]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/openrisc/kernel/process.c
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[karo-tx-linux.git] / arch / openrisc / kernel / process.c
1 /*
2  * OpenRISC process.c
3  *
4  * Linux architectural port borrowing liberally from similar works of
5  * others.  All original copyrights apply as per the original source
6  * declaration.
7  *
8  * Modifications for the OpenRISC architecture:
9  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  *
17  * This file handles the architecture-dependent parts of process handling...
18  */
19
20 #define __KERNEL_SYSCALLS__
21 #include <stdarg.h>
22
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/sched/debug.h>
26 #include <linux/sched/task.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/stddef.h>
32 #include <linux/unistd.h>
33 #include <linux/ptrace.h>
34 #include <linux/slab.h>
35 #include <linux/elfcore.h>
36 #include <linux/interrupt.h>
37 #include <linux/delay.h>
38 #include <linux/init_task.h>
39 #include <linux/mqueue.h>
40 #include <linux/fs.h>
41
42 #include <linux/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/spr_defs.h>
47
48 #include <linux/smp.h>
49
50 /*
51  * Pointer to Current thread info structure.
52  *
53  * Used at user space -> kernel transitions.
54  */
55 struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
56
57 void machine_restart(void)
58 {
59         printk(KERN_INFO "*** MACHINE RESTART ***\n");
60         __asm__("l.nop 1");
61 }
62
63 /*
64  * Similar to machine_power_off, but don't shut off power.  Add code
65  * here to freeze the system for e.g. post-mortem debug purpose when
66  * possible.  This halt has nothing to do with the idle halt.
67  */
68 void machine_halt(void)
69 {
70         printk(KERN_INFO "*** MACHINE HALT ***\n");
71         __asm__("l.nop 1");
72 }
73
74 /* If or when software power-off is implemented, add code here.  */
75 void machine_power_off(void)
76 {
77         printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
78         __asm__("l.nop 1");
79 }
80
81 /*
82  * Send the doze signal to the cpu if available.
83  * Make sure, that all interrupts are enabled
84  */
85 void arch_cpu_idle(void)
86 {
87         local_irq_enable();
88         if (mfspr(SPR_UPR) & SPR_UPR_PMP)
89                 mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
90 }
91
92 void (*pm_power_off) (void) = machine_power_off;
93
94 /*
95  * When a process does an "exec", machine state like FPU and debug
96  * registers need to be reset.  This is a hook function for that.
97  * Currently we don't have any such state to reset, so this is empty.
98  */
99 void flush_thread(void)
100 {
101 }
102
103 void show_regs(struct pt_regs *regs)
104 {
105         extern void show_registers(struct pt_regs *regs);
106
107         show_regs_print_info(KERN_DEFAULT);
108         /* __PHX__ cleanup this mess */
109         show_registers(regs);
110 }
111
112 unsigned long thread_saved_pc(struct task_struct *t)
113 {
114         return (unsigned long)user_regs(t->stack)->pc;
115 }
116
117 void release_thread(struct task_struct *dead_task)
118 {
119 }
120
121 /*
122  * Copy the thread-specific (arch specific) info from the current
123  * process to the new one p
124  */
125 extern asmlinkage void ret_from_fork(void);
126
127 /*
128  * copy_thread
129  * @clone_flags: flags
130  * @usp: user stack pointer or fn for kernel thread
131  * @arg: arg to fn for kernel thread; always NULL for userspace thread
132  * @p: the newly created task
133  * @regs: CPU context to copy for userspace thread; always NULL for kthread
134  *
135  * At the top of a newly initialized kernel stack are two stacked pt_reg
136  * structures.  The first (topmost) is the userspace context of the thread.
137  * The second is the kernelspace context of the thread.
138  *
139  * A kernel thread will not be returning to userspace, so the topmost pt_regs
140  * struct can be uninitialized; it _does_ need to exist, though, because
141  * a kernel thread can become a userspace thread by doing a kernel_execve, in
142  * which case the topmost context will be initialized and used for 'returning'
143  * to userspace.
144  *
145  * The second pt_reg struct needs to be initialized to 'return' to
146  * ret_from_fork.  A kernel thread will need to set r20 to the address of
147  * a function to call into (with arg in r22); userspace threads need to set
148  * r20 to NULL in which case ret_from_fork will just continue a return to
149  * userspace.
150  *
151  * A kernel thread 'fn' may return; this is effectively what happens when
152  * kernel_execve is called.  In that case, the userspace pt_regs must have
153  * been initialized (which kernel_execve takes care of, see start_thread
154  * below); ret_from_fork will then continue its execution causing the
155  * 'kernel thread' to return to userspace as a userspace thread.
156  */
157
158 int
159 copy_thread(unsigned long clone_flags, unsigned long usp,
160             unsigned long arg, struct task_struct *p)
161 {
162         struct pt_regs *userregs;
163         struct pt_regs *kregs;
164         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
165         unsigned long top_of_kernel_stack;
166
167         top_of_kernel_stack = sp;
168
169         p->set_child_tid = p->clear_child_tid = NULL;
170
171         /* Locate userspace context on stack... */
172         sp -= STACK_FRAME_OVERHEAD;     /* redzone */
173         sp -= sizeof(struct pt_regs);
174         userregs = (struct pt_regs *) sp;
175
176         /* ...and kernel context */
177         sp -= STACK_FRAME_OVERHEAD;     /* redzone */
178         sp -= sizeof(struct pt_regs);
179         kregs = (struct pt_regs *)sp;
180
181         if (unlikely(p->flags & PF_KTHREAD)) {
182                 memset(kregs, 0, sizeof(struct pt_regs));
183                 kregs->gpr[20] = usp; /* fn, kernel thread */
184                 kregs->gpr[22] = arg;
185         } else {
186                 *userregs = *current_pt_regs();
187
188                 if (usp)
189                         userregs->sp = usp;
190
191                 /*
192                  * For CLONE_SETTLS set "tp" (r10) to the TLS pointer passed to sys_clone.
193                  *
194                  * The kernel entry is:
195                  *      int clone (long flags, void *child_stack, int *parent_tid,
196                  *              int *child_tid, struct void *tls)
197                  *
198                  * This makes the source r7 in the kernel registers.
199                  */
200                 if (clone_flags & CLONE_SETTLS)
201                         userregs->gpr[10] = userregs->gpr[7];
202
203                 userregs->gpr[11] = 0;  /* Result from fork() */
204
205                 kregs->gpr[20] = 0;     /* Userspace thread */
206         }
207
208         /*
209          * _switch wants the kernel stack page in pt_regs->sp so that it
210          * can restore it to thread_info->ksp... see _switch for details.
211          */
212         kregs->sp = top_of_kernel_stack;
213         kregs->gpr[9] = (unsigned long)ret_from_fork;
214
215         task_thread_info(p)->ksp = (unsigned long)kregs;
216
217         return 0;
218 }
219
220 /*
221  * Set up a thread for executing a new program
222  */
223 void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
224 {
225         unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
226
227         memset(regs, 0, sizeof(struct pt_regs));
228
229         regs->pc = pc;
230         regs->sr = sr;
231         regs->sp = sp;
232 }
233
234 /* Fill in the fpu structure for a core dump.  */
235 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
236 {
237         /* TODO */
238         return 0;
239 }
240
241 extern struct thread_info *_switch(struct thread_info *old_ti,
242                                    struct thread_info *new_ti);
243 extern int lwa_flag;
244
245 struct task_struct *__switch_to(struct task_struct *old,
246                                 struct task_struct *new)
247 {
248         struct task_struct *last;
249         struct thread_info *new_ti, *old_ti;
250         unsigned long flags;
251
252         local_irq_save(flags);
253
254         /* current_set is an array of saved current pointers
255          * (one for each cpu). we need them at user->kernel transition,
256          * while we save them at kernel->user transition
257          */
258         new_ti = new->stack;
259         old_ti = old->stack;
260
261         lwa_flag = 0;
262
263         current_thread_info_set[smp_processor_id()] = new_ti;
264         last = (_switch(old_ti, new_ti))->task;
265
266         local_irq_restore(flags);
267
268         return last;
269 }
270
271 /*
272  * Write out registers in core dump format, as defined by the
273  * struct user_regs_struct
274  */
275 void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
276 {
277         dest[0] = 0; /* r0 */
278         memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
279         dest[32] = regs->pc;
280         dest[33] = regs->sr;
281         dest[34] = 0;
282         dest[35] = 0;
283 }
284
285 unsigned long get_wchan(struct task_struct *p)
286 {
287         /* TODO */
288
289         return 0;
290 }