]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/mips/netlogic/xlp/nlm_hal.c
Merge branch 'next' into for-linus
[karo-tx-linux.git] / arch / mips / netlogic / xlp / nlm_hal.c
1 /*
2  * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3  * reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the NetLogic
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39
40 #include <asm/mipsregs.h>
41 #include <asm/time.h>
42
43 #include <asm/netlogic/common.h>
44 #include <asm/netlogic/haldefs.h>
45 #include <asm/netlogic/xlp-hal/iomap.h>
46 #include <asm/netlogic/xlp-hal/xlp.h>
47 #include <asm/netlogic/xlp-hal/bridge.h>
48 #include <asm/netlogic/xlp-hal/pic.h>
49 #include <asm/netlogic/xlp-hal/sys.h>
50
51 /* Main initialization */
52 void nlm_node_init(int node)
53 {
54         struct nlm_soc_info *nodep;
55
56         nodep = nlm_get_node(node);
57         if (node == 0)
58                 nodep->coremask = 1;    /* node 0, boot cpu */
59         nodep->sysbase = nlm_get_sys_regbase(node);
60         nodep->picbase = nlm_get_pic_regbase(node);
61         nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
62         if (cpu_is_xlp9xx())
63                 nodep->socbus = xlp9xx_get_socbus(node);
64         else
65                 nodep->socbus = 0;
66         spin_lock_init(&nodep->piclock);
67 }
68
69 static int xlp9xx_irq_to_irt(int irq)
70 {
71         switch (irq) {
72         case PIC_GPIO_IRQ:
73                 return 12;
74         case PIC_I2C_0_IRQ:
75                 return 125;
76         case PIC_I2C_1_IRQ:
77                 return 126;
78         case PIC_I2C_2_IRQ:
79                 return 127;
80         case PIC_I2C_3_IRQ:
81                 return 128;
82         case PIC_9XX_XHCI_0_IRQ:
83                 return 114;
84         case PIC_9XX_XHCI_1_IRQ:
85                 return 115;
86         case PIC_9XX_XHCI_2_IRQ:
87                 return 116;
88         case PIC_UART_0_IRQ:
89                 return 133;
90         case PIC_UART_1_IRQ:
91                 return 134;
92         case PIC_SATA_IRQ:
93                 return 143;
94         case PIC_NAND_IRQ:
95                 return 151;
96         case PIC_SPI_IRQ:
97                 return 152;
98         case PIC_MMC_IRQ:
99                 return 153;
100         case PIC_PCIE_LINK_LEGACY_IRQ(0):
101         case PIC_PCIE_LINK_LEGACY_IRQ(1):
102         case PIC_PCIE_LINK_LEGACY_IRQ(2):
103         case PIC_PCIE_LINK_LEGACY_IRQ(3):
104                 return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
105         }
106         return -1;
107 }
108
109 static int xlp_irq_to_irt(int irq)
110 {
111         uint64_t pcibase;
112         int devoff, irt;
113
114         devoff = 0;
115         switch (irq) {
116         case PIC_UART_0_IRQ:
117                 devoff = XLP_IO_UART0_OFFSET(0);
118                 break;
119         case PIC_UART_1_IRQ:
120                 devoff = XLP_IO_UART1_OFFSET(0);
121                 break;
122         case PIC_MMC_IRQ:
123                 devoff = XLP_IO_MMC_OFFSET(0);
124                 break;
125         case PIC_I2C_0_IRQ:     /* I2C will be fixed up */
126         case PIC_I2C_1_IRQ:
127         case PIC_I2C_2_IRQ:
128         case PIC_I2C_3_IRQ:
129                 if (cpu_is_xlpii())
130                         devoff = XLP2XX_IO_I2C_OFFSET(0);
131                 else
132                         devoff = XLP_IO_I2C0_OFFSET(0);
133                 break;
134         case PIC_SATA_IRQ:
135                 devoff = XLP_IO_SATA_OFFSET(0);
136                 break;
137         case PIC_GPIO_IRQ:
138                 devoff = XLP_IO_GPIO_OFFSET(0);
139                 break;
140         case PIC_NAND_IRQ:
141                 devoff = XLP_IO_NAND_OFFSET(0);
142                 break;
143         case PIC_SPI_IRQ:
144                 devoff = XLP_IO_SPI_OFFSET(0);
145                 break;
146         default:
147                 if (cpu_is_xlpii()) {
148                         switch (irq) {
149                                 /* XLP2XX has three XHCI USB controller */
150                         case PIC_2XX_XHCI_0_IRQ:
151                                 devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
152                                 break;
153                         case PIC_2XX_XHCI_1_IRQ:
154                                 devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
155                                 break;
156                         case PIC_2XX_XHCI_2_IRQ:
157                                 devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
158                                 break;
159                         }
160                 } else {
161                         switch (irq) {
162                         case PIC_EHCI_0_IRQ:
163                                 devoff = XLP_IO_USB_EHCI0_OFFSET(0);
164                                 break;
165                         case PIC_EHCI_1_IRQ:
166                                 devoff = XLP_IO_USB_EHCI1_OFFSET(0);
167                                 break;
168                         case PIC_OHCI_0_IRQ:
169                                 devoff = XLP_IO_USB_OHCI0_OFFSET(0);
170                                 break;
171                         case PIC_OHCI_1_IRQ:
172                                 devoff = XLP_IO_USB_OHCI1_OFFSET(0);
173                                 break;
174                         case PIC_OHCI_2_IRQ:
175                                 devoff = XLP_IO_USB_OHCI2_OFFSET(0);
176                                 break;
177                         case PIC_OHCI_3_IRQ:
178                                 devoff = XLP_IO_USB_OHCI3_OFFSET(0);
179                                 break;
180                         }
181                 }
182         }
183
184         if (devoff != 0) {
185                 uint32_t val;
186
187                 pcibase = nlm_pcicfg_base(devoff);
188                 val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
189                 if (val == 0xffffffff) {
190                         irt = -1;
191                 } else {
192                         irt = val & 0xffff;
193                         /* HW weirdness, I2C IRT entry has to be fixed up */
194                         switch (irq) {
195                         case PIC_I2C_1_IRQ:
196                                 irt = irt + 1; break;
197                         case PIC_I2C_2_IRQ:
198                                 irt = irt + 2; break;
199                         case PIC_I2C_3_IRQ:
200                                 irt = irt + 3; break;
201                         }
202                 }
203         } else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
204                         irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
205                 /* HW bug, PCI IRT entries are bad on early silicon, fix */
206                 irt = PIC_IRT_PCIE_LINK_INDEX(irq -
207                                         PIC_PCIE_LINK_LEGACY_IRQ_BASE);
208         } else {
209                 irt = -1;
210         }
211         return irt;
212 }
213
214 int nlm_irq_to_irt(int irq)
215 {
216         /* return -2 for irqs without 1-1 mapping */
217         if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
218                 return -2;
219         if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
220                 return -2;
221
222         if (cpu_is_xlp9xx())
223                 return xlp9xx_irq_to_irt(irq);
224         else
225                 return xlp_irq_to_irt(irq);
226 }
227
228 static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
229 {
230         unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
231         uint64_t num, sysbase, clockbase;
232
233         if (cpu_is_xlp9xx()) {
234                 clockbase = nlm_get_clock_regbase(node);
235                 ctrl_val0 = nlm_read_sys_reg(clockbase,
236                                         SYS_9XX_CPU_PLL_CTRL0(core));
237                 ctrl_val1 = nlm_read_sys_reg(clockbase,
238                                         SYS_9XX_CPU_PLL_CTRL1(core));
239         } else {
240                 sysbase = nlm_get_node(node)->sysbase;
241                 ctrl_val0 = nlm_read_sys_reg(sysbase,
242                                                 SYS_CPU_PLL_CTRL0(core));
243                 ctrl_val1 = nlm_read_sys_reg(sysbase,
244                                                 SYS_CPU_PLL_CTRL1(core));
245         }
246
247         /* Find PLL post divider value */
248         switch ((ctrl_val0 >> 24) & 0x7) {
249         case 1:
250                 pll_post_div = 2;
251                 break;
252         case 3:
253                 pll_post_div = 4;
254                 break;
255         case 7:
256                 pll_post_div = 8;
257                 break;
258         case 6:
259                 pll_post_div = 16;
260                 break;
261         case 0:
262         default:
263                 pll_post_div = 1;
264                 break;
265         }
266
267         num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
268         denom = 3 * pll_post_div;
269         do_div(num, denom);
270
271         return (unsigned int)num;
272 }
273
274 static unsigned int nlm_xlp_get_core_frequency(int node, int core)
275 {
276         unsigned int pll_divf, pll_divr, dfs_div, ext_div;
277         unsigned int rstval, dfsval, denom;
278         uint64_t num, sysbase;
279
280         sysbase = nlm_get_node(node)->sysbase;
281         rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
282         dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
283         pll_divf = ((rstval >> 10) & 0x7f) + 1;
284         pll_divr = ((rstval >> 8)  & 0x3) + 1;
285         ext_div  = ((rstval >> 30) & 0x3) + 1;
286         dfs_div  = ((dfsval >> (core * 4)) & 0xf) + 1;
287
288         num = 800000000ULL * pll_divf;
289         denom = 3 * pll_divr * ext_div * dfs_div;
290         do_div(num, denom);
291
292         return (unsigned int)num;
293 }
294
295 unsigned int nlm_get_core_frequency(int node, int core)
296 {
297         if (cpu_is_xlpii())
298                 return nlm_xlp2_get_core_frequency(node, core);
299         else
300                 return nlm_xlp_get_core_frequency(node, core);
301 }
302
303 /*
304  * Calculate PIC frequency from PLL registers.
305  * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
306  *              ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
307  */
308 static unsigned int nlm_xlp2_get_pic_frequency(int node)
309 {
310         u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
311         u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
312         u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
313
314         sysbase = nlm_get_node(node)->sysbase;
315         clockbase = nlm_get_clock_regbase(node);
316         cpu_xlp9xx = cpu_is_xlp9xx();
317
318         /* Find ref_clk_base */
319         if (cpu_xlp9xx)
320                 ref_clk_select = (nlm_read_sys_reg(sysbase,
321                                 SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
322         else
323                 ref_clk_select = (nlm_read_sys_reg(sysbase,
324                                         SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
325         switch (ref_clk_select) {
326         case 0:
327                 ref_clk = 200000000ULL;
328                 ref_div = 3;
329                 break;
330         case 1:
331                 ref_clk = 100000000ULL;
332                 ref_div = 1;
333                 break;
334         case 2:
335                 ref_clk = 125000000ULL;
336                 ref_div = 1;
337                 break;
338         case 3:
339                 ref_clk = 400000000ULL;
340                 ref_div = 3;
341                 break;
342         }
343
344         /* Find the clock source PLL device for PIC */
345         if (cpu_xlp9xx) {
346                 reg_select = nlm_read_sys_reg(clockbase,
347                                 SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
348                 switch (reg_select) {
349                 case 0:
350                         ctrl_val0 = nlm_read_sys_reg(clockbase,
351                                         SYS_9XX_PLL_CTRL0);
352                         ctrl_val2 = nlm_read_sys_reg(clockbase,
353                                         SYS_9XX_PLL_CTRL2);
354                         break;
355                 case 1:
356                         ctrl_val0 = nlm_read_sys_reg(clockbase,
357                                         SYS_9XX_PLL_CTRL0_DEVX(0));
358                         ctrl_val2 = nlm_read_sys_reg(clockbase,
359                                         SYS_9XX_PLL_CTRL2_DEVX(0));
360                         break;
361                 case 2:
362                         ctrl_val0 = nlm_read_sys_reg(clockbase,
363                                         SYS_9XX_PLL_CTRL0_DEVX(1));
364                         ctrl_val2 = nlm_read_sys_reg(clockbase,
365                                         SYS_9XX_PLL_CTRL2_DEVX(1));
366                         break;
367                 case 3:
368                         ctrl_val0 = nlm_read_sys_reg(clockbase,
369                                         SYS_9XX_PLL_CTRL0_DEVX(2));
370                         ctrl_val2 = nlm_read_sys_reg(clockbase,
371                                         SYS_9XX_PLL_CTRL2_DEVX(2));
372                         break;
373                 }
374         } else {
375                 reg_select = (nlm_read_sys_reg(sysbase,
376                                         SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
377                 switch (reg_select) {
378                 case 0:
379                         ctrl_val0 = nlm_read_sys_reg(sysbase,
380                                         SYS_PLL_CTRL0);
381                         ctrl_val2 = nlm_read_sys_reg(sysbase,
382                                         SYS_PLL_CTRL2);
383                         break;
384                 case 1:
385                         ctrl_val0 = nlm_read_sys_reg(sysbase,
386                                         SYS_PLL_CTRL0_DEVX(0));
387                         ctrl_val2 = nlm_read_sys_reg(sysbase,
388                                         SYS_PLL_CTRL2_DEVX(0));
389                         break;
390                 case 2:
391                         ctrl_val0 = nlm_read_sys_reg(sysbase,
392                                         SYS_PLL_CTRL0_DEVX(1));
393                         ctrl_val2 = nlm_read_sys_reg(sysbase,
394                                         SYS_PLL_CTRL2_DEVX(1));
395                         break;
396                 case 3:
397                         ctrl_val0 = nlm_read_sys_reg(sysbase,
398                                         SYS_PLL_CTRL0_DEVX(2));
399                         ctrl_val2 = nlm_read_sys_reg(sysbase,
400                                         SYS_PLL_CTRL2_DEVX(2));
401                         break;
402                 }
403         }
404
405         vco_post_div = (ctrl_val0 >> 5) & 0x7;
406         pll_post_div = (ctrl_val0 >> 24) & 0x7;
407         mdiv = ctrl_val2 & 0xff;
408         fdiv = (ctrl_val2 >> 8) & 0x1fff;
409
410         /* Find PLL post divider value */
411         switch (pll_post_div) {
412         case 1:
413                 pll_post_div = 2;
414                 break;
415         case 3:
416                 pll_post_div = 4;
417                 break;
418         case 7:
419                 pll_post_div = 8;
420                 break;
421         case 6:
422                 pll_post_div = 16;
423                 break;
424         case 0:
425         default:
426                 pll_post_div = 1;
427                 break;
428         }
429
430         fdiv = fdiv/(1 << 13);
431         pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
432         pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
433
434         if (pll_out_freq_den > 0)
435                 do_div(pll_out_freq_num, pll_out_freq_den);
436
437         /* PIC post divider, which happens after PLL */
438         if (cpu_xlp9xx)
439                 pic_div = nlm_read_sys_reg(clockbase,
440                                 SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
441         else
442                 pic_div = (nlm_read_sys_reg(sysbase,
443                                         SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
444         do_div(pll_out_freq_num, 1 << pic_div);
445
446         return pll_out_freq_num;
447 }
448
449 unsigned int nlm_get_pic_frequency(int node)
450 {
451         if (cpu_is_xlpii())
452                 return nlm_xlp2_get_pic_frequency(node);
453         else
454                 return 133333333;
455 }
456
457 unsigned int nlm_get_cpu_frequency(void)
458 {
459         return nlm_get_core_frequency(0, 0);
460 }
461
462 /*
463  * Fills upto 8 pairs of entries containing the DRAM map of a node
464  * if node < 0, get dram map for all nodes
465  */
466 int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries)
467 {
468         uint64_t bridgebase, base, lim;
469         uint32_t val;
470         unsigned int barreg, limreg, xlatreg;
471         int i, n, rv;
472
473         /* Look only at mapping on Node 0, we don't handle crazy configs */
474         bridgebase = nlm_get_bridge_regbase(0);
475         rv = 0;
476         for (i = 0; i < 8; i++) {
477                 if (rv + 1 >= nentries)
478                         break;
479                 if (cpu_is_xlp9xx()) {
480                         barreg = BRIDGE_9XX_DRAM_BAR(i);
481                         limreg = BRIDGE_9XX_DRAM_LIMIT(i);
482                         xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
483                 } else {
484                         barreg = BRIDGE_DRAM_BAR(i);
485                         limreg = BRIDGE_DRAM_LIMIT(i);
486                         xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
487                 }
488                 if (node >= 0) {
489                         /* node specified, get node mapping of BAR */
490                         val = nlm_read_bridge_reg(bridgebase, xlatreg);
491                         n = (val >> 1) & 0x3;
492                         if (n != node)
493                                 continue;
494                 }
495                 val = nlm_read_bridge_reg(bridgebase, barreg);
496                 val = (val >>  12) & 0xfffff;
497                 base = (uint64_t) val << 20;
498                 val = nlm_read_bridge_reg(bridgebase, limreg);
499                 val = (val >>  12) & 0xfffff;
500                 if (val == 0)   /* BAR not used */
501                         continue;
502                 lim = ((uint64_t)val + 1) << 20;
503                 dram_map[rv] = base;
504                 dram_map[rv + 1] = lim;
505                 rv += 2;
506         }
507         return rv;
508 }