]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/kvm/mips.c
MIPS: KVM: Generalise fpu_inuse for other state
[karo-tx-linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100     /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
40         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
41         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
42         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
43         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
45         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
46         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
47         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
49         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
50         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
51         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
52         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
53         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
54         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
55         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
60         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
61         {NULL}
62 };
63
64 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
65 {
66         int i;
67
68         for_each_possible_cpu(i) {
69                 vcpu->arch.guest_kernel_asid[i] = 0;
70                 vcpu->arch.guest_user_asid[i] = 0;
71         }
72
73         return 0;
74 }
75
76 /*
77  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
78  * Config7, so we are "runnable" if interrupts are pending
79  */
80 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
81 {
82         return !!(vcpu->arch.pending_exceptions);
83 }
84
85 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
86 {
87         return 1;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92         return 0;
93 }
94
95 int kvm_arch_hardware_setup(void)
96 {
97         return 0;
98 }
99
100 void kvm_arch_check_processor_compat(void *rtn)
101 {
102         *(int *)rtn = 0;
103 }
104
105 static void kvm_mips_init_tlbs(struct kvm *kvm)
106 {
107         unsigned long wired;
108
109         /*
110          * Add a wired entry to the TLB, it is used to map the commpage to
111          * the Guest kernel
112          */
113         wired = read_c0_wired();
114         write_c0_wired(wired + 1);
115         mtc0_tlbw_hazard();
116         kvm->arch.commpage_tlb = wired;
117
118         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
119                   kvm->arch.commpage_tlb);
120 }
121
122 static void kvm_mips_init_vm_percpu(void *arg)
123 {
124         struct kvm *kvm = (struct kvm *)arg;
125
126         kvm_mips_init_tlbs(kvm);
127         kvm_mips_callbacks->vm_init(kvm);
128
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         if (atomic_inc_return(&kvm_mips_instance) == 1) {
134                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135                           __func__);
136                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
137         }
138
139         return 0;
140 }
141
142 void kvm_mips_free_vcpus(struct kvm *kvm)
143 {
144         unsigned int i;
145         struct kvm_vcpu *vcpu;
146
147         /* Put the pages we reserved for the guest pmap */
148         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
149                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
150                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
151         }
152         kfree(kvm->arch.guest_pmap);
153
154         kvm_for_each_vcpu(i, vcpu, kvm) {
155                 kvm_arch_vcpu_free(vcpu);
156         }
157
158         mutex_lock(&kvm->lock);
159
160         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
161                 kvm->vcpus[i] = NULL;
162
163         atomic_set(&kvm->online_vcpus, 0);
164
165         mutex_unlock(&kvm->lock);
166 }
167
168 static void kvm_mips_uninit_tlbs(void *arg)
169 {
170         /* Restore wired count */
171         write_c0_wired(0);
172         mtc0_tlbw_hazard();
173         /* Clear out all the TLBs */
174         kvm_local_flush_tlb_all();
175 }
176
177 void kvm_arch_destroy_vm(struct kvm *kvm)
178 {
179         kvm_mips_free_vcpus(kvm);
180
181         /* If this is the last instance, restore wired count */
182         if (atomic_dec_return(&kvm_mips_instance) == 0) {
183                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184                           __func__);
185                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
186         }
187 }
188
189 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
190                         unsigned long arg)
191 {
192         return -ENOIOCTLCMD;
193 }
194
195 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
196                             unsigned long npages)
197 {
198         return 0;
199 }
200
201 int kvm_arch_prepare_memory_region(struct kvm *kvm,
202                                    struct kvm_memory_slot *memslot,
203                                    const struct kvm_userspace_memory_region *mem,
204                                    enum kvm_mr_change change)
205 {
206         return 0;
207 }
208
209 void kvm_arch_commit_memory_region(struct kvm *kvm,
210                                    const struct kvm_userspace_memory_region *mem,
211                                    const struct kvm_memory_slot *old,
212                                    const struct kvm_memory_slot *new,
213                                    enum kvm_mr_change change)
214 {
215         unsigned long npages = 0;
216         int i;
217
218         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
219                   __func__, kvm, mem->slot, mem->guest_phys_addr,
220                   mem->memory_size, mem->userspace_addr);
221
222         /* Setup Guest PMAP table */
223         if (!kvm->arch.guest_pmap) {
224                 if (mem->slot == 0)
225                         npages = mem->memory_size >> PAGE_SHIFT;
226
227                 if (npages) {
228                         kvm->arch.guest_pmap_npages = npages;
229                         kvm->arch.guest_pmap =
230                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
231
232                         if (!kvm->arch.guest_pmap) {
233                                 kvm_err("Failed to allocate guest PMAP\n");
234                                 return;
235                         }
236
237                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
238                                   npages, kvm->arch.guest_pmap);
239
240                         /* Now setup the page table */
241                         for (i = 0; i < npages; i++)
242                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
243                 }
244         }
245 }
246
247 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248 {
249         int err, size, offset;
250         void *gebase;
251         int i;
252
253         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
254
255         if (!vcpu) {
256                 err = -ENOMEM;
257                 goto out;
258         }
259
260         err = kvm_vcpu_init(vcpu, kvm, id);
261
262         if (err)
263                 goto out_free_cpu;
264
265         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
266
267         /*
268          * Allocate space for host mode exception handlers that handle
269          * guest mode exits
270          */
271         if (cpu_has_veic || cpu_has_vint)
272                 size = 0x200 + VECTORSPACING * 64;
273         else
274                 size = 0x4000;
275
276         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
277
278         if (!gebase) {
279                 err = -ENOMEM;
280                 goto out_uninit_cpu;
281         }
282         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
283                   ALIGN(size, PAGE_SIZE), gebase);
284
285         /* Save new ebase */
286         vcpu->arch.guest_ebase = gebase;
287
288         /* Copy L1 Guest Exception handler to correct offset */
289
290         /* TLB Refill, EXL = 0 */
291         memcpy(gebase, mips32_exception,
292                mips32_exceptionEnd - mips32_exception);
293
294         /* General Exception Entry point */
295         memcpy(gebase + 0x180, mips32_exception,
296                mips32_exceptionEnd - mips32_exception);
297
298         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
299         for (i = 0; i < 8; i++) {
300                 kvm_debug("L1 Vectored handler @ %p\n",
301                           gebase + 0x200 + (i * VECTORSPACING));
302                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
303                        mips32_exceptionEnd - mips32_exception);
304         }
305
306         /* General handler, relocate to unmapped space for sanity's sake */
307         offset = 0x2000;
308         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
309                   gebase + offset,
310                   mips32_GuestExceptionEnd - mips32_GuestException);
311
312         memcpy(gebase + offset, mips32_GuestException,
313                mips32_GuestExceptionEnd - mips32_GuestException);
314
315 #ifdef MODULE
316         offset += mips32_GuestExceptionEnd - mips32_GuestException;
317         memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
318                __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
319         vcpu->arch.vcpu_run = gebase + offset;
320 #else
321         vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
322 #endif
323
324         /* Invalidate the icache for these ranges */
325         local_flush_icache_range((unsigned long)gebase,
326                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
327
328         /*
329          * Allocate comm page for guest kernel, a TLB will be reserved for
330          * mapping GVA @ 0xFFFF8000 to this page
331          */
332         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
333
334         if (!vcpu->arch.kseg0_commpage) {
335                 err = -ENOMEM;
336                 goto out_free_gebase;
337         }
338
339         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
340         kvm_mips_commpage_init(vcpu);
341
342         /* Init */
343         vcpu->arch.last_sched_cpu = -1;
344
345         /* Start off the timer */
346         kvm_mips_init_count(vcpu);
347
348         return vcpu;
349
350 out_free_gebase:
351         kfree(gebase);
352
353 out_uninit_cpu:
354         kvm_vcpu_uninit(vcpu);
355
356 out_free_cpu:
357         kfree(vcpu);
358
359 out:
360         return ERR_PTR(err);
361 }
362
363 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
364 {
365         hrtimer_cancel(&vcpu->arch.comparecount_timer);
366
367         kvm_vcpu_uninit(vcpu);
368
369         kvm_mips_dump_stats(vcpu);
370
371         kfree(vcpu->arch.guest_ebase);
372         kfree(vcpu->arch.kseg0_commpage);
373         kfree(vcpu);
374 }
375
376 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
377 {
378         kvm_arch_vcpu_free(vcpu);
379 }
380
381 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
382                                         struct kvm_guest_debug *dbg)
383 {
384         return -ENOIOCTLCMD;
385 }
386
387 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
388 {
389         int r = 0;
390         sigset_t sigsaved;
391
392         if (vcpu->sigset_active)
393                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
394
395         if (vcpu->mmio_needed) {
396                 if (!vcpu->mmio_is_write)
397                         kvm_mips_complete_mmio_load(vcpu, run);
398                 vcpu->mmio_needed = 0;
399         }
400
401         lose_fpu(1);
402
403         local_irq_disable();
404         /* Check if we have any exceptions/interrupts pending */
405         kvm_mips_deliver_interrupts(vcpu,
406                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
407
408         __kvm_guest_enter();
409
410         /* Disable hardware page table walking while in guest */
411         htw_stop();
412
413         r = vcpu->arch.vcpu_run(run, vcpu);
414
415         /* Re-enable HTW before enabling interrupts */
416         htw_start();
417
418         __kvm_guest_exit();
419         local_irq_enable();
420
421         if (vcpu->sigset_active)
422                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
423
424         return r;
425 }
426
427 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
428                              struct kvm_mips_interrupt *irq)
429 {
430         int intr = (int)irq->irq;
431         struct kvm_vcpu *dvcpu = NULL;
432
433         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
434                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
435                           (int)intr);
436
437         if (irq->cpu == -1)
438                 dvcpu = vcpu;
439         else
440                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
441
442         if (intr == 2 || intr == 3 || intr == 4) {
443                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
444
445         } else if (intr == -2 || intr == -3 || intr == -4) {
446                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
447         } else {
448                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
449                         irq->cpu, irq->irq);
450                 return -EINVAL;
451         }
452
453         dvcpu->arch.wait = 0;
454
455         if (swait_active(&dvcpu->wq))
456                 swake_up(&dvcpu->wq);
457
458         return 0;
459 }
460
461 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
462                                     struct kvm_mp_state *mp_state)
463 {
464         return -ENOIOCTLCMD;
465 }
466
467 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
468                                     struct kvm_mp_state *mp_state)
469 {
470         return -ENOIOCTLCMD;
471 }
472
473 static u64 kvm_mips_get_one_regs[] = {
474         KVM_REG_MIPS_R0,
475         KVM_REG_MIPS_R1,
476         KVM_REG_MIPS_R2,
477         KVM_REG_MIPS_R3,
478         KVM_REG_MIPS_R4,
479         KVM_REG_MIPS_R5,
480         KVM_REG_MIPS_R6,
481         KVM_REG_MIPS_R7,
482         KVM_REG_MIPS_R8,
483         KVM_REG_MIPS_R9,
484         KVM_REG_MIPS_R10,
485         KVM_REG_MIPS_R11,
486         KVM_REG_MIPS_R12,
487         KVM_REG_MIPS_R13,
488         KVM_REG_MIPS_R14,
489         KVM_REG_MIPS_R15,
490         KVM_REG_MIPS_R16,
491         KVM_REG_MIPS_R17,
492         KVM_REG_MIPS_R18,
493         KVM_REG_MIPS_R19,
494         KVM_REG_MIPS_R20,
495         KVM_REG_MIPS_R21,
496         KVM_REG_MIPS_R22,
497         KVM_REG_MIPS_R23,
498         KVM_REG_MIPS_R24,
499         KVM_REG_MIPS_R25,
500         KVM_REG_MIPS_R26,
501         KVM_REG_MIPS_R27,
502         KVM_REG_MIPS_R28,
503         KVM_REG_MIPS_R29,
504         KVM_REG_MIPS_R30,
505         KVM_REG_MIPS_R31,
506
507         KVM_REG_MIPS_HI,
508         KVM_REG_MIPS_LO,
509         KVM_REG_MIPS_PC,
510
511         KVM_REG_MIPS_CP0_INDEX,
512         KVM_REG_MIPS_CP0_CONTEXT,
513         KVM_REG_MIPS_CP0_USERLOCAL,
514         KVM_REG_MIPS_CP0_PAGEMASK,
515         KVM_REG_MIPS_CP0_WIRED,
516         KVM_REG_MIPS_CP0_HWRENA,
517         KVM_REG_MIPS_CP0_BADVADDR,
518         KVM_REG_MIPS_CP0_COUNT,
519         KVM_REG_MIPS_CP0_ENTRYHI,
520         KVM_REG_MIPS_CP0_COMPARE,
521         KVM_REG_MIPS_CP0_STATUS,
522         KVM_REG_MIPS_CP0_CAUSE,
523         KVM_REG_MIPS_CP0_EPC,
524         KVM_REG_MIPS_CP0_PRID,
525         KVM_REG_MIPS_CP0_CONFIG,
526         KVM_REG_MIPS_CP0_CONFIG1,
527         KVM_REG_MIPS_CP0_CONFIG2,
528         KVM_REG_MIPS_CP0_CONFIG3,
529         KVM_REG_MIPS_CP0_CONFIG4,
530         KVM_REG_MIPS_CP0_CONFIG5,
531         KVM_REG_MIPS_CP0_CONFIG7,
532         KVM_REG_MIPS_CP0_ERROREPC,
533
534         KVM_REG_MIPS_COUNT_CTL,
535         KVM_REG_MIPS_COUNT_RESUME,
536         KVM_REG_MIPS_COUNT_HZ,
537 };
538
539 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
540                             const struct kvm_one_reg *reg)
541 {
542         struct mips_coproc *cop0 = vcpu->arch.cop0;
543         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
544         int ret;
545         s64 v;
546         s64 vs[2];
547         unsigned int idx;
548
549         switch (reg->id) {
550         /* General purpose registers */
551         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
552                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
553                 break;
554         case KVM_REG_MIPS_HI:
555                 v = (long)vcpu->arch.hi;
556                 break;
557         case KVM_REG_MIPS_LO:
558                 v = (long)vcpu->arch.lo;
559                 break;
560         case KVM_REG_MIPS_PC:
561                 v = (long)vcpu->arch.pc;
562                 break;
563
564         /* Floating point registers */
565         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
566                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
567                         return -EINVAL;
568                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
569                 /* Odd singles in top of even double when FR=0 */
570                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
571                         v = get_fpr32(&fpu->fpr[idx], 0);
572                 else
573                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
574                 break;
575         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
576                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
577                         return -EINVAL;
578                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
579                 /* Can't access odd doubles in FR=0 mode */
580                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
581                         return -EINVAL;
582                 v = get_fpr64(&fpu->fpr[idx], 0);
583                 break;
584         case KVM_REG_MIPS_FCR_IR:
585                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
586                         return -EINVAL;
587                 v = boot_cpu_data.fpu_id;
588                 break;
589         case KVM_REG_MIPS_FCR_CSR:
590                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
591                         return -EINVAL;
592                 v = fpu->fcr31;
593                 break;
594
595         /* MIPS SIMD Architecture (MSA) registers */
596         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
597                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
598                         return -EINVAL;
599                 /* Can't access MSA registers in FR=0 mode */
600                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
601                         return -EINVAL;
602                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
603 #ifdef CONFIG_CPU_LITTLE_ENDIAN
604                 /* least significant byte first */
605                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
606                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
607 #else
608                 /* most significant byte first */
609                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
610                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
611 #endif
612                 break;
613         case KVM_REG_MIPS_MSA_IR:
614                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
615                         return -EINVAL;
616                 v = boot_cpu_data.msa_id;
617                 break;
618         case KVM_REG_MIPS_MSA_CSR:
619                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
620                         return -EINVAL;
621                 v = fpu->msacsr;
622                 break;
623
624         /* Co-processor 0 registers */
625         case KVM_REG_MIPS_CP0_INDEX:
626                 v = (long)kvm_read_c0_guest_index(cop0);
627                 break;
628         case KVM_REG_MIPS_CP0_CONTEXT:
629                 v = (long)kvm_read_c0_guest_context(cop0);
630                 break;
631         case KVM_REG_MIPS_CP0_USERLOCAL:
632                 v = (long)kvm_read_c0_guest_userlocal(cop0);
633                 break;
634         case KVM_REG_MIPS_CP0_PAGEMASK:
635                 v = (long)kvm_read_c0_guest_pagemask(cop0);
636                 break;
637         case KVM_REG_MIPS_CP0_WIRED:
638                 v = (long)kvm_read_c0_guest_wired(cop0);
639                 break;
640         case KVM_REG_MIPS_CP0_HWRENA:
641                 v = (long)kvm_read_c0_guest_hwrena(cop0);
642                 break;
643         case KVM_REG_MIPS_CP0_BADVADDR:
644                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
645                 break;
646         case KVM_REG_MIPS_CP0_ENTRYHI:
647                 v = (long)kvm_read_c0_guest_entryhi(cop0);
648                 break;
649         case KVM_REG_MIPS_CP0_COMPARE:
650                 v = (long)kvm_read_c0_guest_compare(cop0);
651                 break;
652         case KVM_REG_MIPS_CP0_STATUS:
653                 v = (long)kvm_read_c0_guest_status(cop0);
654                 break;
655         case KVM_REG_MIPS_CP0_CAUSE:
656                 v = (long)kvm_read_c0_guest_cause(cop0);
657                 break;
658         case KVM_REG_MIPS_CP0_EPC:
659                 v = (long)kvm_read_c0_guest_epc(cop0);
660                 break;
661         case KVM_REG_MIPS_CP0_PRID:
662                 v = (long)kvm_read_c0_guest_prid(cop0);
663                 break;
664         case KVM_REG_MIPS_CP0_CONFIG:
665                 v = (long)kvm_read_c0_guest_config(cop0);
666                 break;
667         case KVM_REG_MIPS_CP0_CONFIG1:
668                 v = (long)kvm_read_c0_guest_config1(cop0);
669                 break;
670         case KVM_REG_MIPS_CP0_CONFIG2:
671                 v = (long)kvm_read_c0_guest_config2(cop0);
672                 break;
673         case KVM_REG_MIPS_CP0_CONFIG3:
674                 v = (long)kvm_read_c0_guest_config3(cop0);
675                 break;
676         case KVM_REG_MIPS_CP0_CONFIG4:
677                 v = (long)kvm_read_c0_guest_config4(cop0);
678                 break;
679         case KVM_REG_MIPS_CP0_CONFIG5:
680                 v = (long)kvm_read_c0_guest_config5(cop0);
681                 break;
682         case KVM_REG_MIPS_CP0_CONFIG7:
683                 v = (long)kvm_read_c0_guest_config7(cop0);
684                 break;
685         case KVM_REG_MIPS_CP0_ERROREPC:
686                 v = (long)kvm_read_c0_guest_errorepc(cop0);
687                 break;
688         /* registers to be handled specially */
689         case KVM_REG_MIPS_CP0_COUNT:
690         case KVM_REG_MIPS_COUNT_CTL:
691         case KVM_REG_MIPS_COUNT_RESUME:
692         case KVM_REG_MIPS_COUNT_HZ:
693                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
694                 if (ret)
695                         return ret;
696                 break;
697         default:
698                 return -EINVAL;
699         }
700         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
701                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
702
703                 return put_user(v, uaddr64);
704         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
705                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
706                 u32 v32 = (u32)v;
707
708                 return put_user(v32, uaddr32);
709         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
710                 void __user *uaddr = (void __user *)(long)reg->addr;
711
712                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
713         } else {
714                 return -EINVAL;
715         }
716 }
717
718 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
719                             const struct kvm_one_reg *reg)
720 {
721         struct mips_coproc *cop0 = vcpu->arch.cop0;
722         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
723         s64 v;
724         s64 vs[2];
725         unsigned int idx;
726
727         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
728                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
729
730                 if (get_user(v, uaddr64) != 0)
731                         return -EFAULT;
732         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
733                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
734                 s32 v32;
735
736                 if (get_user(v32, uaddr32) != 0)
737                         return -EFAULT;
738                 v = (s64)v32;
739         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
740                 void __user *uaddr = (void __user *)(long)reg->addr;
741
742                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
743         } else {
744                 return -EINVAL;
745         }
746
747         switch (reg->id) {
748         /* General purpose registers */
749         case KVM_REG_MIPS_R0:
750                 /* Silently ignore requests to set $0 */
751                 break;
752         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
753                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
754                 break;
755         case KVM_REG_MIPS_HI:
756                 vcpu->arch.hi = v;
757                 break;
758         case KVM_REG_MIPS_LO:
759                 vcpu->arch.lo = v;
760                 break;
761         case KVM_REG_MIPS_PC:
762                 vcpu->arch.pc = v;
763                 break;
764
765         /* Floating point registers */
766         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
767                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
768                         return -EINVAL;
769                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
770                 /* Odd singles in top of even double when FR=0 */
771                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
772                         set_fpr32(&fpu->fpr[idx], 0, v);
773                 else
774                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
775                 break;
776         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
777                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
778                         return -EINVAL;
779                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
780                 /* Can't access odd doubles in FR=0 mode */
781                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
782                         return -EINVAL;
783                 set_fpr64(&fpu->fpr[idx], 0, v);
784                 break;
785         case KVM_REG_MIPS_FCR_IR:
786                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
787                         return -EINVAL;
788                 /* Read-only */
789                 break;
790         case KVM_REG_MIPS_FCR_CSR:
791                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
792                         return -EINVAL;
793                 fpu->fcr31 = v;
794                 break;
795
796         /* MIPS SIMD Architecture (MSA) registers */
797         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
798                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
799                         return -EINVAL;
800                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
801 #ifdef CONFIG_CPU_LITTLE_ENDIAN
802                 /* least significant byte first */
803                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
804                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
805 #else
806                 /* most significant byte first */
807                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
808                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
809 #endif
810                 break;
811         case KVM_REG_MIPS_MSA_IR:
812                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
813                         return -EINVAL;
814                 /* Read-only */
815                 break;
816         case KVM_REG_MIPS_MSA_CSR:
817                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
818                         return -EINVAL;
819                 fpu->msacsr = v;
820                 break;
821
822         /* Co-processor 0 registers */
823         case KVM_REG_MIPS_CP0_INDEX:
824                 kvm_write_c0_guest_index(cop0, v);
825                 break;
826         case KVM_REG_MIPS_CP0_CONTEXT:
827                 kvm_write_c0_guest_context(cop0, v);
828                 break;
829         case KVM_REG_MIPS_CP0_USERLOCAL:
830                 kvm_write_c0_guest_userlocal(cop0, v);
831                 break;
832         case KVM_REG_MIPS_CP0_PAGEMASK:
833                 kvm_write_c0_guest_pagemask(cop0, v);
834                 break;
835         case KVM_REG_MIPS_CP0_WIRED:
836                 kvm_write_c0_guest_wired(cop0, v);
837                 break;
838         case KVM_REG_MIPS_CP0_HWRENA:
839                 kvm_write_c0_guest_hwrena(cop0, v);
840                 break;
841         case KVM_REG_MIPS_CP0_BADVADDR:
842                 kvm_write_c0_guest_badvaddr(cop0, v);
843                 break;
844         case KVM_REG_MIPS_CP0_ENTRYHI:
845                 kvm_write_c0_guest_entryhi(cop0, v);
846                 break;
847         case KVM_REG_MIPS_CP0_STATUS:
848                 kvm_write_c0_guest_status(cop0, v);
849                 break;
850         case KVM_REG_MIPS_CP0_EPC:
851                 kvm_write_c0_guest_epc(cop0, v);
852                 break;
853         case KVM_REG_MIPS_CP0_PRID:
854                 kvm_write_c0_guest_prid(cop0, v);
855                 break;
856         case KVM_REG_MIPS_CP0_ERROREPC:
857                 kvm_write_c0_guest_errorepc(cop0, v);
858                 break;
859         /* registers to be handled specially */
860         case KVM_REG_MIPS_CP0_COUNT:
861         case KVM_REG_MIPS_CP0_COMPARE:
862         case KVM_REG_MIPS_CP0_CAUSE:
863         case KVM_REG_MIPS_CP0_CONFIG:
864         case KVM_REG_MIPS_CP0_CONFIG1:
865         case KVM_REG_MIPS_CP0_CONFIG2:
866         case KVM_REG_MIPS_CP0_CONFIG3:
867         case KVM_REG_MIPS_CP0_CONFIG4:
868         case KVM_REG_MIPS_CP0_CONFIG5:
869         case KVM_REG_MIPS_COUNT_CTL:
870         case KVM_REG_MIPS_COUNT_RESUME:
871         case KVM_REG_MIPS_COUNT_HZ:
872                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
873         default:
874                 return -EINVAL;
875         }
876         return 0;
877 }
878
879 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
880                                      struct kvm_enable_cap *cap)
881 {
882         int r = 0;
883
884         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
885                 return -EINVAL;
886         if (cap->flags)
887                 return -EINVAL;
888         if (cap->args[0])
889                 return -EINVAL;
890
891         switch (cap->cap) {
892         case KVM_CAP_MIPS_FPU:
893                 vcpu->arch.fpu_enabled = true;
894                 break;
895         case KVM_CAP_MIPS_MSA:
896                 vcpu->arch.msa_enabled = true;
897                 break;
898         default:
899                 r = -EINVAL;
900                 break;
901         }
902
903         return r;
904 }
905
906 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
907                          unsigned long arg)
908 {
909         struct kvm_vcpu *vcpu = filp->private_data;
910         void __user *argp = (void __user *)arg;
911         long r;
912
913         switch (ioctl) {
914         case KVM_SET_ONE_REG:
915         case KVM_GET_ONE_REG: {
916                 struct kvm_one_reg reg;
917
918                 if (copy_from_user(&reg, argp, sizeof(reg)))
919                         return -EFAULT;
920                 if (ioctl == KVM_SET_ONE_REG)
921                         return kvm_mips_set_reg(vcpu, &reg);
922                 else
923                         return kvm_mips_get_reg(vcpu, &reg);
924         }
925         case KVM_GET_REG_LIST: {
926                 struct kvm_reg_list __user *user_list = argp;
927                 u64 __user *reg_dest;
928                 struct kvm_reg_list reg_list;
929                 unsigned n;
930
931                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
932                         return -EFAULT;
933                 n = reg_list.n;
934                 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
935                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
936                         return -EFAULT;
937                 if (n < reg_list.n)
938                         return -E2BIG;
939                 reg_dest = user_list->reg;
940                 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
941                                  sizeof(kvm_mips_get_one_regs)))
942                         return -EFAULT;
943                 return 0;
944         }
945         case KVM_NMI:
946                 /* Treat the NMI as a CPU reset */
947                 r = kvm_mips_reset_vcpu(vcpu);
948                 break;
949         case KVM_INTERRUPT:
950                 {
951                         struct kvm_mips_interrupt irq;
952
953                         r = -EFAULT;
954                         if (copy_from_user(&irq, argp, sizeof(irq)))
955                                 goto out;
956
957                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
958                                   irq.irq);
959
960                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
961                         break;
962                 }
963         case KVM_ENABLE_CAP: {
964                 struct kvm_enable_cap cap;
965
966                 r = -EFAULT;
967                 if (copy_from_user(&cap, argp, sizeof(cap)))
968                         goto out;
969                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
970                 break;
971         }
972         default:
973                 r = -ENOIOCTLCMD;
974         }
975
976 out:
977         return r;
978 }
979
980 /* Get (and clear) the dirty memory log for a memory slot. */
981 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
982 {
983         struct kvm_memslots *slots;
984         struct kvm_memory_slot *memslot;
985         unsigned long ga, ga_end;
986         int is_dirty = 0;
987         int r;
988         unsigned long n;
989
990         mutex_lock(&kvm->slots_lock);
991
992         r = kvm_get_dirty_log(kvm, log, &is_dirty);
993         if (r)
994                 goto out;
995
996         /* If nothing is dirty, don't bother messing with page tables. */
997         if (is_dirty) {
998                 slots = kvm_memslots(kvm);
999                 memslot = id_to_memslot(slots, log->slot);
1000
1001                 ga = memslot->base_gfn << PAGE_SHIFT;
1002                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1003
1004                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1005                          ga_end);
1006
1007                 n = kvm_dirty_bitmap_bytes(memslot);
1008                 memset(memslot->dirty_bitmap, 0, n);
1009         }
1010
1011         r = 0;
1012 out:
1013         mutex_unlock(&kvm->slots_lock);
1014         return r;
1015
1016 }
1017
1018 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1019 {
1020         long r;
1021
1022         switch (ioctl) {
1023         default:
1024                 r = -ENOIOCTLCMD;
1025         }
1026
1027         return r;
1028 }
1029
1030 int kvm_arch_init(void *opaque)
1031 {
1032         if (kvm_mips_callbacks) {
1033                 kvm_err("kvm: module already exists\n");
1034                 return -EEXIST;
1035         }
1036
1037         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1038 }
1039
1040 void kvm_arch_exit(void)
1041 {
1042         kvm_mips_callbacks = NULL;
1043 }
1044
1045 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1046                                   struct kvm_sregs *sregs)
1047 {
1048         return -ENOIOCTLCMD;
1049 }
1050
1051 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1052                                   struct kvm_sregs *sregs)
1053 {
1054         return -ENOIOCTLCMD;
1055 }
1056
1057 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1058 {
1059 }
1060
1061 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1062 {
1063         return -ENOIOCTLCMD;
1064 }
1065
1066 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1067 {
1068         return -ENOIOCTLCMD;
1069 }
1070
1071 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1072 {
1073         return VM_FAULT_SIGBUS;
1074 }
1075
1076 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1077 {
1078         int r;
1079
1080         switch (ext) {
1081         case KVM_CAP_ONE_REG:
1082         case KVM_CAP_ENABLE_CAP:
1083                 r = 1;
1084                 break;
1085         case KVM_CAP_COALESCED_MMIO:
1086                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1087                 break;
1088         case KVM_CAP_MIPS_FPU:
1089                 /* We don't handle systems with inconsistent cpu_has_fpu */
1090                 r = !!raw_cpu_has_fpu;
1091                 break;
1092         case KVM_CAP_MIPS_MSA:
1093                 /*
1094                  * We don't support MSA vector partitioning yet:
1095                  * 1) It would require explicit support which can't be tested
1096                  *    yet due to lack of support in current hardware.
1097                  * 2) It extends the state that would need to be saved/restored
1098                  *    by e.g. QEMU for migration.
1099                  *
1100                  * When vector partitioning hardware becomes available, support
1101                  * could be added by requiring a flag when enabling
1102                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1103                  * to save/restore the appropriate extra state.
1104                  */
1105                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1106                 break;
1107         default:
1108                 r = 0;
1109                 break;
1110         }
1111         return r;
1112 }
1113
1114 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1115 {
1116         return kvm_mips_pending_timer(vcpu);
1117 }
1118
1119 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1120 {
1121         int i;
1122         struct mips_coproc *cop0;
1123
1124         if (!vcpu)
1125                 return -1;
1126
1127         kvm_debug("VCPU Register Dump:\n");
1128         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1129         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1130
1131         for (i = 0; i < 32; i += 4) {
1132                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1133                        vcpu->arch.gprs[i],
1134                        vcpu->arch.gprs[i + 1],
1135                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1136         }
1137         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1138         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1139
1140         cop0 = vcpu->arch.cop0;
1141         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1142                   kvm_read_c0_guest_status(cop0),
1143                   kvm_read_c0_guest_cause(cop0));
1144
1145         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1146
1147         return 0;
1148 }
1149
1150 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1151 {
1152         int i;
1153
1154         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155                 vcpu->arch.gprs[i] = regs->gpr[i];
1156         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157         vcpu->arch.hi = regs->hi;
1158         vcpu->arch.lo = regs->lo;
1159         vcpu->arch.pc = regs->pc;
1160
1161         return 0;
1162 }
1163
1164 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1165 {
1166         int i;
1167
1168         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1169                 regs->gpr[i] = vcpu->arch.gprs[i];
1170
1171         regs->hi = vcpu->arch.hi;
1172         regs->lo = vcpu->arch.lo;
1173         regs->pc = vcpu->arch.pc;
1174
1175         return 0;
1176 }
1177
1178 static void kvm_mips_comparecount_func(unsigned long data)
1179 {
1180         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1181
1182         kvm_mips_callbacks->queue_timer_int(vcpu);
1183
1184         vcpu->arch.wait = 0;
1185         if (swait_active(&vcpu->wq))
1186                 swake_up(&vcpu->wq);
1187 }
1188
1189 /* low level hrtimer wake routine */
1190 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1191 {
1192         struct kvm_vcpu *vcpu;
1193
1194         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1195         kvm_mips_comparecount_func((unsigned long) vcpu);
1196         return kvm_mips_count_timeout(vcpu);
1197 }
1198
1199 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1200 {
1201         kvm_mips_callbacks->vcpu_init(vcpu);
1202         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1203                      HRTIMER_MODE_REL);
1204         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1205         return 0;
1206 }
1207
1208 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1209                                   struct kvm_translation *tr)
1210 {
1211         return 0;
1212 }
1213
1214 /* Initial guest state */
1215 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1216 {
1217         return kvm_mips_callbacks->vcpu_setup(vcpu);
1218 }
1219
1220 static void kvm_mips_set_c0_status(void)
1221 {
1222         u32 status = read_c0_status();
1223
1224         if (cpu_has_dsp)
1225                 status |= (ST0_MX);
1226
1227         write_c0_status(status);
1228         ehb();
1229 }
1230
1231 /*
1232  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1233  */
1234 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1235 {
1236         u32 cause = vcpu->arch.host_cp0_cause;
1237         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1238         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1239         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1240         enum emulation_result er = EMULATE_DONE;
1241         int ret = RESUME_GUEST;
1242
1243         /* re-enable HTW before enabling interrupts */
1244         htw_start();
1245
1246         /* Set a default exit reason */
1247         run->exit_reason = KVM_EXIT_UNKNOWN;
1248         run->ready_for_interrupt_injection = 1;
1249
1250         /*
1251          * Set the appropriate status bits based on host CPU features,
1252          * before we hit the scheduler
1253          */
1254         kvm_mips_set_c0_status();
1255
1256         local_irq_enable();
1257
1258         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1259                         cause, opc, run, vcpu);
1260
1261         /*
1262          * Do a privilege check, if in UM most of these exit conditions end up
1263          * causing an exception to be delivered to the Guest Kernel
1264          */
1265         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1266         if (er == EMULATE_PRIV_FAIL) {
1267                 goto skip_emul;
1268         } else if (er == EMULATE_FAIL) {
1269                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1270                 ret = RESUME_HOST;
1271                 goto skip_emul;
1272         }
1273
1274         switch (exccode) {
1275         case EXCCODE_INT:
1276                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1277
1278                 ++vcpu->stat.int_exits;
1279                 trace_kvm_exit(vcpu, INT_EXITS);
1280
1281                 if (need_resched())
1282                         cond_resched();
1283
1284                 ret = RESUME_GUEST;
1285                 break;
1286
1287         case EXCCODE_CPU:
1288                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1289
1290                 ++vcpu->stat.cop_unusable_exits;
1291                 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1292                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1293                 /* XXXKYMA: Might need to return to user space */
1294                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1295                         ret = RESUME_HOST;
1296                 break;
1297
1298         case EXCCODE_MOD:
1299                 ++vcpu->stat.tlbmod_exits;
1300                 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1301                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1302                 break;
1303
1304         case EXCCODE_TLBS:
1305                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1306                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1307                           badvaddr);
1308
1309                 ++vcpu->stat.tlbmiss_st_exits;
1310                 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1311                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1312                 break;
1313
1314         case EXCCODE_TLBL:
1315                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1316                           cause, opc, badvaddr);
1317
1318                 ++vcpu->stat.tlbmiss_ld_exits;
1319                 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1320                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1321                 break;
1322
1323         case EXCCODE_ADES:
1324                 ++vcpu->stat.addrerr_st_exits;
1325                 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1326                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1327                 break;
1328
1329         case EXCCODE_ADEL:
1330                 ++vcpu->stat.addrerr_ld_exits;
1331                 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1332                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1333                 break;
1334
1335         case EXCCODE_SYS:
1336                 ++vcpu->stat.syscall_exits;
1337                 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1338                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1339                 break;
1340
1341         case EXCCODE_RI:
1342                 ++vcpu->stat.resvd_inst_exits;
1343                 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1344                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1345                 break;
1346
1347         case EXCCODE_BP:
1348                 ++vcpu->stat.break_inst_exits;
1349                 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1350                 ret = kvm_mips_callbacks->handle_break(vcpu);
1351                 break;
1352
1353         case EXCCODE_TR:
1354                 ++vcpu->stat.trap_inst_exits;
1355                 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1356                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1357                 break;
1358
1359         case EXCCODE_MSAFPE:
1360                 ++vcpu->stat.msa_fpe_exits;
1361                 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1362                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1363                 break;
1364
1365         case EXCCODE_FPE:
1366                 ++vcpu->stat.fpe_exits;
1367                 trace_kvm_exit(vcpu, FPE_EXITS);
1368                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1369                 break;
1370
1371         case EXCCODE_MSADIS:
1372                 ++vcpu->stat.msa_disabled_exits;
1373                 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1374                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1375                 break;
1376
1377         default:
1378                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1379                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1380                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1381                 kvm_arch_vcpu_dump_regs(vcpu);
1382                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1383                 ret = RESUME_HOST;
1384                 break;
1385
1386         }
1387
1388 skip_emul:
1389         local_irq_disable();
1390
1391         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1392                 kvm_mips_deliver_interrupts(vcpu, cause);
1393
1394         if (!(ret & RESUME_HOST)) {
1395                 /* Only check for signals if not already exiting to userspace */
1396                 if (signal_pending(current)) {
1397                         run->exit_reason = KVM_EXIT_INTR;
1398                         ret = (-EINTR << 2) | RESUME_HOST;
1399                         ++vcpu->stat.signal_exits;
1400                         trace_kvm_exit(vcpu, SIGNAL_EXITS);
1401                 }
1402         }
1403
1404         if (ret == RESUME_GUEST) {
1405                 /*
1406                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1407                  * is live), restore FCR31 / MSACSR.
1408                  *
1409                  * This should be before returning to the guest exception
1410                  * vector, as it may well cause an [MSA] FP exception if there
1411                  * are pending exception bits unmasked. (see
1412                  * kvm_mips_csr_die_notifier() for how that is handled).
1413                  */
1414                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1415                     read_c0_status() & ST0_CU1)
1416                         __kvm_restore_fcsr(&vcpu->arch);
1417
1418                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1419                     read_c0_config5() & MIPS_CONF5_MSAEN)
1420                         __kvm_restore_msacsr(&vcpu->arch);
1421         }
1422
1423         /* Disable HTW before returning to guest or host */
1424         htw_stop();
1425
1426         return ret;
1427 }
1428
1429 /* Enable FPU for guest and restore context */
1430 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1431 {
1432         struct mips_coproc *cop0 = vcpu->arch.cop0;
1433         unsigned int sr, cfg5;
1434
1435         preempt_disable();
1436
1437         sr = kvm_read_c0_guest_status(cop0);
1438
1439         /*
1440          * If MSA state is already live, it is undefined how it interacts with
1441          * FR=0 FPU state, and we don't want to hit reserved instruction
1442          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1443          * play it safe and save it first.
1444          *
1445          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1446          * get called when guest CU1 is set, however we can't trust the guest
1447          * not to clobber the status register directly via the commpage.
1448          */
1449         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1450             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1451                 kvm_lose_fpu(vcpu);
1452
1453         /*
1454          * Enable FPU for guest
1455          * We set FR and FRE according to guest context
1456          */
1457         change_c0_status(ST0_CU1 | ST0_FR, sr);
1458         if (cpu_has_fre) {
1459                 cfg5 = kvm_read_c0_guest_config5(cop0);
1460                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1461         }
1462         enable_fpu_hazard();
1463
1464         /* If guest FPU state not active, restore it now */
1465         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1466                 __kvm_restore_fpu(&vcpu->arch);
1467                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1468         }
1469
1470         preempt_enable();
1471 }
1472
1473 #ifdef CONFIG_CPU_HAS_MSA
1474 /* Enable MSA for guest and restore context */
1475 void kvm_own_msa(struct kvm_vcpu *vcpu)
1476 {
1477         struct mips_coproc *cop0 = vcpu->arch.cop0;
1478         unsigned int sr, cfg5;
1479
1480         preempt_disable();
1481
1482         /*
1483          * Enable FPU if enabled in guest, since we're restoring FPU context
1484          * anyway. We set FR and FRE according to guest context.
1485          */
1486         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1487                 sr = kvm_read_c0_guest_status(cop0);
1488
1489                 /*
1490                  * If FR=0 FPU state is already live, it is undefined how it
1491                  * interacts with MSA state, so play it safe and save it first.
1492                  */
1493                 if (!(sr & ST0_FR) &&
1494                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1495                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1496                         kvm_lose_fpu(vcpu);
1497
1498                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1499                 if (sr & ST0_CU1 && cpu_has_fre) {
1500                         cfg5 = kvm_read_c0_guest_config5(cop0);
1501                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1502                 }
1503         }
1504
1505         /* Enable MSA for guest */
1506         set_c0_config5(MIPS_CONF5_MSAEN);
1507         enable_fpu_hazard();
1508
1509         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1510         case KVM_MIPS_AUX_FPU:
1511                 /*
1512                  * Guest FPU state already loaded, only restore upper MSA state
1513                  */
1514                 __kvm_restore_msa_upper(&vcpu->arch);
1515                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1516                 break;
1517         case 0:
1518                 /* Neither FPU or MSA already active, restore full MSA state */
1519                 __kvm_restore_msa(&vcpu->arch);
1520                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1521                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1522                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1523                 break;
1524         default:
1525                 break;
1526         }
1527
1528         preempt_enable();
1529 }
1530 #endif
1531
1532 /* Drop FPU & MSA without saving it */
1533 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1534 {
1535         preempt_disable();
1536         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1537                 disable_msa();
1538                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1539         }
1540         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1541                 clear_c0_status(ST0_CU1 | ST0_FR);
1542                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1543         }
1544         preempt_enable();
1545 }
1546
1547 /* Save and disable FPU & MSA */
1548 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1549 {
1550         /*
1551          * FPU & MSA get disabled in root context (hardware) when it is disabled
1552          * in guest context (software), but the register state in the hardware
1553          * may still be in use. This is why we explicitly re-enable the hardware
1554          * before saving.
1555          */
1556
1557         preempt_disable();
1558         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1559                 set_c0_config5(MIPS_CONF5_MSAEN);
1560                 enable_fpu_hazard();
1561
1562                 __kvm_save_msa(&vcpu->arch);
1563
1564                 /* Disable MSA & FPU */
1565                 disable_msa();
1566                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1567                         clear_c0_status(ST0_CU1 | ST0_FR);
1568                         disable_fpu_hazard();
1569                 }
1570                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1571         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1572                 set_c0_status(ST0_CU1);
1573                 enable_fpu_hazard();
1574
1575                 __kvm_save_fpu(&vcpu->arch);
1576                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1577
1578                 /* Disable FPU */
1579                 clear_c0_status(ST0_CU1 | ST0_FR);
1580                 disable_fpu_hazard();
1581         }
1582         preempt_enable();
1583 }
1584
1585 /*
1586  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1587  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1588  * exception if cause bits are set in the value being written.
1589  */
1590 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1591                                    unsigned long cmd, void *ptr)
1592 {
1593         struct die_args *args = (struct die_args *)ptr;
1594         struct pt_regs *regs = args->regs;
1595         unsigned long pc;
1596
1597         /* Only interested in FPE and MSAFPE */
1598         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1599                 return NOTIFY_DONE;
1600
1601         /* Return immediately if guest context isn't active */
1602         if (!(current->flags & PF_VCPU))
1603                 return NOTIFY_DONE;
1604
1605         /* Should never get here from user mode */
1606         BUG_ON(user_mode(regs));
1607
1608         pc = instruction_pointer(regs);
1609         switch (cmd) {
1610         case DIE_FP:
1611                 /* match 2nd instruction in __kvm_restore_fcsr */
1612                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1613                         return NOTIFY_DONE;
1614                 break;
1615         case DIE_MSAFP:
1616                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1617                 if (!cpu_has_msa ||
1618                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1619                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1620                         return NOTIFY_DONE;
1621                 break;
1622         }
1623
1624         /* Move PC forward a little and continue executing */
1625         instruction_pointer(regs) += 4;
1626
1627         return NOTIFY_STOP;
1628 }
1629
1630 static struct notifier_block kvm_mips_csr_die_notifier = {
1631         .notifier_call = kvm_mips_csr_die_notify,
1632 };
1633
1634 static int __init kvm_mips_init(void)
1635 {
1636         int ret;
1637
1638         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1639
1640         if (ret)
1641                 return ret;
1642
1643         register_die_notifier(&kvm_mips_csr_die_notifier);
1644
1645         return 0;
1646 }
1647
1648 static void __exit kvm_mips_exit(void)
1649 {
1650         kvm_exit();
1651
1652         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1653 }
1654
1655 module_init(kvm_mips_init);
1656 module_exit(kvm_mips_exit);
1657
1658 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);