enable();
1372
1373         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1374                         cause, opc, run, vcpu);
1375         trace_kvm_exit(vcpu, exccode);
1376
1377         /*
1378          * Do a privilege check, if in UM most of these exit conditions end up
1379          * causing an exception to be delivered to the Guest Kernel
1380          */
1381         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1382         if (er == EMULATE_PRIV_FAIL) {
1383                 goto skip_emul;
1384         } else if (er == EMULATE_FAIL) {
1385                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1386                 ret = RESUME_HOST;
1387                 goto skip_emul;
1388         }
1389
1390         switch (exccode) {
1391         case EXCCODE_INT:
1392                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1393
1394                 ++vcpu->stat.int_exits;
1395
1396                 if (need_resched())
1397                         cond_resched();
1398
1399                 ret = RESUME_GUEST;
1400                 break;
1401
1402         case EXCCODE_CPU:
1403                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1404
1405                 ++vcpu->stat.cop_unusable_exits;
1406                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1407                 /* XXXKYMA: Might need to return to user space */
1408                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1409                         ret = RESUME_HOST;
1410                 break;
1411
1412         case EXCCODE_MOD:
1413                 ++vcpu->stat.tlbmod_exits;
1414                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1415                 break;
1416
1417         case EXCCODE_TLBS:
1418                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1419                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1420                           badvaddr);
1421
1422                 ++vcpu->stat.tlbmiss_st_exits;
1423                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1424                 break;
1425
1426         case EXCCODE_TLBL:
1427                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1428                           cause, opc, badvaddr);
1429
1430                 ++vcpu->stat.tlbmiss_ld_exits;
1431                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1432                 break;
1433
1434         case EXCCODE_ADES:
1435                 ++vcpu->stat.addrerr_st_exits;
1436                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1437                 break;
1438
1439         case EXCCODE_ADEL:
1440                 ++vcpu->stat.addrerr_ld_exits;
1441                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1442                 break;
1443
1444         case EXCCODE_SYS:
1445                 ++vcpu->stat.syscall_exits;
1446                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1447                 break;
1448
1449         case EXCCODE_RI:
1450                 ++vcpu->stat.resvd_inst_exits;
1451                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1452                 break;
1453
1454         case EXCCODE_BP:
1455                 ++vcpu->stat.break_inst_exits;
1456                 ret = kvm_mips_callbacks->handle_break(vcpu);
1457                 break;
1458
1459         case EXCCODE_TR:
1460                 ++vcpu->stat.trap_inst_exits;
1461                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1462                 break;
1463
1464         case EXCCODE_MSAFPE:
1465                 ++vcpu->stat.msa_fpe_exits;
1466                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1467                 break;
1468
1469         case EXCCODE_FPE:
1470                 ++vcpu->stat.fpe_exits;
1471                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1472                 break;
1473
1474         case EXCCODE_MSADIS:
1475                 ++vcpu->stat.msa_disabled_exits;
1476                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1477                 break;
1478
1479         default:
1480                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1481                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1482                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1483                 kvm_arch_vcpu_dump_regs(vcpu);
1484                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1485                 ret = RESUME_HOST;
1486                 break;
1487
1488         }
1489
1490 skip_emul:
1491         local_irq_disable();
1492
1493         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1494                 kvm_mips_deliver_interrupts(vcpu, cause);
1495
1496         if (!(ret & RESUME_HOST)) {
1497                 /* Only check for signals if not already exiting to userspace */
1498                 if (signal_pending(current)) {
1499                         run->exit_reason = KVM_EXIT_INTR;
1500                         ret = (-EINTR << 2) | RESUME_HOST;
1501                         ++vcpu->stat.signal_exits;
1502                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1503                 }
1504         }
1505
1506         if (ret == RESUME_GUEST) {
1507                 trace_kvm_reenter(vcpu);
1508
1509                 /*
1510                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1511                  * is live), restore FCR31 / MSACSR.
1512                  *
1513                  * This should be before returning to the guest exception
1514                  * vector, as it may well cause an [MSA] FP exception if there
1515                  * are pending exception bits unmasked. (see
1516                  * kvm_mips_csr_die_notifier() for how that is handled).
1517                  */
1518                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1519                     read_c0_status() & ST0_CU1)
1520                         __kvm_restore_fcsr(&vcpu->arch);
1521
1522                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1523                     read_c0_config5() & MIPS_CONF5_MSAEN)
1524                         __kvm_restore_msacsr(&vcpu->arch);
1525         }
1526
1527         /* Disable HTW before returning to guest or host */
1528         htw_stop();
1529
1530         return ret;
1531 }
1532
1533 /* Enable FPU for guest and restore context */
1534 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1535 {
1536         struct mips_coproc *cop0 = vcpu->arch.cop0;
1537         unsigned int sr, cfg5;
1538
1539         preempt_disable();
1540
1541         sr = kvm_read_c0_guest_status(cop0);
1542
1543         /*
1544          * If MSA state is already live, it is undefined how it interacts with
1545          * FR=0 FPU state, and we don't want to hit reserved instruction
1546          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1547          * play it safe and save it first.
1548          *
1549          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1550          * get called when guest CU1 is set, however we can't trust the guest
1551          * not to clobber the status register directly via the commpage.
1552          */
1553         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1554             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1555                 kvm_lose_fpu(vcpu);
1556
1557         /*
1558          * Enable FPU for guest
1559          * We set FR and FRE according to guest context
1560          */
1561         change_c0_status(ST0_CU1 | ST0_FR, sr);
1562         if (cpu_has_fre) {
1563                 cfg5 = kvm_read_c0_guest_config5(cop0);
1564                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1565         }
1566         enable_fpu_hazard();
1567
1568         /* If guest FPU state not active, restore it now */
1569         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1570                 __kvm_restore_fpu(&vcpu->arch);
1571                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1572                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1573         } else {
1574                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1575         }
1576
1577         preempt_enable();
1578 }
1579
1580 #ifdef CONFIG_CPU_HAS_MSA
1581 /* Enable MSA for guest and restore context */
1582 void kvm_own_msa(struct kvm_vcpu *vcpu)
1583 {
1584         struct mips_coproc *cop0 = vcpu->arch.cop0;
1585         unsigned int sr, cfg5;
1586
1587         preempt_disable();
1588
1589         /*
1590          * Enable FPU if enabled in guest, since we're restoring FPU context
1591          * anyway. We set FR and FRE according to guest context.
1592          */
1593         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1594                 sr = kvm_read_c0_guest_status(cop0);
1595
1596                 /*
1597                  * If FR=0 FPU state is already live, it is undefined how it
1598                  * interacts with MSA state, so play it safe and save it first.
1599                  */
1600                 if (!(sr & ST0_FR) &&
1601                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1602                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1603                         kvm_lose_fpu(vcpu);
1604
1605                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1606                 if (sr & ST0_CU1 && cpu_has_fre) {
1607                         cfg5 = kvm_read_c0_guest_config5(cop0);
1608                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1609                 }
1610         }
1611
1612         /* Enable MSA for guest */
1613         set_c0_config5(MIPS_CONF5_MSAEN);
1614         enable_fpu_hazard();
1615
1616         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1617         case KVM_MIPS_AUX_FPU:
1618                 /*
1619                  * Guest FPU state already loaded, only restore upper MSA state
1620                  */
1621                 __kvm_restore_msa_upper(&vcpu->arch);
1622                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1623                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1624                 break;
1625         case 0:
1626                 /* Neither FPU or MSA already active, restore full MSA state */
1627                 __kvm_restore_msa(&vcpu->arch);
1628                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1629                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1630                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1631                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1632                               KVM_TRACE_AUX_FPU_MSA);
1633                 break;
1634         default:
1635                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1636                 break;
1637         }
1638
1639         preempt_enable();
1640 }
1641 #endif
1642
1643 /* Drop FPU & MSA without saving it */
1644 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1645 {
1646         preempt_disable();
1647         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1648                 disable_msa();
1649                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1650                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1651         }
1652         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1653                 clear_c0_status(ST0_CU1 | ST0_FR);
1654                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1655                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1656         }
1657         preempt_enable();
1658 }
1659
1660 /* Save and disable FPU & MSA */
1661 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1662 {
1663         /*
1664          * FPU & MSA get disabled in root context (hardware) when it is disabled
1665          * in guest context (software), but the register state in the hardware
1666          * may still be in use. This is why we explicitly re-enable the hardware
1667          * before saving.
1668          */
1669
1670         preempt_disable();
1671         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1672                 set_c0_config5(MIPS_CONF5_MSAEN);
1673                 enable_fpu_hazard();
1674
1675                 __kvm_save_msa(&vcpu->arch);
1676                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1677
1678                 /* Disable MSA & FPU */
1679                 disable_msa();
1680                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1681                         clear_c0_status(ST0_CU1 | ST0_FR);
1682                         disable_fpu_hazard();
1683                 }
1684                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1685         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1686                 set_c0_status(ST0_CU1);
1687                 enable_fpu_hazard();
1688
1689                 __kvm_save_fpu(&vcpu->arch);
1690                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1691                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1692
1693                 /* Disable FPU */
1694                 clear_c0_status(ST0_CU1 | ST0_FR);
1695                 disable_fpu_hazard();
1696         }
1697         preempt_enable();
1698 }
1699
1700 /*
1701  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1702  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1703  * exception if cause bits are set in the value being written.
1704  */
1705 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1706                                    unsigned long cmd, void *ptr)
1707 {
1708         struct die_args *args = (struct die_args *)ptr;
1709         struct pt_regs *regs = args->regs;
1710         unsigned long pc;
1711
1712         /* Only interested in FPE and MSAFPE */
1713         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1714                 return NOTIFY_DONE;
1715
1716         /* Return immediately if guest context isn't active */
1717         if (!(current->flags & PF_VCPU))
1718                 return NOTIFY_DONE;
1719
1720         /* Should never get here from user mode */
1721         BUG_ON(user_mode(regs));
1722
1723         pc = instruction_pointer(regs);
1724         switch (cmd) {
1725         case DIE_FP:
1726                 /* match 2nd instruction in __kvm_restore_fcsr */
1727                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1728                         return NOTIFY_DONE;
1729                 break;
1730         case DIE_MSAFP:
1731                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1732                 if (!cpu_has_msa ||
1733                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1734                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1735                         return NOTIFY_DONE;
1736                 break;
1737         }
1738
1739         /* Move PC forward a little and continue executing */
1740         instruction_pointer(regs) += 4;
1741
1742         return NOTIFY_STOP;
1743 }
1744
1745 static struct notifier_block kvm_mips_csr_die_notifier = {
1746         .notifier_call = kvm_mips_csr_die_notify,
1747 };
1748
1749 static int __init kvm_mips_init(void)
1750 {
1751         int ret;
1752
1753         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1754
1755         if (ret)
1756                 return ret;
1757
1758         register_die_notifier(&kvm_mips_csr_die_notifier);
1759
1760         return 0;
1761 }
1762
1763 static void __exit kvm_mips_exit(void)
1764 {
1765         kvm_exit();
1766
1767         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1768 }
1769
1770 module_init(kvm_mips_init);
1771 module_exit(kvm_mips_exit);
1772
1773 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);