4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
19 #include <linux/interrupt.h>
20 #include <linux/extable.h>
21 #include <linux/sched/signal.h>
23 #include <linux/uaccess.h>
24 #include <asm/siginfo.h>
25 #include <asm/signal.h>
27 #define NUM_TLB_ENTRIES 64
28 #define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
30 unsigned long pte_misses; /* updated by do_page_fault() */
31 unsigned long pte_errors; /* updated by do_page_fault() */
33 /* __PHX__ :: - check the vmalloc_fault in do_page_fault()
34 * - also look into include/asm-or32/mmu_context.h
36 volatile pgd_t *current_pgd;
38 extern void die(char *, struct pt_regs *, long);
41 * This routine handles page faults. It determines the address,
42 * and the problem, and then passes it off to one of the appropriate
45 * If this routine detects a bad access, it returns 1, otherwise it
49 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
50 unsigned long vector, int write_acc)
52 struct task_struct *tsk;
54 struct vm_area_struct *vma;
57 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
62 * We fault-in kernel-space virtual memory on-demand. The
63 * 'reference' page table is init_mm.pgd.
65 * NOTE! We MUST NOT take any locks for this case. We may
66 * be in an interrupt or a critical region, and should
67 * only copy the information from the master page table,
70 * NOTE2: This is done so that, when updating the vmalloc
71 * mappings we don't have to walk all processes pgdirs and
72 * add the high mappings all at once. Instead we do it as they
73 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
74 * bit set so sometimes the TLB can use a lingering entry.
76 * This verifies that the fault happens in kernel space
77 * and that the fault was not a protection error.
80 if (address >= VMALLOC_START &&
81 (vector != 0x300 && vector != 0x400) &&
85 /* If exceptions were enabled, we can reenable them here */
86 if (user_mode(regs)) {
87 /* Exception was in userspace: reenable interrupts */
89 flags |= FAULT_FLAG_USER;
91 /* If exception was in a syscall, then IRQ's may have
92 * been enabled or disabled. If they were enabled,
95 if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
100 info.si_code = SEGV_MAPERR;
103 * If we're in an interrupt or have no user
104 * context, we must not take the fault..
107 if (in_interrupt() || !mm)
111 down_read(&mm->mmap_sem);
112 vma = find_vma(mm, address);
117 if (vma->vm_start <= address)
120 if (!(vma->vm_flags & VM_GROWSDOWN))
123 if (user_mode(regs)) {
125 * accessing the stack below usp is always a bug.
126 * we get page-aligned addresses so we can only check
127 * if we're within a page from usp, but that might be
128 * enough to catch brutal errors at least.
130 if (address + PAGE_SIZE < regs->sp)
133 if (expand_stack(vma, address))
137 * Ok, we have a good vm_area for this memory access, so
142 info.si_code = SEGV_ACCERR;
144 /* first do some preliminary protection checks */
147 if (!(vma->vm_flags & VM_WRITE))
149 flags |= FAULT_FLAG_WRITE;
152 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
156 /* are we trying to execute nonexecutable area */
157 if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
161 * If for any reason at all we couldn't handle the fault,
162 * make sure we exit gracefully rather than endlessly redo
166 fault = handle_mm_fault(vma, address, flags);
168 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
171 if (unlikely(fault & VM_FAULT_ERROR)) {
172 if (fault & VM_FAULT_OOM)
174 else if (fault & VM_FAULT_SIGSEGV)
176 else if (fault & VM_FAULT_SIGBUS)
181 if (flags & FAULT_FLAG_ALLOW_RETRY) {
182 /*RGD modeled on Cris */
183 if (fault & VM_FAULT_MAJOR)
187 if (fault & VM_FAULT_RETRY) {
188 flags &= ~FAULT_FLAG_ALLOW_RETRY;
189 flags |= FAULT_FLAG_TRIED;
191 /* No need to up_read(&mm->mmap_sem) as we would
192 * have already released it in __lock_page_or_retry
200 up_read(&mm->mmap_sem);
204 * Something tried to access memory that isn't in our memory map..
205 * Fix it, but check if it's kernel or user first..
209 up_read(&mm->mmap_sem);
211 bad_area_nosemaphore:
213 /* User mode accesses just cause a SIGSEGV */
215 if (user_mode(regs)) {
216 info.si_signo = SIGSEGV;
218 /* info.si_code has been set above */
219 info.si_addr = (void *)address;
220 force_sig_info(SIGSEGV, &info, tsk);
226 /* Are we prepared to handle this kernel fault?
228 * (The kernel has valid exception-points in the source
229 * when it acesses user-memory. When it fails in one
230 * of those points, we find it in a table and do a jump
231 * to some fixup code that loads an appropriate error
236 const struct exception_table_entry *entry;
238 __asm__ __volatile__("l.nop 42");
240 if ((entry = search_exception_tables(regs->pc)) != NULL) {
241 /* Adjust the instruction pointer in the stackframe */
242 regs->pc = entry->fixup;
248 * Oops. The kernel tried to access some bad page. We'll have to
249 * terminate things with extreme prejudice.
252 if ((unsigned long)(address) < PAGE_SIZE)
254 "Unable to handle kernel NULL pointer dereference");
256 printk(KERN_ALERT "Unable to handle kernel access");
257 printk(" at virtual address 0x%08lx\n", address);
259 die("Oops", regs, write_acc);
264 * We ran out of memory, or some other thing happened to us that made
265 * us unable to handle the page fault gracefully.
269 __asm__ __volatile__("l.nop 42");
270 __asm__ __volatile__("l.nop 1");
272 up_read(&mm->mmap_sem);
273 if (!user_mode(regs))
275 pagefault_out_of_memory();
279 up_read(&mm->mmap_sem);
282 * Send a sigbus, regardless of whether we were in kernel
285 info.si_signo = SIGBUS;
287 info.si_code = BUS_ADRERR;
288 info.si_addr = (void *)address;
289 force_sig_info(SIGBUS, &info, tsk);
291 /* Kernel mode? Handle exceptions or die */
292 if (!user_mode(regs))
299 * Synchronize this task's top level page-table
300 * with the 'reference' page table.
302 * Use current_pgd instead of tsk->active_mm->pgd
303 * since the latter might be unavailable if this
304 * code is executed in a misfortunately run irq
305 * (like inside schedule() between switch_mm and
309 int offset = pgd_index(address);
316 phx_warn("do_page_fault(): vmalloc_fault will not work, "
317 "since current_pgd assign a proper value somewhere\n"
318 "anyhow we don't need this at the moment\n");
320 phx_mmu("vmalloc_fault");
322 pgd = (pgd_t *)current_pgd + offset;
323 pgd_k = init_mm.pgd + offset;
325 /* Since we're two-level, we don't need to do both
326 * set_pgd and set_pmd (they do the same thing). If
327 * we go three-level at some point, do the right thing
328 * with pgd_present and set_pgd here.
330 * Also, since the vmalloc area is global, we don't
331 * need to copy individual PTE's, it is enough to
332 * copy the pgd pointer into the pte page of the
333 * root task. If that is there, we'll find our pte if
337 pud = pud_offset(pgd, address);
338 pud_k = pud_offset(pgd_k, address);
339 if (!pud_present(*pud_k))
342 pmd = pmd_offset(pud, address);
343 pmd_k = pmd_offset(pud_k, address);
345 if (!pmd_present(*pmd_k))
346 goto bad_area_nosemaphore;
348 set_pmd(pmd, *pmd_k);
350 /* Make sure the actual PTE exists as well to
351 * catch kernel vmalloc-area accesses to non-mapped
352 * addresses. If we don't do this, this will just
353 * silently loop forever.
356 pte_k = pte_offset_kernel(pmd_k, address);
357 if (!pte_present(*pte_k))