]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/parisc/mm/init.c
mm, show_mem: suppress page counts in non-blockable contexts
[karo-tx-linux.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 extern int  data_start;
35
36 #if PT_NLEVELS == 3
37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
38  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
39  * guarantee that global objects will be laid out in memory in the same order
40  * as the order of declaration, so put these in different sections and use
41  * the linker script to order them. */
42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
43 #endif
44
45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
47
48 #ifdef CONFIG_DISCONTIGMEM
49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
50 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
51 #endif
52
53 static struct resource data_resource = {
54         .name   = "Kernel data",
55         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57
58 static struct resource code_resource = {
59         .name   = "Kernel code",
60         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
61 };
62
63 static struct resource pdcdata_resource = {
64         .name   = "PDC data (Page Zero)",
65         .start  = 0,
66         .end    = 0x9ff,
67         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
68 };
69
70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
71
72 /* The following array is initialized from the firmware specific
73  * information retrieved in kernel/inventory.c.
74  */
75
76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
77 int npmem_ranges __read_mostly;
78
79 #ifdef CONFIG_64BIT
80 #define MAX_MEM         (~0UL)
81 #else /* !CONFIG_64BIT */
82 #define MAX_MEM         (3584U*1024U*1024U)
83 #endif /* !CONFIG_64BIT */
84
85 static unsigned long mem_limit __read_mostly = MAX_MEM;
86
87 static void __init mem_limit_func(void)
88 {
89         char *cp, *end;
90         unsigned long limit;
91
92         /* We need this before __setup() functions are called */
93
94         limit = MAX_MEM;
95         for (cp = boot_command_line; *cp; ) {
96                 if (memcmp(cp, "mem=", 4) == 0) {
97                         cp += 4;
98                         limit = memparse(cp, &end);
99                         if (end != cp)
100                                 break;
101                         cp = end;
102                 } else {
103                         while (*cp != ' ' && *cp)
104                                 ++cp;
105                         while (*cp == ' ')
106                                 ++cp;
107                 }
108         }
109
110         if (limit < mem_limit)
111                 mem_limit = limit;
112 }
113
114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
115
116 static void __init setup_bootmem(void)
117 {
118         unsigned long bootmap_size;
119         unsigned long mem_max;
120         unsigned long bootmap_pages;
121         unsigned long bootmap_start_pfn;
122         unsigned long bootmap_pfn;
123 #ifndef CONFIG_DISCONTIGMEM
124         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
125         int npmem_holes;
126 #endif
127         int i, sysram_resource_count;
128
129         disable_sr_hashing(); /* Turn off space register hashing */
130
131         /*
132          * Sort the ranges. Since the number of ranges is typically
133          * small, and performance is not an issue here, just do
134          * a simple insertion sort.
135          */
136
137         for (i = 1; i < npmem_ranges; i++) {
138                 int j;
139
140                 for (j = i; j > 0; j--) {
141                         unsigned long tmp;
142
143                         if (pmem_ranges[j-1].start_pfn <
144                             pmem_ranges[j].start_pfn) {
145
146                                 break;
147                         }
148                         tmp = pmem_ranges[j-1].start_pfn;
149                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
150                         pmem_ranges[j].start_pfn = tmp;
151                         tmp = pmem_ranges[j-1].pages;
152                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
153                         pmem_ranges[j].pages = tmp;
154                 }
155         }
156
157 #ifndef CONFIG_DISCONTIGMEM
158         /*
159          * Throw out ranges that are too far apart (controlled by
160          * MAX_GAP).
161          */
162
163         for (i = 1; i < npmem_ranges; i++) {
164                 if (pmem_ranges[i].start_pfn -
165                         (pmem_ranges[i-1].start_pfn +
166                          pmem_ranges[i-1].pages) > MAX_GAP) {
167                         npmem_ranges = i;
168                         printk("Large gap in memory detected (%ld pages). "
169                                "Consider turning on CONFIG_DISCONTIGMEM\n",
170                                pmem_ranges[i].start_pfn -
171                                (pmem_ranges[i-1].start_pfn +
172                                 pmem_ranges[i-1].pages));
173                         break;
174                 }
175         }
176 #endif
177
178         if (npmem_ranges > 1) {
179
180                 /* Print the memory ranges */
181
182                 printk(KERN_INFO "Memory Ranges:\n");
183
184                 for (i = 0; i < npmem_ranges; i++) {
185                         unsigned long start;
186                         unsigned long size;
187
188                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
189                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
190                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
191                                 i,start, start + (size - 1), size >> 20);
192                 }
193         }
194
195         sysram_resource_count = npmem_ranges;
196         for (i = 0; i < sysram_resource_count; i++) {
197                 struct resource *res = &sysram_resources[i];
198                 res->name = "System RAM";
199                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
200                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
201                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
202                 request_resource(&iomem_resource, res);
203         }
204
205         /*
206          * For 32 bit kernels we limit the amount of memory we can
207          * support, in order to preserve enough kernel address space
208          * for other purposes. For 64 bit kernels we don't normally
209          * limit the memory, but this mechanism can be used to
210          * artificially limit the amount of memory (and it is written
211          * to work with multiple memory ranges).
212          */
213
214         mem_limit_func();       /* check for "mem=" argument */
215
216         mem_max = 0;
217         num_physpages = 0;
218         for (i = 0; i < npmem_ranges; i++) {
219                 unsigned long rsize;
220
221                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222                 if ((mem_max + rsize) > mem_limit) {
223                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224                         if (mem_max == mem_limit)
225                                 npmem_ranges = i;
226                         else {
227                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
228                                                        - (mem_max >> PAGE_SHIFT);
229                                 npmem_ranges = i + 1;
230                                 mem_max = mem_limit;
231                         }
232                 num_physpages += pmem_ranges[i].pages;
233                         break;
234                 }
235             num_physpages += pmem_ranges[i].pages;
236                 mem_max += rsize;
237         }
238
239         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240
241 #ifndef CONFIG_DISCONTIGMEM
242         /* Merge the ranges, keeping track of the holes */
243
244         {
245                 unsigned long end_pfn;
246                 unsigned long hole_pages;
247
248                 npmem_holes = 0;
249                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250                 for (i = 1; i < npmem_ranges; i++) {
251
252                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253                         if (hole_pages) {
254                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
255                                 pmem_holes[npmem_holes++].pages = hole_pages;
256                                 end_pfn += hole_pages;
257                         }
258                         end_pfn += pmem_ranges[i].pages;
259                 }
260
261                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262                 npmem_ranges = 1;
263         }
264 #endif
265
266         bootmap_pages = 0;
267         for (i = 0; i < npmem_ranges; i++)
268                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269
270         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271
272 #ifdef CONFIG_DISCONTIGMEM
273         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275                 NODE_DATA(i)->bdata = &bootmem_node_data[i];
276         }
277         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278
279         for (i = 0; i < npmem_ranges; i++) {
280                 node_set_state(i, N_NORMAL_MEMORY);
281                 node_set_online(i);
282         }
283 #endif
284
285         /*
286          * Initialize and free the full range of memory in each range.
287          * Note that the only writing these routines do are to the bootmap,
288          * and we've made sure to locate the bootmap properly so that they
289          * won't be writing over anything important.
290          */
291
292         bootmap_pfn = bootmap_start_pfn;
293         max_pfn = 0;
294         for (i = 0; i < npmem_ranges; i++) {
295                 unsigned long start_pfn;
296                 unsigned long npages;
297
298                 start_pfn = pmem_ranges[i].start_pfn;
299                 npages = pmem_ranges[i].pages;
300
301                 bootmap_size = init_bootmem_node(NODE_DATA(i),
302                                                 bootmap_pfn,
303                                                 start_pfn,
304                                                 (start_pfn + npages) );
305                 free_bootmem_node(NODE_DATA(i),
306                                   (start_pfn << PAGE_SHIFT),
307                                   (npages << PAGE_SHIFT) );
308                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309                 if ((start_pfn + npages) > max_pfn)
310                         max_pfn = start_pfn + npages;
311         }
312
313         /* IOMMU is always used to access "high mem" on those boxes
314          * that can support enough mem that a PCI device couldn't
315          * directly DMA to any physical addresses.
316          * ISA DMA support will need to revisit this.
317          */
318         max_low_pfn = max_pfn;
319
320         /* bootmap sizing messed up? */
321         BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322
323         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
326
327         reserve_bootmem_node(NODE_DATA(0), 0UL,
328                         (unsigned long)(PAGE0->mem_free +
329                                 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330         reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
331                         (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
332         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
333                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
334                         BOOTMEM_DEFAULT);
335
336 #ifndef CONFIG_DISCONTIGMEM
337
338         /* reserve the holes */
339
340         for (i = 0; i < npmem_holes; i++) {
341                 reserve_bootmem_node(NODE_DATA(0),
342                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
343                                 (pmem_holes[i].pages << PAGE_SHIFT),
344                                 BOOTMEM_DEFAULT);
345         }
346 #endif
347
348 #ifdef CONFIG_BLK_DEV_INITRD
349         if (initrd_start) {
350                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
351                 if (__pa(initrd_start) < mem_max) {
352                         unsigned long initrd_reserve;
353
354                         if (__pa(initrd_end) > mem_max) {
355                                 initrd_reserve = mem_max - __pa(initrd_start);
356                         } else {
357                                 initrd_reserve = initrd_end - initrd_start;
358                         }
359                         initrd_below_start_ok = 1;
360                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
361
362                         reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
363                                         initrd_reserve, BOOTMEM_DEFAULT);
364                 }
365         }
366 #endif
367
368         data_resource.start =  virt_to_phys(&data_start);
369         data_resource.end = virt_to_phys(_end) - 1;
370         code_resource.start = virt_to_phys(_text);
371         code_resource.end = virt_to_phys(&data_start)-1;
372
373         /* We don't know which region the kernel will be in, so try
374          * all of them.
375          */
376         for (i = 0; i < sysram_resource_count; i++) {
377                 struct resource *res = &sysram_resources[i];
378                 request_resource(res, &code_resource);
379                 request_resource(res, &data_resource);
380         }
381         request_resource(&sysram_resources[0], &pdcdata_resource);
382 }
383
384 static void __init map_pages(unsigned long start_vaddr,
385                              unsigned long start_paddr, unsigned long size,
386                              pgprot_t pgprot, int force)
387 {
388         pgd_t *pg_dir;
389         pmd_t *pmd;
390         pte_t *pg_table;
391         unsigned long end_paddr;
392         unsigned long start_pmd;
393         unsigned long start_pte;
394         unsigned long tmp1;
395         unsigned long tmp2;
396         unsigned long address;
397         unsigned long vaddr;
398         unsigned long ro_start;
399         unsigned long ro_end;
400         unsigned long fv_addr;
401         unsigned long gw_addr;
402         extern const unsigned long fault_vector_20;
403         extern void * const linux_gateway_page;
404
405         ro_start = __pa((unsigned long)_text);
406         ro_end   = __pa((unsigned long)&data_start);
407         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
408         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
409
410         end_paddr = start_paddr + size;
411
412         pg_dir = pgd_offset_k(start_vaddr);
413
414 #if PTRS_PER_PMD == 1
415         start_pmd = 0;
416 #else
417         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
418 #endif
419         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
420
421         address = start_paddr;
422         vaddr = start_vaddr;
423         while (address < end_paddr) {
424 #if PTRS_PER_PMD == 1
425                 pmd = (pmd_t *)__pa(pg_dir);
426 #else
427                 pmd = (pmd_t *)pgd_address(*pg_dir);
428
429                 /*
430                  * pmd is physical at this point
431                  */
432
433                 if (!pmd) {
434                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
435                         pmd = (pmd_t *) __pa(pmd);
436                 }
437
438                 pgd_populate(NULL, pg_dir, __va(pmd));
439 #endif
440                 pg_dir++;
441
442                 /* now change pmd to kernel virtual addresses */
443
444                 pmd = (pmd_t *)__va(pmd) + start_pmd;
445                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
446
447                         /*
448                          * pg_table is physical at this point
449                          */
450
451                         pg_table = (pte_t *)pmd_address(*pmd);
452                         if (!pg_table) {
453                                 pg_table = (pte_t *)
454                                         alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
455                                 pg_table = (pte_t *) __pa(pg_table);
456                         }
457
458                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
459
460                         /* now change pg_table to kernel virtual addresses */
461
462                         pg_table = (pte_t *) __va(pg_table) + start_pte;
463                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
464                                 pte_t pte;
465
466                                 /*
467                                  * Map the fault vector writable so we can
468                                  * write the HPMC checksum.
469                                  */
470                                 if (force)
471                                         pte =  __mk_pte(address, pgprot);
472                                 else if (core_kernel_text(vaddr) &&
473                                          address != fv_addr)
474                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
475                                 else
476 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
477                                 if (address >= ro_start && address < ro_end
478                                                         && address != fv_addr
479                                                         && address != gw_addr)
480                                         pte = __mk_pte(address, PAGE_KERNEL_RO);
481                                 else
482 #endif
483                                         pte = __mk_pte(address, pgprot);
484
485                                 if (address >= end_paddr) {
486                                         if (force)
487                                                 break;
488                                         else
489                                                 pte_val(pte) = 0;
490                                 }
491
492                                 set_pte(pg_table, pte);
493
494                                 address += PAGE_SIZE;
495                                 vaddr += PAGE_SIZE;
496                         }
497                         start_pte = 0;
498
499                         if (address >= end_paddr)
500                             break;
501                 }
502                 start_pmd = 0;
503         }
504 }
505
506 void free_initmem(void)
507 {
508         unsigned long addr;
509         unsigned long init_begin = (unsigned long)__init_begin;
510         unsigned long init_end = (unsigned long)__init_end;
511
512         /* The init text pages are marked R-X.  We have to
513          * flush the icache and mark them RW-
514          *
515          * This is tricky, because map_pages is in the init section.
516          * Do a dummy remap of the data section first (the data
517          * section is already PAGE_KERNEL) to pull in the TLB entries
518          * for map_kernel */
519         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
520                   PAGE_KERNEL_RWX, 1);
521         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
522          * map_pages */
523         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
524                   PAGE_KERNEL, 1);
525
526         /* force the kernel to see the new TLB entries */
527         __flush_tlb_range(0, init_begin, init_end);
528         /* Attempt to catch anyone trying to execute code here
529          * by filling the page with BRK insns.
530          */
531         memset((void *)init_begin, 0x00, init_end - init_begin);
532         /* finally dump all the instructions which were cached, since the
533          * pages are no-longer executable */
534         flush_icache_range(init_begin, init_end);
535         
536         for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
537                 ClearPageReserved(virt_to_page(addr));
538                 init_page_count(virt_to_page(addr));
539                 free_page(addr);
540                 num_physpages++;
541                 totalram_pages++;
542         }
543
544         /* set up a new led state on systems shipped LED State panel */
545         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
546         
547         printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
548                 (init_end - init_begin) >> 10);
549 }
550
551
552 #ifdef CONFIG_DEBUG_RODATA
553 void mark_rodata_ro(void)
554 {
555         /* rodata memory was already mapped with KERNEL_RO access rights by
556            pagetable_init() and map_pages(). No need to do additional stuff here */
557         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
559 }
560 #endif
561
562
563 /*
564  * Just an arbitrary offset to serve as a "hole" between mapping areas
565  * (between top of physical memory and a potential pcxl dma mapping
566  * area, and below the vmalloc mapping area).
567  *
568  * The current 32K value just means that there will be a 32K "hole"
569  * between mapping areas. That means that  any out-of-bounds memory
570  * accesses will hopefully be caught. The vmalloc() routines leaves
571  * a hole of 4kB between each vmalloced area for the same reason.
572  */
573
574  /* Leave room for gateway page expansion */
575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576 #error KERNEL_MAP_START is in gateway reserved region
577 #endif
578 #define MAP_START (KERNEL_MAP_START)
579
580 #define VM_MAP_OFFSET  (32*1024)
581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582                                      & ~(VM_MAP_OFFSET-1)))
583
584 void *parisc_vmalloc_start __read_mostly;
585 EXPORT_SYMBOL(parisc_vmalloc_start);
586
587 #ifdef CONFIG_PA11
588 unsigned long pcxl_dma_start __read_mostly;
589 #endif
590
591 void __init mem_init(void)
592 {
593         int codesize, reservedpages, datasize, initsize;
594
595         /* Do sanity checks on page table constants */
596         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
597         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
598         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
599         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
600                         > BITS_PER_LONG);
601
602         high_memory = __va((max_pfn << PAGE_SHIFT));
603
604 #ifndef CONFIG_DISCONTIGMEM
605         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
606         totalram_pages += free_all_bootmem();
607 #else
608         {
609                 int i;
610
611                 for (i = 0; i < npmem_ranges; i++)
612                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
613         }
614 #endif
615
616         codesize = (unsigned long)_etext - (unsigned long)_text;
617         datasize = (unsigned long)_edata - (unsigned long)_etext;
618         initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
619
620         reservedpages = 0;
621 {
622         unsigned long pfn;
623 #ifdef CONFIG_DISCONTIGMEM
624         int i;
625
626         for (i = 0; i < npmem_ranges; i++) {
627                 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
628                         if (PageReserved(pfn_to_page(pfn)))
629                                 reservedpages++;
630                 }
631         }
632 #else /* !CONFIG_DISCONTIGMEM */
633         for (pfn = 0; pfn < max_pfn; pfn++) {
634                 /*
635                  * Only count reserved RAM pages
636                  */
637                 if (PageReserved(pfn_to_page(pfn)))
638                         reservedpages++;
639         }
640 #endif
641 }
642
643 #ifdef CONFIG_PA11
644         if (hppa_dma_ops == &pcxl_dma_ops) {
645                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
646                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
647                                                 + PCXL_DMA_MAP_SIZE);
648         } else {
649                 pcxl_dma_start = 0;
650                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
651         }
652 #else
653         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
654 #endif
655
656         printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
657                 nr_free_pages() << (PAGE_SHIFT-10),
658                 num_physpages << (PAGE_SHIFT-10),
659                 codesize >> 10,
660                 reservedpages << (PAGE_SHIFT-10),
661                 datasize >> 10,
662                 initsize >> 10
663         );
664
665 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
666         printk("virtual kernel memory layout:\n"
667                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
668                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
669                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
670                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
671                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
672
673                (void*)VMALLOC_START, (void*)VMALLOC_END,
674                (VMALLOC_END - VMALLOC_START) >> 20,
675
676                __va(0), high_memory,
677                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
678
679                __init_begin, __init_end,
680                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
681
682                _etext, _edata,
683                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
684
685                _text, _etext,
686                ((unsigned long)_etext - (unsigned long)_text) >> 10);
687 #endif
688 }
689
690 unsigned long *empty_zero_page __read_mostly;
691 EXPORT_SYMBOL(empty_zero_page);
692
693 void show_mem(unsigned int filter)
694 {
695         int i,free = 0,total = 0,reserved = 0;
696         int shared = 0, cached = 0;
697
698         printk(KERN_INFO "Mem-info:\n");
699         show_free_areas(filter);
700         if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
701                 return;
702 #ifndef CONFIG_DISCONTIGMEM
703         i = max_mapnr;
704         while (i-- > 0) {
705                 total++;
706                 if (PageReserved(mem_map+i))
707                         reserved++;
708                 else if (PageSwapCache(mem_map+i))
709                         cached++;
710                 else if (!page_count(&mem_map[i]))
711                         free++;
712                 else
713                         shared += page_count(&mem_map[i]) - 1;
714         }
715 #else
716         for (i = 0; i < npmem_ranges; i++) {
717                 int j;
718
719                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
720                         struct page *p;
721                         unsigned long flags;
722
723                         pgdat_resize_lock(NODE_DATA(i), &flags);
724                         p = nid_page_nr(i, j) - node_start_pfn(i);
725
726                         total++;
727                         if (PageReserved(p))
728                                 reserved++;
729                         else if (PageSwapCache(p))
730                                 cached++;
731                         else if (!page_count(p))
732                                 free++;
733                         else
734                                 shared += page_count(p) - 1;
735                         pgdat_resize_unlock(NODE_DATA(i), &flags);
736                 }
737         }
738 #endif
739         printk(KERN_INFO "%d pages of RAM\n", total);
740         printk(KERN_INFO "%d reserved pages\n", reserved);
741         printk(KERN_INFO "%d pages shared\n", shared);
742         printk(KERN_INFO "%d pages swap cached\n", cached);
743
744
745 #ifdef CONFIG_DISCONTIGMEM
746         {
747                 struct zonelist *zl;
748                 int i, j;
749
750                 for (i = 0; i < npmem_ranges; i++) {
751                         zl = node_zonelist(i, 0);
752                         for (j = 0; j < MAX_NR_ZONES; j++) {
753                                 struct zoneref *z;
754                                 struct zone *zone;
755
756                                 printk("Zone list for zone %d on node %d: ", j, i);
757                                 for_each_zone_zonelist(zone, z, zl, j)
758                                         printk("[%d/%s] ", zone_to_nid(zone),
759                                                                 zone->name);
760                                 printk("\n");
761                         }
762                 }
763         }
764 #endif
765 }
766
767 /*
768  * pagetable_init() sets up the page tables
769  *
770  * Note that gateway_init() places the Linux gateway page at page 0.
771  * Since gateway pages cannot be dereferenced this has the desirable
772  * side effect of trapping those pesky NULL-reference errors in the
773  * kernel.
774  */
775 static void __init pagetable_init(void)
776 {
777         int range;
778
779         /* Map each physical memory range to its kernel vaddr */
780
781         for (range = 0; range < npmem_ranges; range++) {
782                 unsigned long start_paddr;
783                 unsigned long end_paddr;
784                 unsigned long size;
785
786                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
787                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
788                 size = pmem_ranges[range].pages << PAGE_SHIFT;
789
790                 map_pages((unsigned long)__va(start_paddr), start_paddr,
791                           size, PAGE_KERNEL, 0);
792         }
793
794 #ifdef CONFIG_BLK_DEV_INITRD
795         if (initrd_end && initrd_end > mem_limit) {
796                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
797                 map_pages(initrd_start, __pa(initrd_start),
798                           initrd_end - initrd_start, PAGE_KERNEL, 0);
799         }
800 #endif
801
802         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
803         memset(empty_zero_page, 0, PAGE_SIZE);
804 }
805
806 static void __init gateway_init(void)
807 {
808         unsigned long linux_gateway_page_addr;
809         /* FIXME: This is 'const' in order to trick the compiler
810            into not treating it as DP-relative data. */
811         extern void * const linux_gateway_page;
812
813         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
814
815         /*
816          * Setup Linux Gateway page.
817          *
818          * The Linux gateway page will reside in kernel space (on virtual
819          * page 0), so it doesn't need to be aliased into user space.
820          */
821
822         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
823                   PAGE_SIZE, PAGE_GATEWAY, 1);
824 }
825
826 #ifdef CONFIG_HPUX
827 void
828 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
829 {
830         pgd_t *pg_dir;
831         pmd_t *pmd;
832         pte_t *pg_table;
833         unsigned long start_pmd;
834         unsigned long start_pte;
835         unsigned long address;
836         unsigned long hpux_gw_page_addr;
837         /* FIXME: This is 'const' in order to trick the compiler
838            into not treating it as DP-relative data. */
839         extern void * const hpux_gateway_page;
840
841         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
842
843         /*
844          * Setup HP-UX Gateway page.
845          *
846          * The HP-UX gateway page resides in the user address space,
847          * so it needs to be aliased into each process.
848          */
849
850         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
851
852 #if PTRS_PER_PMD == 1
853         start_pmd = 0;
854 #else
855         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
856 #endif
857         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
858
859         address = __pa(&hpux_gateway_page);
860 #if PTRS_PER_PMD == 1
861         pmd = (pmd_t *)__pa(pg_dir);
862 #else
863         pmd = (pmd_t *) pgd_address(*pg_dir);
864
865         /*
866          * pmd is physical at this point
867          */
868
869         if (!pmd) {
870                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
871                 pmd = (pmd_t *) __pa(pmd);
872         }
873
874         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
875 #endif
876         /* now change pmd to kernel virtual addresses */
877
878         pmd = (pmd_t *)__va(pmd) + start_pmd;
879
880         /*
881          * pg_table is physical at this point
882          */
883
884         pg_table = (pte_t *) pmd_address(*pmd);
885         if (!pg_table)
886                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
887
888         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
889
890         /* now change pg_table to kernel virtual addresses */
891
892         pg_table = (pte_t *) __va(pg_table) + start_pte;
893         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
894 }
895 EXPORT_SYMBOL(map_hpux_gateway_page);
896 #endif
897
898 void __init paging_init(void)
899 {
900         int i;
901
902         setup_bootmem();
903         pagetable_init();
904         gateway_init();
905         flush_cache_all_local(); /* start with known state */
906         flush_tlb_all_local(NULL);
907
908         for (i = 0; i < npmem_ranges; i++) {
909                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
910
911                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
912
913 #ifdef CONFIG_DISCONTIGMEM
914                 /* Need to initialize the pfnnid_map before we can initialize
915                    the zone */
916                 {
917                     int j;
918                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
919                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
920                          j++) {
921                         pfnnid_map[j] = i;
922                     }
923                 }
924 #endif
925
926                 free_area_init_node(i, zones_size,
927                                 pmem_ranges[i].start_pfn, NULL);
928         }
929 }
930
931 #ifdef CONFIG_PA20
932
933 /*
934  * Currently, all PA20 chips have 18 bit protection IDs, which is the
935  * limiting factor (space ids are 32 bits).
936  */
937
938 #define NR_SPACE_IDS 262144
939
940 #else
941
942 /*
943  * Currently we have a one-to-one relationship between space IDs and
944  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
945  * support 15 bit protection IDs, so that is the limiting factor.
946  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
947  * probably not worth the effort for a special case here.
948  */
949
950 #define NR_SPACE_IDS 32768
951
952 #endif  /* !CONFIG_PA20 */
953
954 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
955 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
956
957 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
958 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
959 static unsigned long space_id_index;
960 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
961 static unsigned long dirty_space_ids = 0;
962
963 static DEFINE_SPINLOCK(sid_lock);
964
965 unsigned long alloc_sid(void)
966 {
967         unsigned long index;
968
969         spin_lock(&sid_lock);
970
971         if (free_space_ids == 0) {
972                 if (dirty_space_ids != 0) {
973                         spin_unlock(&sid_lock);
974                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
975                         spin_lock(&sid_lock);
976                 }
977                 BUG_ON(free_space_ids == 0);
978         }
979
980         free_space_ids--;
981
982         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
983         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
984         space_id_index = index;
985
986         spin_unlock(&sid_lock);
987
988         return index << SPACEID_SHIFT;
989 }
990
991 void free_sid(unsigned long spaceid)
992 {
993         unsigned long index = spaceid >> SPACEID_SHIFT;
994         unsigned long *dirty_space_offset;
995
996         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
997         index &= (BITS_PER_LONG - 1);
998
999         spin_lock(&sid_lock);
1000
1001         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1002
1003         *dirty_space_offset |= (1L << index);
1004         dirty_space_ids++;
1005
1006         spin_unlock(&sid_lock);
1007 }
1008
1009
1010 #ifdef CONFIG_SMP
1011 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1012 {
1013         int i;
1014
1015         /* NOTE: sid_lock must be held upon entry */
1016
1017         *ndirtyptr = dirty_space_ids;
1018         if (dirty_space_ids != 0) {
1019             for (i = 0; i < SID_ARRAY_SIZE; i++) {
1020                 dirty_array[i] = dirty_space_id[i];
1021                 dirty_space_id[i] = 0;
1022             }
1023             dirty_space_ids = 0;
1024         }
1025
1026         return;
1027 }
1028
1029 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1030 {
1031         int i;
1032
1033         /* NOTE: sid_lock must be held upon entry */
1034
1035         if (ndirty != 0) {
1036                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1037                         space_id[i] ^= dirty_array[i];
1038                 }
1039
1040                 free_space_ids += ndirty;
1041                 space_id_index = 0;
1042         }
1043 }
1044
1045 #else /* CONFIG_SMP */
1046
1047 static void recycle_sids(void)
1048 {
1049         int i;
1050
1051         /* NOTE: sid_lock must be held upon entry */
1052
1053         if (dirty_space_ids != 0) {
1054                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1055                         space_id[i] ^= dirty_space_id[i];
1056                         dirty_space_id[i] = 0;
1057                 }
1058
1059                 free_space_ids += dirty_space_ids;
1060                 dirty_space_ids = 0;
1061                 space_id_index = 0;
1062         }
1063 }
1064 #endif
1065
1066 /*
1067  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1068  * purged, we can safely reuse the space ids that were released but
1069  * not flushed from the tlb.
1070  */
1071
1072 #ifdef CONFIG_SMP
1073
1074 static unsigned long recycle_ndirty;
1075 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1076 static unsigned int recycle_inuse;
1077
1078 void flush_tlb_all(void)
1079 {
1080         int do_recycle;
1081
1082         do_recycle = 0;
1083         spin_lock(&sid_lock);
1084         if (dirty_space_ids > RECYCLE_THRESHOLD) {
1085             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1086             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1087             recycle_inuse++;
1088             do_recycle++;
1089         }
1090         spin_unlock(&sid_lock);
1091         on_each_cpu(flush_tlb_all_local, NULL, 1);
1092         if (do_recycle) {
1093             spin_lock(&sid_lock);
1094             recycle_sids(recycle_ndirty,recycle_dirty_array);
1095             recycle_inuse = 0;
1096             spin_unlock(&sid_lock);
1097         }
1098 }
1099 #else
1100 void flush_tlb_all(void)
1101 {
1102         spin_lock(&sid_lock);
1103         flush_tlb_all_local(NULL);
1104         recycle_sids();
1105         spin_unlock(&sid_lock);
1106 }
1107 #endif
1108
1109 #ifdef CONFIG_BLK_DEV_INITRD
1110 void free_initrd_mem(unsigned long start, unsigned long end)
1111 {
1112         if (start >= end)
1113                 return;
1114         printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1115         for (; start < end; start += PAGE_SIZE) {
1116                 ClearPageReserved(virt_to_page(start));
1117                 init_page_count(virt_to_page(start));
1118                 free_page(start);
1119                 num_physpages++;
1120                 totalram_pages++;
1121         }
1122 }
1123 #endif