]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/include/asm/dma.h
consolidate kernel-side struct sigaction declarations
[karo-tx-linux.git] / arch / powerpc / include / asm / dma.h
1 #ifndef _ASM_POWERPC_DMA_H
2 #define _ASM_POWERPC_DMA_H
3 #ifdef __KERNEL__
4
5 /*
6  * Defines for using and allocating dma channels.
7  * Written by Hennus Bergman, 1992.
8  * High DMA channel support & info by Hannu Savolainen
9  * and John Boyd, Nov. 1992.
10  * Changes for ppc sound by Christoph Nadig
11  */
12
13 /*
14  * Note: Adapted for PowerPC by Gary Thomas
15  * Modified by Cort Dougan <cort@cs.nmt.edu>
16  *
17  * None of this really applies for Power Macintoshes.  There is
18  * basically just enough here to get kernel/dma.c to compile.
19  *
20  * There may be some comments or restrictions made here which are
21  * not valid for the PReP platform.  Take what you read
22  * with a grain of salt.
23  */
24
25 #include <asm/io.h>
26 #include <linux/spinlock.h>
27
28 #ifndef MAX_DMA_CHANNELS
29 #define MAX_DMA_CHANNELS        8
30 #endif
31
32 /* The maximum address that we can perform a DMA transfer to on this platform */
33 /* Doesn't really apply... */
34 #define MAX_DMA_ADDRESS         (~0UL)
35
36 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
37 #define dma_outb        outb_p
38 #else
39 #define dma_outb        outb
40 #endif
41
42 #define dma_inb         inb
43
44 /*
45  * NOTES about DMA transfers:
46  *
47  *  controller 1: channels 0-3, byte operations, ports 00-1F
48  *  controller 2: channels 4-7, word operations, ports C0-DF
49  *
50  *  - ALL registers are 8 bits only, regardless of transfer size
51  *  - channel 4 is not used - cascades 1 into 2.
52  *  - channels 0-3 are byte - addresses/counts are for physical bytes
53  *  - channels 5-7 are word - addresses/counts are for physical words
54  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
55  *  - transfer count loaded to registers is 1 less than actual count
56  *  - controller 2 offsets are all even (2x offsets for controller 1)
57  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
58  *  - page registers for 0-3 use bit 0, represent 64K pages
59  *
60  * On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
61  * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
62  * Note that addresses loaded into registers must be _physical_ addresses,
63  * not logical addresses (which may differ if paging is active).
64  *
65  *  Address mapping for channels 0-3:
66  *
67  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
68  *    |  ...  |   |  ... |   |  ... |
69  *    |  ...  |   |  ... |   |  ... |
70  *    |  ...  |   |  ... |   |  ... |
71  *   P7  ...  P0  A7 ... A0  A7 ... A0
72  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
73  *
74  *  Address mapping for channels 5-7:
75  *
76  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
77  *    |  ...  |   \   \   ... \  \  \  ... \  \
78  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
79  *    |  ...  |     \   \   ... \  \  \  ... \
80  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
81  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
82  *
83  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
84  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
85  * the hardware level, so odd-byte transfers aren't possible).
86  *
87  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
88  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
89  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
90  *
91  */
92
93 /* 8237 DMA controllers */
94 #define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
95 #define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
96
97 /* DMA controller registers */
98 #define DMA1_CMD_REG            0x08    /* command register (w) */
99 #define DMA1_STAT_REG           0x08    /* status register (r) */
100 #define DMA1_REQ_REG            0x09    /* request register (w) */
101 #define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
102 #define DMA1_MODE_REG           0x0B    /* mode register (w) */
103 #define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
104 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
105 #define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
106 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
107 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
108
109 #define DMA2_CMD_REG            0xD0    /* command register (w) */
110 #define DMA2_STAT_REG           0xD0    /* status register (r) */
111 #define DMA2_REQ_REG            0xD2    /* request register (w) */
112 #define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
113 #define DMA2_MODE_REG           0xD6    /* mode register (w) */
114 #define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
115 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
116 #define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
117 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
118 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
119
120 #define DMA_ADDR_0              0x00    /* DMA address registers */
121 #define DMA_ADDR_1              0x02
122 #define DMA_ADDR_2              0x04
123 #define DMA_ADDR_3              0x06
124 #define DMA_ADDR_4              0xC0
125 #define DMA_ADDR_5              0xC4
126 #define DMA_ADDR_6              0xC8
127 #define DMA_ADDR_7              0xCC
128
129 #define DMA_CNT_0               0x01    /* DMA count registers */
130 #define DMA_CNT_1               0x03
131 #define DMA_CNT_2               0x05
132 #define DMA_CNT_3               0x07
133 #define DMA_CNT_4               0xC2
134 #define DMA_CNT_5               0xC6
135 #define DMA_CNT_6               0xCA
136 #define DMA_CNT_7               0xCE
137
138 #define DMA_LO_PAGE_0           0x87    /* DMA page registers */
139 #define DMA_LO_PAGE_1           0x83
140 #define DMA_LO_PAGE_2           0x81
141 #define DMA_LO_PAGE_3           0x82
142 #define DMA_LO_PAGE_5           0x8B
143 #define DMA_LO_PAGE_6           0x89
144 #define DMA_LO_PAGE_7           0x8A
145
146 #define DMA_HI_PAGE_0           0x487   /* DMA page registers */
147 #define DMA_HI_PAGE_1           0x483
148 #define DMA_HI_PAGE_2           0x481
149 #define DMA_HI_PAGE_3           0x482
150 #define DMA_HI_PAGE_5           0x48B
151 #define DMA_HI_PAGE_6           0x489
152 #define DMA_HI_PAGE_7           0x48A
153
154 #define DMA1_EXT_REG            0x40B
155 #define DMA2_EXT_REG            0x4D6
156
157 #ifndef __powerpc64__
158     /* in arch/ppc/kernel/setup.c -- Cort */
159     extern unsigned int DMA_MODE_WRITE;
160     extern unsigned int DMA_MODE_READ;
161     extern unsigned long ISA_DMA_THRESHOLD;
162 #else
163     #define DMA_MODE_READ       0x44    /* I/O to memory, no autoinit, increment, single mode */
164     #define DMA_MODE_WRITE      0x48    /* memory to I/O, no autoinit, increment, single mode */
165 #endif
166
167 #define DMA_MODE_CASCADE        0xC0    /* pass thru DREQ->HRQ, DACK<-HLDA only */
168
169 #define DMA_AUTOINIT            0x10
170
171 extern spinlock_t dma_spin_lock;
172
173 static __inline__ unsigned long claim_dma_lock(void)
174 {
175         unsigned long flags;
176         spin_lock_irqsave(&dma_spin_lock, flags);
177         return flags;
178 }
179
180 static __inline__ void release_dma_lock(unsigned long flags)
181 {
182         spin_unlock_irqrestore(&dma_spin_lock, flags);
183 }
184
185 /* enable/disable a specific DMA channel */
186 static __inline__ void enable_dma(unsigned int dmanr)
187 {
188         unsigned char ucDmaCmd = 0x00;
189
190         if (dmanr != 4) {
191                 dma_outb(0, DMA2_MASK_REG);     /* This may not be enabled */
192                 dma_outb(ucDmaCmd, DMA2_CMD_REG);       /* Enable group */
193         }
194         if (dmanr <= 3) {
195                 dma_outb(dmanr, DMA1_MASK_REG);
196                 dma_outb(ucDmaCmd, DMA1_CMD_REG);       /* Enable group */
197         } else {
198                 dma_outb(dmanr & 3, DMA2_MASK_REG);
199         }
200 }
201
202 static __inline__ void disable_dma(unsigned int dmanr)
203 {
204         if (dmanr <= 3)
205                 dma_outb(dmanr | 4, DMA1_MASK_REG);
206         else
207                 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
208 }
209
210 /* Clear the 'DMA Pointer Flip Flop'.
211  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
212  * Use this once to initialize the FF to a known state.
213  * After that, keep track of it. :-)
214  * --- In order to do that, the DMA routines below should ---
215  * --- only be used while interrupts are disabled! ---
216  */
217 static __inline__ void clear_dma_ff(unsigned int dmanr)
218 {
219         if (dmanr <= 3)
220                 dma_outb(0, DMA1_CLEAR_FF_REG);
221         else
222                 dma_outb(0, DMA2_CLEAR_FF_REG);
223 }
224
225 /* set mode (above) for a specific DMA channel */
226 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
227 {
228         if (dmanr <= 3)
229                 dma_outb(mode | dmanr, DMA1_MODE_REG);
230         else
231                 dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
232 }
233
234 /* Set only the page register bits of the transfer address.
235  * This is used for successive transfers when we know the contents of
236  * the lower 16 bits of the DMA current address register, but a 64k boundary
237  * may have been crossed.
238  */
239 static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
240 {
241         switch (dmanr) {
242         case 0:
243                 dma_outb(pagenr, DMA_LO_PAGE_0);
244                 dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
245                 break;
246         case 1:
247                 dma_outb(pagenr, DMA_LO_PAGE_1);
248                 dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
249                 break;
250         case 2:
251                 dma_outb(pagenr, DMA_LO_PAGE_2);
252                 dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
253                 break;
254         case 3:
255                 dma_outb(pagenr, DMA_LO_PAGE_3);
256                 dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
257                 break;
258         case 5:
259                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
260                 dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
261                 break;
262         case 6:
263                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
264                 dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
265                 break;
266         case 7:
267                 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
268                 dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
269                 break;
270         }
271 }
272
273 /* Set transfer address & page bits for specific DMA channel.
274  * Assumes dma flipflop is clear.
275  */
276 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
277 {
278         if (dmanr <= 3) {
279                 dma_outb(phys & 0xff,
280                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
281                 dma_outb((phys >> 8) & 0xff,
282                          ((dmanr & 3) << 1) + IO_DMA1_BASE);
283         } else {
284                 dma_outb((phys >> 1) & 0xff,
285                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
286                 dma_outb((phys >> 9) & 0xff,
287                          ((dmanr & 3) << 2) + IO_DMA2_BASE);
288         }
289         set_dma_page(dmanr, phys >> 16);
290 }
291
292
293 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
294  * a specific DMA channel.
295  * You must ensure the parameters are valid.
296  * NOTE: from a manual: "the number of transfers is one more
297  * than the initial word count"! This is taken into account.
298  * Assumes dma flip-flop is clear.
299  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
300  */
301 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
302 {
303         count--;
304         if (dmanr <= 3) {
305                 dma_outb(count & 0xff,
306                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
307                 dma_outb((count >> 8) & 0xff,
308                          ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
309         } else {
310                 dma_outb((count >> 1) & 0xff,
311                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
312                 dma_outb((count >> 9) & 0xff,
313                          ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
314         }
315 }
316
317
318 /* Get DMA residue count. After a DMA transfer, this
319  * should return zero. Reading this while a DMA transfer is
320  * still in progress will return unpredictable results.
321  * If called before the channel has been used, it may return 1.
322  * Otherwise, it returns the number of _bytes_ left to transfer.
323  *
324  * Assumes DMA flip-flop is clear.
325  */
326 static __inline__ int get_dma_residue(unsigned int dmanr)
327 {
328         unsigned int io_port = (dmanr <= 3)
329             ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
330             : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
331
332         /* using short to get 16-bit wrap around */
333         unsigned short count;
334
335         count = 1 + dma_inb(io_port);
336         count += dma_inb(io_port) << 8;
337
338         return (dmanr <= 3) ? count : (count << 1);
339 }
340
341 /* These are in kernel/dma.c: */
342
343 /* reserve a DMA channel */
344 extern int request_dma(unsigned int dmanr, const char *device_id);
345 /* release it again */
346 extern void free_dma(unsigned int dmanr);
347
348 #ifdef CONFIG_PCI
349 extern int isa_dma_bridge_buggy;
350 #else
351 #define isa_dma_bridge_buggy    (0)
352 #endif
353
354 #endif /* __KERNEL__ */
355 #endif  /* _ASM_POWERPC_DMA_H */