]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/parisc/kernel/cache.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[karo-tx-linux.git] / arch / parisc / kernel / cache.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
7  * Copyright (C) 1999 SuSE GmbH Nuernberg
8  * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
9  *
10  * Cache and TLB management
11  *
12  */
13  
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/seq_file.h>
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <asm/pdc.h>
22 #include <asm/cache.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/processor.h>
28 #include <asm/sections.h>
29 #include <asm/shmparam.h>
30
31 int split_tlb __read_mostly;
32 int dcache_stride __read_mostly;
33 int icache_stride __read_mostly;
34 EXPORT_SYMBOL(dcache_stride);
35
36 void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
37 EXPORT_SYMBOL(flush_dcache_page_asm);
38 void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
39
40
41 /* On some machines (e.g. ones with the Merced bus), there can be
42  * only a single PxTLB broadcast at a time; this must be guaranteed
43  * by software.  We put a spinlock around all TLB flushes  to
44  * ensure this.
45  */
46 DEFINE_SPINLOCK(pa_tlb_lock);
47
48 struct pdc_cache_info cache_info __read_mostly;
49 #ifndef CONFIG_PA20
50 static struct pdc_btlb_info btlb_info __read_mostly;
51 #endif
52
53 #ifdef CONFIG_SMP
54 void
55 flush_data_cache(void)
56 {
57         on_each_cpu(flush_data_cache_local, NULL, 1);
58 }
59 void 
60 flush_instruction_cache(void)
61 {
62         on_each_cpu(flush_instruction_cache_local, NULL, 1);
63 }
64 #endif
65
66 void
67 flush_cache_all_local(void)
68 {
69         flush_instruction_cache_local(NULL);
70         flush_data_cache_local(NULL);
71 }
72 EXPORT_SYMBOL(flush_cache_all_local);
73
74 /* Virtual address of pfn.  */
75 #define pfn_va(pfn)     __va(PFN_PHYS(pfn))
76
77 void
78 update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
79 {
80         unsigned long pfn = pte_pfn(*ptep);
81         struct page *page;
82
83         /* We don't have pte special.  As a result, we can be called with
84            an invalid pfn and we don't need to flush the kernel dcache page.
85            This occurs with FireGL card in C8000.  */
86         if (!pfn_valid(pfn))
87                 return;
88
89         page = pfn_to_page(pfn);
90         if (page_mapping(page) && test_bit(PG_dcache_dirty, &page->flags)) {
91                 flush_kernel_dcache_page_addr(pfn_va(pfn));
92                 clear_bit(PG_dcache_dirty, &page->flags);
93         } else if (parisc_requires_coherency())
94                 flush_kernel_dcache_page_addr(pfn_va(pfn));
95 }
96
97 void
98 show_cache_info(struct seq_file *m)
99 {
100         char buf[32];
101
102         seq_printf(m, "I-cache\t\t: %ld KB\n", 
103                 cache_info.ic_size/1024 );
104         if (cache_info.dc_loop != 1)
105                 snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
106         seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s)\n",
107                 cache_info.dc_size/1024,
108                 (cache_info.dc_conf.cc_wt ? "WT":"WB"),
109                 (cache_info.dc_conf.cc_sh ? ", shared I/D":""),
110                 ((cache_info.dc_loop == 1) ? "direct mapped" : buf));
111         seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
112                 cache_info.it_size,
113                 cache_info.dt_size,
114                 cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
115         );
116                 
117 #ifndef CONFIG_PA20
118         /* BTLB - Block TLB */
119         if (btlb_info.max_size==0) {
120                 seq_printf(m, "BTLB\t\t: not supported\n" );
121         } else {
122                 seq_printf(m, 
123                 "BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
124                 "BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
125                 "BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
126                 btlb_info.max_size, (int)4096,
127                 btlb_info.max_size>>8,
128                 btlb_info.fixed_range_info.num_i,
129                 btlb_info.fixed_range_info.num_d,
130                 btlb_info.fixed_range_info.num_comb, 
131                 btlb_info.variable_range_info.num_i,
132                 btlb_info.variable_range_info.num_d,
133                 btlb_info.variable_range_info.num_comb
134                 );
135         }
136 #endif
137 }
138
139 void __init 
140 parisc_cache_init(void)
141 {
142         if (pdc_cache_info(&cache_info) < 0)
143                 panic("parisc_cache_init: pdc_cache_info failed");
144
145 #if 0
146         printk("ic_size %lx dc_size %lx it_size %lx\n",
147                 cache_info.ic_size,
148                 cache_info.dc_size,
149                 cache_info.it_size);
150
151         printk("DC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
152                 cache_info.dc_base,
153                 cache_info.dc_stride,
154                 cache_info.dc_count,
155                 cache_info.dc_loop);
156
157         printk("dc_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
158                 *(unsigned long *) (&cache_info.dc_conf),
159                 cache_info.dc_conf.cc_alias,
160                 cache_info.dc_conf.cc_block,
161                 cache_info.dc_conf.cc_line,
162                 cache_info.dc_conf.cc_shift);
163         printk("        wt %d sh %d cst %d hv %d\n",
164                 cache_info.dc_conf.cc_wt,
165                 cache_info.dc_conf.cc_sh,
166                 cache_info.dc_conf.cc_cst,
167                 cache_info.dc_conf.cc_hv);
168
169         printk("IC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
170                 cache_info.ic_base,
171                 cache_info.ic_stride,
172                 cache_info.ic_count,
173                 cache_info.ic_loop);
174
175         printk("IT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
176                 cache_info.it_sp_base,
177                 cache_info.it_sp_stride,
178                 cache_info.it_sp_count,
179                 cache_info.it_loop,
180                 cache_info.it_off_base,
181                 cache_info.it_off_stride,
182                 cache_info.it_off_count);
183
184         printk("DT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
185                 cache_info.dt_sp_base,
186                 cache_info.dt_sp_stride,
187                 cache_info.dt_sp_count,
188                 cache_info.dt_loop,
189                 cache_info.dt_off_base,
190                 cache_info.dt_off_stride,
191                 cache_info.dt_off_count);
192
193         printk("ic_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
194                 *(unsigned long *) (&cache_info.ic_conf),
195                 cache_info.ic_conf.cc_alias,
196                 cache_info.ic_conf.cc_block,
197                 cache_info.ic_conf.cc_line,
198                 cache_info.ic_conf.cc_shift);
199         printk("        wt %d sh %d cst %d hv %d\n",
200                 cache_info.ic_conf.cc_wt,
201                 cache_info.ic_conf.cc_sh,
202                 cache_info.ic_conf.cc_cst,
203                 cache_info.ic_conf.cc_hv);
204
205         printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
206                 cache_info.dt_conf.tc_sh,
207                 cache_info.dt_conf.tc_page,
208                 cache_info.dt_conf.tc_cst,
209                 cache_info.dt_conf.tc_aid,
210                 cache_info.dt_conf.tc_sr);
211
212         printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
213                 cache_info.it_conf.tc_sh,
214                 cache_info.it_conf.tc_page,
215                 cache_info.it_conf.tc_cst,
216                 cache_info.it_conf.tc_aid,
217                 cache_info.it_conf.tc_sr);
218 #endif
219
220         split_tlb = 0;
221         if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
222                 if (cache_info.dt_conf.tc_sh == 2)
223                         printk(KERN_WARNING "Unexpected TLB configuration. "
224                         "Will flush I/D separately (could be optimized).\n");
225
226                 split_tlb = 1;
227         }
228
229         /* "New and Improved" version from Jim Hull 
230          *      (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
231          * The following CAFL_STRIDE is an optimized version, see
232          * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
233          * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
234          */
235 #define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
236         dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
237         icache_stride = CAFL_STRIDE(cache_info.ic_conf);
238 #undef CAFL_STRIDE
239
240 #ifndef CONFIG_PA20
241         if (pdc_btlb_info(&btlb_info) < 0) {
242                 memset(&btlb_info, 0, sizeof btlb_info);
243         }
244 #endif
245
246         if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
247                                                 PDC_MODEL_NVA_UNSUPPORTED) {
248                 printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
249 #if 0
250                 panic("SMP kernel required to avoid non-equivalent aliasing");
251 #endif
252         }
253 }
254
255 void disable_sr_hashing(void)
256 {
257         int srhash_type, retval;
258         unsigned long space_bits;
259
260         switch (boot_cpu_data.cpu_type) {
261         case pcx: /* We shouldn't get this far.  setup.c should prevent it. */
262                 BUG();
263                 return;
264
265         case pcxs:
266         case pcxt:
267         case pcxt_:
268                 srhash_type = SRHASH_PCXST;
269                 break;
270
271         case pcxl:
272                 srhash_type = SRHASH_PCXL;
273                 break;
274
275         case pcxl2: /* pcxl2 doesn't support space register hashing */
276                 return;
277
278         default: /* Currently all PA2.0 machines use the same ins. sequence */
279                 srhash_type = SRHASH_PA20;
280                 break;
281         }
282
283         disable_sr_hashing_asm(srhash_type);
284
285         retval = pdc_spaceid_bits(&space_bits);
286         /* If this procedure isn't implemented, don't panic. */
287         if (retval < 0 && retval != PDC_BAD_OPTION)
288                 panic("pdc_spaceid_bits call failed.\n");
289         if (space_bits != 0)
290                 panic("SpaceID hashing is still on!\n");
291 }
292
293 static inline void
294 __flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
295                    unsigned long physaddr)
296 {
297         preempt_disable();
298         flush_dcache_page_asm(physaddr, vmaddr);
299         if (vma->vm_flags & VM_EXEC)
300                 flush_icache_page_asm(physaddr, vmaddr);
301         preempt_enable();
302 }
303
304 void flush_dcache_page(struct page *page)
305 {
306         struct address_space *mapping = page_mapping(page);
307         struct vm_area_struct *mpnt;
308         unsigned long offset;
309         unsigned long addr, old_addr = 0;
310         pgoff_t pgoff;
311
312         if (mapping && !mapping_mapped(mapping)) {
313                 set_bit(PG_dcache_dirty, &page->flags);
314                 return;
315         }
316
317         flush_kernel_dcache_page(page);
318
319         if (!mapping)
320                 return;
321
322         pgoff = page->index;
323
324         /* We have carefully arranged in arch_get_unmapped_area() that
325          * *any* mappings of a file are always congruently mapped (whether
326          * declared as MAP_PRIVATE or MAP_SHARED), so we only need
327          * to flush one address here for them all to become coherent */
328
329         flush_dcache_mmap_lock(mapping);
330         vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
331                 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
332                 addr = mpnt->vm_start + offset;
333
334                 /* The TLB is the engine of coherence on parisc: The
335                  * CPU is entitled to speculate any page with a TLB
336                  * mapping, so here we kill the mapping then flush the
337                  * page along a special flush only alias mapping.
338                  * This guarantees that the page is no-longer in the
339                  * cache for any process and nor may it be
340                  * speculatively read in (until the user or kernel
341                  * specifically accesses it, of course) */
342
343                 flush_tlb_page(mpnt, addr);
344                 if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
345                                       != (addr & (SHM_COLOUR - 1))) {
346                         __flush_cache_page(mpnt, addr, page_to_phys(page));
347                         if (old_addr)
348                                 printk(KERN_ERR "INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n", old_addr, addr, mpnt->vm_file);
349                         old_addr = addr;
350                 }
351         }
352         flush_dcache_mmap_unlock(mapping);
353 }
354 EXPORT_SYMBOL(flush_dcache_page);
355
356 /* Defined in arch/parisc/kernel/pacache.S */
357 EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
358 EXPORT_SYMBOL(flush_kernel_dcache_page_asm);
359 EXPORT_SYMBOL(flush_data_cache_local);
360 EXPORT_SYMBOL(flush_kernel_icache_range_asm);
361
362 #define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
363 static unsigned long parisc_cache_flush_threshold __read_mostly = FLUSH_THRESHOLD;
364
365 #define FLUSH_TLB_THRESHOLD (2*1024*1024) /* 2MB initial TLB threshold */
366 static unsigned long parisc_tlb_flush_threshold __read_mostly = FLUSH_TLB_THRESHOLD;
367
368 void __init parisc_setup_cache_timing(void)
369 {
370         unsigned long rangetime, alltime;
371         unsigned long size, start;
372         unsigned long threshold;
373
374         alltime = mfctl(16);
375         flush_data_cache();
376         alltime = mfctl(16) - alltime;
377
378         size = (unsigned long)(_end - _text);
379         rangetime = mfctl(16);
380         flush_kernel_dcache_range((unsigned long)_text, size);
381         rangetime = mfctl(16) - rangetime;
382
383         printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
384                 alltime, size, rangetime);
385
386         threshold = L1_CACHE_ALIGN(size * alltime / rangetime);
387         if (threshold > cache_info.dc_size)
388                 threshold = cache_info.dc_size;
389         if (threshold)
390                 parisc_cache_flush_threshold = threshold;
391         printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
392                 parisc_cache_flush_threshold/1024);
393
394         /* calculate TLB flush threshold */
395
396         /* On SMP machines, skip the TLB measure of kernel text which
397          * has been mapped as huge pages. */
398         if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
399                 threshold = max(cache_info.it_size, cache_info.dt_size);
400                 threshold *= PAGE_SIZE;
401                 threshold /= num_online_cpus();
402                 goto set_tlb_threshold;
403         }
404
405         alltime = mfctl(16);
406         flush_tlb_all();
407         alltime = mfctl(16) - alltime;
408
409         size = 0;
410         start = (unsigned long) _text;
411         rangetime = mfctl(16);
412         while (start < (unsigned long) _end) {
413                 flush_tlb_kernel_range(start, start + PAGE_SIZE);
414                 start += PAGE_SIZE;
415                 size += PAGE_SIZE;
416         }
417         rangetime = mfctl(16) - rangetime;
418
419         printk(KERN_DEBUG "Whole TLB flush %lu cycles, flushing %lu bytes %lu cycles\n",
420                 alltime, size, rangetime);
421
422         threshold = PAGE_ALIGN(num_online_cpus() * size * alltime / rangetime);
423
424 set_tlb_threshold:
425         if (threshold)
426                 parisc_tlb_flush_threshold = threshold;
427         printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
428                 parisc_tlb_flush_threshold/1024);
429 }
430
431 extern void purge_kernel_dcache_page_asm(unsigned long);
432 extern void clear_user_page_asm(void *, unsigned long);
433 extern void copy_user_page_asm(void *, void *, unsigned long);
434
435 void flush_kernel_dcache_page_addr(void *addr)
436 {
437         unsigned long flags;
438
439         flush_kernel_dcache_page_asm(addr);
440         purge_tlb_start(flags);
441         pdtlb_kernel(addr);
442         purge_tlb_end(flags);
443 }
444 EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
445
446 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
447         struct page *pg)
448 {
449        /* Copy using kernel mapping.  No coherency is needed (all in
450           kunmap) for the `to' page.  However, the `from' page needs to
451           be flushed through a mapping equivalent to the user mapping
452           before it can be accessed through the kernel mapping. */
453         preempt_disable();
454         flush_dcache_page_asm(__pa(vfrom), vaddr);
455         preempt_enable();
456         copy_page_asm(vto, vfrom);
457 }
458 EXPORT_SYMBOL(copy_user_page);
459
460 /* __flush_tlb_range()
461  *
462  * returns 1 if all TLBs were flushed.
463  */
464 int __flush_tlb_range(unsigned long sid, unsigned long start,
465                       unsigned long end)
466 {
467         unsigned long flags, size;
468
469         size = (end - start);
470         if (size >= parisc_tlb_flush_threshold) {
471                 flush_tlb_all();
472                 return 1;
473         }
474
475         /* Purge TLB entries for small ranges using the pdtlb and
476            pitlb instructions.  These instructions execute locally
477            but cause a purge request to be broadcast to other TLBs.  */
478         if (likely(!split_tlb)) {
479                 while (start < end) {
480                         purge_tlb_start(flags);
481                         mtsp(sid, 1);
482                         pdtlb(start);
483                         purge_tlb_end(flags);
484                         start += PAGE_SIZE;
485                 }
486                 return 0;
487         }
488
489         /* split TLB case */
490         while (start < end) {
491                 purge_tlb_start(flags);
492                 mtsp(sid, 1);
493                 pdtlb(start);
494                 pitlb(start);
495                 purge_tlb_end(flags);
496                 start += PAGE_SIZE;
497         }
498         return 0;
499 }
500
501 static void cacheflush_h_tmp_function(void *dummy)
502 {
503         flush_cache_all_local();
504 }
505
506 void flush_cache_all(void)
507 {
508         on_each_cpu(cacheflush_h_tmp_function, NULL, 1);
509 }
510
511 static inline unsigned long mm_total_size(struct mm_struct *mm)
512 {
513         struct vm_area_struct *vma;
514         unsigned long usize = 0;
515
516         for (vma = mm->mmap; vma; vma = vma->vm_next)
517                 usize += vma->vm_end - vma->vm_start;
518         return usize;
519 }
520
521 static inline pte_t *get_ptep(pgd_t *pgd, unsigned long addr)
522 {
523         pte_t *ptep = NULL;
524
525         if (!pgd_none(*pgd)) {
526                 pud_t *pud = pud_offset(pgd, addr);
527                 if (!pud_none(*pud)) {
528                         pmd_t *pmd = pmd_offset(pud, addr);
529                         if (!pmd_none(*pmd))
530                                 ptep = pte_offset_map(pmd, addr);
531                 }
532         }
533         return ptep;
534 }
535
536 void flush_cache_mm(struct mm_struct *mm)
537 {
538         struct vm_area_struct *vma;
539         pgd_t *pgd;
540
541         /* Flushing the whole cache on each cpu takes forever on
542            rp3440, etc.  So, avoid it if the mm isn't too big.  */
543         if (mm_total_size(mm) >= parisc_cache_flush_threshold) {
544                 flush_cache_all();
545                 return;
546         }
547
548         if (mm->context == mfsp(3)) {
549                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
550                         flush_user_dcache_range_asm(vma->vm_start, vma->vm_end);
551                         if ((vma->vm_flags & VM_EXEC) == 0)
552                                 continue;
553                         flush_user_icache_range_asm(vma->vm_start, vma->vm_end);
554                 }
555                 return;
556         }
557
558         pgd = mm->pgd;
559         for (vma = mm->mmap; vma; vma = vma->vm_next) {
560                 unsigned long addr;
561
562                 for (addr = vma->vm_start; addr < vma->vm_end;
563                      addr += PAGE_SIZE) {
564                         unsigned long pfn;
565                         pte_t *ptep = get_ptep(pgd, addr);
566                         if (!ptep)
567                                 continue;
568                         pfn = pte_pfn(*ptep);
569                         if (!pfn_valid(pfn))
570                                 continue;
571                         __flush_cache_page(vma, addr, PFN_PHYS(pfn));
572                 }
573         }
574 }
575
576 void
577 flush_user_dcache_range(unsigned long start, unsigned long end)
578 {
579         if ((end - start) < parisc_cache_flush_threshold)
580                 flush_user_dcache_range_asm(start,end);
581         else
582                 flush_data_cache();
583 }
584
585 void
586 flush_user_icache_range(unsigned long start, unsigned long end)
587 {
588         if ((end - start) < parisc_cache_flush_threshold)
589                 flush_user_icache_range_asm(start,end);
590         else
591                 flush_instruction_cache();
592 }
593
594 void flush_cache_range(struct vm_area_struct *vma,
595                 unsigned long start, unsigned long end)
596 {
597         unsigned long addr;
598         pgd_t *pgd;
599
600         BUG_ON(!vma->vm_mm->context);
601
602         if ((end - start) >= parisc_cache_flush_threshold) {
603                 flush_cache_all();
604                 return;
605         }
606
607         if (vma->vm_mm->context == mfsp(3)) {
608                 flush_user_dcache_range_asm(start, end);
609                 if (vma->vm_flags & VM_EXEC)
610                         flush_user_icache_range_asm(start, end);
611                 return;
612         }
613
614         pgd = vma->vm_mm->pgd;
615         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
616                 unsigned long pfn;
617                 pte_t *ptep = get_ptep(pgd, addr);
618                 if (!ptep)
619                         continue;
620                 pfn = pte_pfn(*ptep);
621                 if (pfn_valid(pfn))
622                         __flush_cache_page(vma, addr, PFN_PHYS(pfn));
623         }
624 }
625
626 void
627 flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
628 {
629         BUG_ON(!vma->vm_mm->context);
630
631         if (pfn_valid(pfn)) {
632                 flush_tlb_page(vma, vmaddr);
633                 __flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
634         }
635 }