]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/fadump.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[karo-tx-linux.git] / arch / powerpc / kernel / fadump.c
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56                         const char *uname, int depth, void *data)
57 {
58         const __be32 *sections;
59         int i, num_sections;
60         int size;
61         const __be32 *token;
62
63         if (depth != 1 || strcmp(uname, "rtas") != 0)
64                 return 0;
65
66         /*
67          * Check if Firmware Assisted dump is supported. if yes, check
68          * if dump has been initiated on last reboot.
69          */
70         token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71         if (!token)
72                 return 1;
73
74         fw_dump.fadump_supported = 1;
75         fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
76
77         /*
78          * The 'ibm,kernel-dump' rtas node is present only if there is
79          * dump data waiting for us.
80          */
81         fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82         if (fdm_active)
83                 fw_dump.dump_active = 1;
84
85         /* Get the sizes required to store dump data for the firmware provided
86          * dump sections.
87          * For each dump section type supported, a 32bit cell which defines
88          * the ID of a supported section followed by two 32 bit cells which
89          * gives teh size of the section in bytes.
90          */
91         sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92                                         &size);
93
94         if (!sections)
95                 return 1;
96
97         num_sections = size / (3 * sizeof(u32));
98
99         for (i = 0; i < num_sections; i++, sections += 3) {
100                 u32 type = (u32)of_read_number(sections, 1);
101
102                 switch (type) {
103                 case FADUMP_CPU_STATE_DATA:
104                         fw_dump.cpu_state_data_size =
105                                         of_read_ulong(&sections[1], 2);
106                         break;
107                 case FADUMP_HPTE_REGION:
108                         fw_dump.hpte_region_size =
109                                         of_read_ulong(&sections[1], 2);
110                         break;
111                 }
112         }
113
114         return 1;
115 }
116
117 int is_fadump_active(void)
118 {
119         return fw_dump.dump_active;
120 }
121
122 /* Print firmware assisted dump configurations for debugging purpose. */
123 static void fadump_show_config(void)
124 {
125         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
126                         (fw_dump.fadump_supported ? "present" : "no support"));
127
128         if (!fw_dump.fadump_supported)
129                 return;
130
131         pr_debug("Fadump enabled    : %s\n",
132                                 (fw_dump.fadump_enabled ? "yes" : "no"));
133         pr_debug("Dump Active       : %s\n",
134                                 (fw_dump.dump_active ? "yes" : "no"));
135         pr_debug("Dump section sizes:\n");
136         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
137         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
138         pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
139 }
140
141 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
142                                 unsigned long addr)
143 {
144         if (!fdm)
145                 return 0;
146
147         memset(fdm, 0, sizeof(struct fadump_mem_struct));
148         addr = addr & PAGE_MASK;
149
150         fdm->header.dump_format_version = cpu_to_be32(0x00000001);
151         fdm->header.dump_num_sections = cpu_to_be16(3);
152         fdm->header.dump_status_flag = 0;
153         fdm->header.offset_first_dump_section =
154                 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
155
156         /*
157          * Fields for disk dump option.
158          * We are not using disk dump option, hence set these fields to 0.
159          */
160         fdm->header.dd_block_size = 0;
161         fdm->header.dd_block_offset = 0;
162         fdm->header.dd_num_blocks = 0;
163         fdm->header.dd_offset_disk_path = 0;
164
165         /* set 0 to disable an automatic dump-reboot. */
166         fdm->header.max_time_auto = 0;
167
168         /* Kernel dump sections */
169         /* cpu state data section. */
170         fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
171         fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
172         fdm->cpu_state_data.source_address = 0;
173         fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
174         fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
175         addr += fw_dump.cpu_state_data_size;
176
177         /* hpte region section */
178         fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
179         fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
180         fdm->hpte_region.source_address = 0;
181         fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
182         fdm->hpte_region.destination_address = cpu_to_be64(addr);
183         addr += fw_dump.hpte_region_size;
184
185         /* RMA region section */
186         fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
187         fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
188         fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
189         fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
190         fdm->rmr_region.destination_address = cpu_to_be64(addr);
191         addr += fw_dump.boot_memory_size;
192
193         return addr;
194 }
195
196 /**
197  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
198  *
199  * Function to find the largest memory size we need to reserve during early
200  * boot process. This will be the size of the memory that is required for a
201  * kernel to boot successfully.
202  *
203  * This function has been taken from phyp-assisted dump feature implementation.
204  *
205  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
206  *
207  * TODO: Come up with better approach to find out more accurate memory size
208  * that is required for a kernel to boot successfully.
209  *
210  */
211 static inline unsigned long fadump_calculate_reserve_size(void)
212 {
213         unsigned long size;
214
215         /*
216          * Check if the size is specified through fadump_reserve_mem= cmdline
217          * option. If yes, then use that.
218          */
219         if (fw_dump.reserve_bootvar)
220                 return fw_dump.reserve_bootvar;
221
222         /* divide by 20 to get 5% of value */
223         size = memblock_end_of_DRAM() / 20;
224
225         /* round it down in multiples of 256 */
226         size = size & ~0x0FFFFFFFUL;
227
228         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
229         if (memory_limit && size > memory_limit)
230                 size = memory_limit;
231
232         return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
233 }
234
235 /*
236  * Calculate the total memory size required to be reserved for
237  * firmware-assisted dump registration.
238  */
239 static unsigned long get_fadump_area_size(void)
240 {
241         unsigned long size = 0;
242
243         size += fw_dump.cpu_state_data_size;
244         size += fw_dump.hpte_region_size;
245         size += fw_dump.boot_memory_size;
246         size += sizeof(struct fadump_crash_info_header);
247         size += sizeof(struct elfhdr); /* ELF core header.*/
248         size += sizeof(struct elf_phdr); /* place holder for cpu notes */
249         /* Program headers for crash memory regions. */
250         size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
251
252         size = PAGE_ALIGN(size);
253         return size;
254 }
255
256 int __init fadump_reserve_mem(void)
257 {
258         unsigned long base, size, memory_boundary;
259
260         if (!fw_dump.fadump_enabled)
261                 return 0;
262
263         if (!fw_dump.fadump_supported) {
264                 printk(KERN_INFO "Firmware-assisted dump is not supported on"
265                                 " this hardware\n");
266                 fw_dump.fadump_enabled = 0;
267                 return 0;
268         }
269         /*
270          * Initialize boot memory size
271          * If dump is active then we have already calculated the size during
272          * first kernel.
273          */
274         if (fdm_active)
275                 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
276         else
277                 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
278
279         /*
280          * Calculate the memory boundary.
281          * If memory_limit is less than actual memory boundary then reserve
282          * the memory for fadump beyond the memory_limit and adjust the
283          * memory_limit accordingly, so that the running kernel can run with
284          * specified memory_limit.
285          */
286         if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
287                 size = get_fadump_area_size();
288                 if ((memory_limit + size) < memblock_end_of_DRAM())
289                         memory_limit += size;
290                 else
291                         memory_limit = memblock_end_of_DRAM();
292                 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
293                                 " dump, now %#016llx\n", memory_limit);
294         }
295         if (memory_limit)
296                 memory_boundary = memory_limit;
297         else
298                 memory_boundary = memblock_end_of_DRAM();
299
300         if (fw_dump.dump_active) {
301                 printk(KERN_INFO "Firmware-assisted dump is active.\n");
302                 /*
303                  * If last boot has crashed then reserve all the memory
304                  * above boot_memory_size so that we don't touch it until
305                  * dump is written to disk by userspace tool. This memory
306                  * will be released for general use once the dump is saved.
307                  */
308                 base = fw_dump.boot_memory_size;
309                 size = memory_boundary - base;
310                 memblock_reserve(base, size);
311                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312                                 "for saving crash dump\n",
313                                 (unsigned long)(size >> 20),
314                                 (unsigned long)(base >> 20));
315
316                 fw_dump.fadumphdr_addr =
317                                 be64_to_cpu(fdm_active->rmr_region.destination_address) +
318                                 be64_to_cpu(fdm_active->rmr_region.source_len);
319                 pr_debug("fadumphdr_addr = %p\n",
320                                 (void *) fw_dump.fadumphdr_addr);
321         } else {
322                 /* Reserve the memory at the top of memory. */
323                 size = get_fadump_area_size();
324                 base = memory_boundary - size;
325                 memblock_reserve(base, size);
326                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327                                 "for firmware-assisted dump\n",
328                                 (unsigned long)(size >> 20),
329                                 (unsigned long)(base >> 20));
330         }
331         fw_dump.reserve_dump_area_start = base;
332         fw_dump.reserve_dump_area_size = size;
333         return 1;
334 }
335
336 unsigned long __init arch_reserved_kernel_pages(void)
337 {
338         return memblock_reserved_size() / PAGE_SIZE;
339 }
340
341 /* Look for fadump= cmdline option. */
342 static int __init early_fadump_param(char *p)
343 {
344         if (!p)
345                 return 1;
346
347         if (strncmp(p, "on", 2) == 0)
348                 fw_dump.fadump_enabled = 1;
349         else if (strncmp(p, "off", 3) == 0)
350                 fw_dump.fadump_enabled = 0;
351
352         return 0;
353 }
354 early_param("fadump", early_fadump_param);
355
356 /* Look for fadump_reserve_mem= cmdline option */
357 static int __init early_fadump_reserve_mem(char *p)
358 {
359         if (p)
360                 fw_dump.reserve_bootvar = memparse(p, &p);
361         return 0;
362 }
363 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
364
365 static void register_fw_dump(struct fadump_mem_struct *fdm)
366 {
367         int rc;
368         unsigned int wait_time;
369
370         pr_debug("Registering for firmware-assisted kernel dump...\n");
371
372         /* TODO: Add upper time limit for the delay */
373         do {
374                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
375                         FADUMP_REGISTER, fdm,
376                         sizeof(struct fadump_mem_struct));
377
378                 wait_time = rtas_busy_delay_time(rc);
379                 if (wait_time)
380                         mdelay(wait_time);
381
382         } while (wait_time);
383
384         switch (rc) {
385         case -1:
386                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
387                         " dump. Hardware Error(%d).\n", rc);
388                 break;
389         case -3:
390                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
391                         " dump. Parameter Error(%d).\n", rc);
392                 break;
393         case -9:
394                 printk(KERN_ERR "firmware-assisted kernel dump is already "
395                         " registered.");
396                 fw_dump.dump_registered = 1;
397                 break;
398         case 0:
399                 printk(KERN_INFO "firmware-assisted kernel dump registration"
400                         " is successful\n");
401                 fw_dump.dump_registered = 1;
402                 break;
403         }
404 }
405
406 void crash_fadump(struct pt_regs *regs, const char *str)
407 {
408         struct fadump_crash_info_header *fdh = NULL;
409         int old_cpu, this_cpu;
410
411         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
412                 return;
413
414         /*
415          * old_cpu == -1 means this is the first CPU which has come here,
416          * go ahead and trigger fadump.
417          *
418          * old_cpu != -1 means some other CPU has already on it's way
419          * to trigger fadump, just keep looping here.
420          */
421         this_cpu = smp_processor_id();
422         old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
423
424         if (old_cpu != -1) {
425                 /*
426                  * We can't loop here indefinitely. Wait as long as fadump
427                  * is in force. If we race with fadump un-registration this
428                  * loop will break and then we go down to normal panic path
429                  * and reboot. If fadump is in force the first crashing
430                  * cpu will definitely trigger fadump.
431                  */
432                 while (fw_dump.dump_registered)
433                         cpu_relax();
434                 return;
435         }
436
437         fdh = __va(fw_dump.fadumphdr_addr);
438         fdh->crashing_cpu = crashing_cpu;
439         crash_save_vmcoreinfo();
440
441         if (regs)
442                 fdh->regs = *regs;
443         else
444                 ppc_save_regs(&fdh->regs);
445
446         fdh->online_mask = *cpu_online_mask;
447
448         /* Call ibm,os-term rtas call to trigger firmware assisted dump */
449         rtas_os_term((char *)str);
450 }
451
452 #define GPR_MASK        0xffffff0000000000
453 static inline int fadump_gpr_index(u64 id)
454 {
455         int i = -1;
456         char str[3];
457
458         if ((id & GPR_MASK) == REG_ID("GPR")) {
459                 /* get the digits at the end */
460                 id &= ~GPR_MASK;
461                 id >>= 24;
462                 str[2] = '\0';
463                 str[1] = id & 0xff;
464                 str[0] = (id >> 8) & 0xff;
465                 sscanf(str, "%d", &i);
466                 if (i > 31)
467                         i = -1;
468         }
469         return i;
470 }
471
472 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
473                                                                 u64 reg_val)
474 {
475         int i;
476
477         i = fadump_gpr_index(reg_id);
478         if (i >= 0)
479                 regs->gpr[i] = (unsigned long)reg_val;
480         else if (reg_id == REG_ID("NIA"))
481                 regs->nip = (unsigned long)reg_val;
482         else if (reg_id == REG_ID("MSR"))
483                 regs->msr = (unsigned long)reg_val;
484         else if (reg_id == REG_ID("CTR"))
485                 regs->ctr = (unsigned long)reg_val;
486         else if (reg_id == REG_ID("LR"))
487                 regs->link = (unsigned long)reg_val;
488         else if (reg_id == REG_ID("XER"))
489                 regs->xer = (unsigned long)reg_val;
490         else if (reg_id == REG_ID("CR"))
491                 regs->ccr = (unsigned long)reg_val;
492         else if (reg_id == REG_ID("DAR"))
493                 regs->dar = (unsigned long)reg_val;
494         else if (reg_id == REG_ID("DSISR"))
495                 regs->dsisr = (unsigned long)reg_val;
496 }
497
498 static struct fadump_reg_entry*
499 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
500 {
501         memset(regs, 0, sizeof(struct pt_regs));
502
503         while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
504                 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
505                                         be64_to_cpu(reg_entry->reg_value));
506                 reg_entry++;
507         }
508         reg_entry++;
509         return reg_entry;
510 }
511
512 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
513                                                 void *data, size_t data_len)
514 {
515         struct elf_note note;
516
517         note.n_namesz = strlen(name) + 1;
518         note.n_descsz = data_len;
519         note.n_type   = type;
520         memcpy(buf, &note, sizeof(note));
521         buf += (sizeof(note) + 3)/4;
522         memcpy(buf, name, note.n_namesz);
523         buf += (note.n_namesz + 3)/4;
524         memcpy(buf, data, note.n_descsz);
525         buf += (note.n_descsz + 3)/4;
526
527         return buf;
528 }
529
530 static void fadump_final_note(u32 *buf)
531 {
532         struct elf_note note;
533
534         note.n_namesz = 0;
535         note.n_descsz = 0;
536         note.n_type   = 0;
537         memcpy(buf, &note, sizeof(note));
538 }
539
540 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
541 {
542         struct elf_prstatus prstatus;
543
544         memset(&prstatus, 0, sizeof(prstatus));
545         /*
546          * FIXME: How do i get PID? Do I really need it?
547          * prstatus.pr_pid = ????
548          */
549         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
550         buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
551                                 &prstatus, sizeof(prstatus));
552         return buf;
553 }
554
555 static void fadump_update_elfcore_header(char *bufp)
556 {
557         struct elfhdr *elf;
558         struct elf_phdr *phdr;
559
560         elf = (struct elfhdr *)bufp;
561         bufp += sizeof(struct elfhdr);
562
563         /* First note is a place holder for cpu notes info. */
564         phdr = (struct elf_phdr *)bufp;
565
566         if (phdr->p_type == PT_NOTE) {
567                 phdr->p_paddr = fw_dump.cpu_notes_buf;
568                 phdr->p_offset  = phdr->p_paddr;
569                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
570                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
571         }
572         return;
573 }
574
575 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
576 {
577         void *vaddr;
578         struct page *page;
579         unsigned long order, count, i;
580
581         order = get_order(size);
582         vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
583         if (!vaddr)
584                 return NULL;
585
586         count = 1 << order;
587         page = virt_to_page(vaddr);
588         for (i = 0; i < count; i++)
589                 SetPageReserved(page + i);
590         return vaddr;
591 }
592
593 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
594 {
595         struct page *page;
596         unsigned long order, count, i;
597
598         order = get_order(size);
599         count = 1 << order;
600         page = virt_to_page(vaddr);
601         for (i = 0; i < count; i++)
602                 ClearPageReserved(page + i);
603         __free_pages(page, order);
604 }
605
606 /*
607  * Read CPU state dump data and convert it into ELF notes.
608  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
609  * used to access the data to allow for additional fields to be added without
610  * affecting compatibility. Each list of registers for a CPU starts with
611  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
612  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
613  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
614  * of register value. For more details refer to PAPR document.
615  *
616  * Only for the crashing cpu we ignore the CPU dump data and get exact
617  * state from fadump crash info structure populated by first kernel at the
618  * time of crash.
619  */
620 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
621 {
622         struct fadump_reg_save_area_header *reg_header;
623         struct fadump_reg_entry *reg_entry;
624         struct fadump_crash_info_header *fdh = NULL;
625         void *vaddr;
626         unsigned long addr;
627         u32 num_cpus, *note_buf;
628         struct pt_regs regs;
629         int i, rc = 0, cpu = 0;
630
631         if (!fdm->cpu_state_data.bytes_dumped)
632                 return -EINVAL;
633
634         addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
635         vaddr = __va(addr);
636
637         reg_header = vaddr;
638         if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
639                 printk(KERN_ERR "Unable to read register save area.\n");
640                 return -ENOENT;
641         }
642         pr_debug("--------CPU State Data------------\n");
643         pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
644         pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
645
646         vaddr += be32_to_cpu(reg_header->num_cpu_offset);
647         num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
648         pr_debug("NumCpus     : %u\n", num_cpus);
649         vaddr += sizeof(u32);
650         reg_entry = (struct fadump_reg_entry *)vaddr;
651
652         /* Allocate buffer to hold cpu crash notes. */
653         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
654         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
655         note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
656         if (!note_buf) {
657                 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
658                         "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
659                 return -ENOMEM;
660         }
661         fw_dump.cpu_notes_buf = __pa(note_buf);
662
663         pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
664                         (num_cpus * sizeof(note_buf_t)), note_buf);
665
666         if (fw_dump.fadumphdr_addr)
667                 fdh = __va(fw_dump.fadumphdr_addr);
668
669         for (i = 0; i < num_cpus; i++) {
670                 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
671                         printk(KERN_ERR "Unable to read CPU state data\n");
672                         rc = -ENOENT;
673                         goto error_out;
674                 }
675                 /* Lower 4 bytes of reg_value contains logical cpu id */
676                 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
677                 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
678                         SKIP_TO_NEXT_CPU(reg_entry);
679                         continue;
680                 }
681                 pr_debug("Reading register data for cpu %d...\n", cpu);
682                 if (fdh && fdh->crashing_cpu == cpu) {
683                         regs = fdh->regs;
684                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
685                         SKIP_TO_NEXT_CPU(reg_entry);
686                 } else {
687                         reg_entry++;
688                         reg_entry = fadump_read_registers(reg_entry, &regs);
689                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
690                 }
691         }
692         fadump_final_note(note_buf);
693
694         if (fdh) {
695                 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
696                                                         fdh->elfcorehdr_addr);
697                 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
698         }
699         return 0;
700
701 error_out:
702         fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
703                                         fw_dump.cpu_notes_buf_size);
704         fw_dump.cpu_notes_buf = 0;
705         fw_dump.cpu_notes_buf_size = 0;
706         return rc;
707
708 }
709
710 /*
711  * Validate and process the dump data stored by firmware before exporting
712  * it through '/proc/vmcore'.
713  */
714 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
715 {
716         struct fadump_crash_info_header *fdh;
717         int rc = 0;
718
719         if (!fdm_active || !fw_dump.fadumphdr_addr)
720                 return -EINVAL;
721
722         /* Check if the dump data is valid. */
723         if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
724                         (fdm_active->cpu_state_data.error_flags != 0) ||
725                         (fdm_active->rmr_region.error_flags != 0)) {
726                 printk(KERN_ERR "Dump taken by platform is not valid\n");
727                 return -EINVAL;
728         }
729         if ((fdm_active->rmr_region.bytes_dumped !=
730                         fdm_active->rmr_region.source_len) ||
731                         !fdm_active->cpu_state_data.bytes_dumped) {
732                 printk(KERN_ERR "Dump taken by platform is incomplete\n");
733                 return -EINVAL;
734         }
735
736         /* Validate the fadump crash info header */
737         fdh = __va(fw_dump.fadumphdr_addr);
738         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
739                 printk(KERN_ERR "Crash info header is not valid.\n");
740                 return -EINVAL;
741         }
742
743         rc = fadump_build_cpu_notes(fdm_active);
744         if (rc)
745                 return rc;
746
747         /*
748          * We are done validating dump info and elfcore header is now ready
749          * to be exported. set elfcorehdr_addr so that vmcore module will
750          * export the elfcore header through '/proc/vmcore'.
751          */
752         elfcorehdr_addr = fdh->elfcorehdr_addr;
753
754         return 0;
755 }
756
757 static inline void fadump_add_crash_memory(unsigned long long base,
758                                         unsigned long long end)
759 {
760         if (base == end)
761                 return;
762
763         pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
764                 crash_mem_ranges, base, end - 1, (end - base));
765         crash_memory_ranges[crash_mem_ranges].base = base;
766         crash_memory_ranges[crash_mem_ranges].size = end - base;
767         crash_mem_ranges++;
768 }
769
770 static void fadump_exclude_reserved_area(unsigned long long start,
771                                         unsigned long long end)
772 {
773         unsigned long long ra_start, ra_end;
774
775         ra_start = fw_dump.reserve_dump_area_start;
776         ra_end = ra_start + fw_dump.reserve_dump_area_size;
777
778         if ((ra_start < end) && (ra_end > start)) {
779                 if ((start < ra_start) && (end > ra_end)) {
780                         fadump_add_crash_memory(start, ra_start);
781                         fadump_add_crash_memory(ra_end, end);
782                 } else if (start < ra_start) {
783                         fadump_add_crash_memory(start, ra_start);
784                 } else if (ra_end < end) {
785                         fadump_add_crash_memory(ra_end, end);
786                 }
787         } else
788                 fadump_add_crash_memory(start, end);
789 }
790
791 static int fadump_init_elfcore_header(char *bufp)
792 {
793         struct elfhdr *elf;
794
795         elf = (struct elfhdr *) bufp;
796         bufp += sizeof(struct elfhdr);
797         memcpy(elf->e_ident, ELFMAG, SELFMAG);
798         elf->e_ident[EI_CLASS] = ELF_CLASS;
799         elf->e_ident[EI_DATA] = ELF_DATA;
800         elf->e_ident[EI_VERSION] = EV_CURRENT;
801         elf->e_ident[EI_OSABI] = ELF_OSABI;
802         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
803         elf->e_type = ET_CORE;
804         elf->e_machine = ELF_ARCH;
805         elf->e_version = EV_CURRENT;
806         elf->e_entry = 0;
807         elf->e_phoff = sizeof(struct elfhdr);
808         elf->e_shoff = 0;
809 #if defined(_CALL_ELF)
810         elf->e_flags = _CALL_ELF;
811 #else
812         elf->e_flags = 0;
813 #endif
814         elf->e_ehsize = sizeof(struct elfhdr);
815         elf->e_phentsize = sizeof(struct elf_phdr);
816         elf->e_phnum = 0;
817         elf->e_shentsize = 0;
818         elf->e_shnum = 0;
819         elf->e_shstrndx = 0;
820
821         return 0;
822 }
823
824 /*
825  * Traverse through memblock structure and setup crash memory ranges. These
826  * ranges will be used create PT_LOAD program headers in elfcore header.
827  */
828 static void fadump_setup_crash_memory_ranges(void)
829 {
830         struct memblock_region *reg;
831         unsigned long long start, end;
832
833         pr_debug("Setup crash memory ranges.\n");
834         crash_mem_ranges = 0;
835         /*
836          * add the first memory chunk (RMA_START through boot_memory_size) as
837          * a separate memory chunk. The reason is, at the time crash firmware
838          * will move the content of this memory chunk to different location
839          * specified during fadump registration. We need to create a separate
840          * program header for this chunk with the correct offset.
841          */
842         fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
843
844         for_each_memblock(memory, reg) {
845                 start = (unsigned long long)reg->base;
846                 end = start + (unsigned long long)reg->size;
847                 if (start == RMA_START && end >= fw_dump.boot_memory_size)
848                         start = fw_dump.boot_memory_size;
849
850                 /* add this range excluding the reserved dump area. */
851                 fadump_exclude_reserved_area(start, end);
852         }
853 }
854
855 /*
856  * If the given physical address falls within the boot memory region then
857  * return the relocated address that points to the dump region reserved
858  * for saving initial boot memory contents.
859  */
860 static inline unsigned long fadump_relocate(unsigned long paddr)
861 {
862         if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
863                 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
864         else
865                 return paddr;
866 }
867
868 static int fadump_create_elfcore_headers(char *bufp)
869 {
870         struct elfhdr *elf;
871         struct elf_phdr *phdr;
872         int i;
873
874         fadump_init_elfcore_header(bufp);
875         elf = (struct elfhdr *)bufp;
876         bufp += sizeof(struct elfhdr);
877
878         /*
879          * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
880          * will be populated during second kernel boot after crash. Hence
881          * this PT_NOTE will always be the first elf note.
882          *
883          * NOTE: Any new ELF note addition should be placed after this note.
884          */
885         phdr = (struct elf_phdr *)bufp;
886         bufp += sizeof(struct elf_phdr);
887         phdr->p_type = PT_NOTE;
888         phdr->p_flags = 0;
889         phdr->p_vaddr = 0;
890         phdr->p_align = 0;
891
892         phdr->p_offset = 0;
893         phdr->p_paddr = 0;
894         phdr->p_filesz = 0;
895         phdr->p_memsz = 0;
896
897         (elf->e_phnum)++;
898
899         /* setup ELF PT_NOTE for vmcoreinfo */
900         phdr = (struct elf_phdr *)bufp;
901         bufp += sizeof(struct elf_phdr);
902         phdr->p_type    = PT_NOTE;
903         phdr->p_flags   = 0;
904         phdr->p_vaddr   = 0;
905         phdr->p_align   = 0;
906
907         phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
908         phdr->p_offset  = phdr->p_paddr;
909         phdr->p_memsz   = vmcoreinfo_max_size;
910         phdr->p_filesz  = vmcoreinfo_max_size;
911
912         /* Increment number of program headers. */
913         (elf->e_phnum)++;
914
915         /* setup PT_LOAD sections. */
916
917         for (i = 0; i < crash_mem_ranges; i++) {
918                 unsigned long long mbase, msize;
919                 mbase = crash_memory_ranges[i].base;
920                 msize = crash_memory_ranges[i].size;
921
922                 if (!msize)
923                         continue;
924
925                 phdr = (struct elf_phdr *)bufp;
926                 bufp += sizeof(struct elf_phdr);
927                 phdr->p_type    = PT_LOAD;
928                 phdr->p_flags   = PF_R|PF_W|PF_X;
929                 phdr->p_offset  = mbase;
930
931                 if (mbase == RMA_START) {
932                         /*
933                          * The entire RMA region will be moved by firmware
934                          * to the specified destination_address. Hence set
935                          * the correct offset.
936                          */
937                         phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
938                 }
939
940                 phdr->p_paddr = mbase;
941                 phdr->p_vaddr = (unsigned long)__va(mbase);
942                 phdr->p_filesz = msize;
943                 phdr->p_memsz = msize;
944                 phdr->p_align = 0;
945
946                 /* Increment number of program headers. */
947                 (elf->e_phnum)++;
948         }
949         return 0;
950 }
951
952 static unsigned long init_fadump_header(unsigned long addr)
953 {
954         struct fadump_crash_info_header *fdh;
955
956         if (!addr)
957                 return 0;
958
959         fw_dump.fadumphdr_addr = addr;
960         fdh = __va(addr);
961         addr += sizeof(struct fadump_crash_info_header);
962
963         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
964         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
965         fdh->elfcorehdr_addr = addr;
966         /* We will set the crashing cpu id in crash_fadump() during crash. */
967         fdh->crashing_cpu = CPU_UNKNOWN;
968
969         return addr;
970 }
971
972 static void register_fadump(void)
973 {
974         unsigned long addr;
975         void *vaddr;
976
977         /*
978          * If no memory is reserved then we can not register for firmware-
979          * assisted dump.
980          */
981         if (!fw_dump.reserve_dump_area_size)
982                 return;
983
984         fadump_setup_crash_memory_ranges();
985
986         addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
987         /* Initialize fadump crash info header. */
988         addr = init_fadump_header(addr);
989         vaddr = __va(addr);
990
991         pr_debug("Creating ELF core headers at %#016lx\n", addr);
992         fadump_create_elfcore_headers(vaddr);
993
994         /* register the future kernel dump with firmware. */
995         register_fw_dump(&fdm);
996 }
997
998 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
999 {
1000         int rc = 0;
1001         unsigned int wait_time;
1002
1003         pr_debug("Un-register firmware-assisted dump\n");
1004
1005         /* TODO: Add upper time limit for the delay */
1006         do {
1007                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1008                         FADUMP_UNREGISTER, fdm,
1009                         sizeof(struct fadump_mem_struct));
1010
1011                 wait_time = rtas_busy_delay_time(rc);
1012                 if (wait_time)
1013                         mdelay(wait_time);
1014         } while (wait_time);
1015
1016         if (rc) {
1017                 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1018                         " unexpected error(%d).\n", rc);
1019                 return rc;
1020         }
1021         fw_dump.dump_registered = 0;
1022         return 0;
1023 }
1024
1025 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1026 {
1027         int rc = 0;
1028         unsigned int wait_time;
1029
1030         pr_debug("Invalidating firmware-assisted dump registration\n");
1031
1032         /* TODO: Add upper time limit for the delay */
1033         do {
1034                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1035                         FADUMP_INVALIDATE, fdm,
1036                         sizeof(struct fadump_mem_struct));
1037
1038                 wait_time = rtas_busy_delay_time(rc);
1039                 if (wait_time)
1040                         mdelay(wait_time);
1041         } while (wait_time);
1042
1043         if (rc) {
1044                 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1045                 return rc;
1046         }
1047         fw_dump.dump_active = 0;
1048         fdm_active = NULL;
1049         return 0;
1050 }
1051
1052 void fadump_cleanup(void)
1053 {
1054         /* Invalidate the registration only if dump is active. */
1055         if (fw_dump.dump_active) {
1056                 init_fadump_mem_struct(&fdm,
1057                         be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1058                 fadump_invalidate_dump(&fdm);
1059         }
1060 }
1061
1062 /*
1063  * Release the memory that was reserved in early boot to preserve the memory
1064  * contents. The released memory will be available for general use.
1065  */
1066 static void fadump_release_memory(unsigned long begin, unsigned long end)
1067 {
1068         unsigned long addr;
1069         unsigned long ra_start, ra_end;
1070
1071         ra_start = fw_dump.reserve_dump_area_start;
1072         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1073
1074         for (addr = begin; addr < end; addr += PAGE_SIZE) {
1075                 /*
1076                  * exclude the dump reserve area. Will reuse it for next
1077                  * fadump registration.
1078                  */
1079                 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1080                         continue;
1081
1082                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1083         }
1084 }
1085
1086 static void fadump_invalidate_release_mem(void)
1087 {
1088         unsigned long reserved_area_start, reserved_area_end;
1089         unsigned long destination_address;
1090
1091         mutex_lock(&fadump_mutex);
1092         if (!fw_dump.dump_active) {
1093                 mutex_unlock(&fadump_mutex);
1094                 return;
1095         }
1096
1097         destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1098         fadump_cleanup();
1099         mutex_unlock(&fadump_mutex);
1100
1101         /*
1102          * Save the current reserved memory bounds we will require them
1103          * later for releasing the memory for general use.
1104          */
1105         reserved_area_start = fw_dump.reserve_dump_area_start;
1106         reserved_area_end = reserved_area_start +
1107                         fw_dump.reserve_dump_area_size;
1108         /*
1109          * Setup reserve_dump_area_start and its size so that we can
1110          * reuse this reserved memory for Re-registration.
1111          */
1112         fw_dump.reserve_dump_area_start = destination_address;
1113         fw_dump.reserve_dump_area_size = get_fadump_area_size();
1114
1115         fadump_release_memory(reserved_area_start, reserved_area_end);
1116         if (fw_dump.cpu_notes_buf) {
1117                 fadump_cpu_notes_buf_free(
1118                                 (unsigned long)__va(fw_dump.cpu_notes_buf),
1119                                 fw_dump.cpu_notes_buf_size);
1120                 fw_dump.cpu_notes_buf = 0;
1121                 fw_dump.cpu_notes_buf_size = 0;
1122         }
1123         /* Initialize the kernel dump memory structure for FAD registration. */
1124         init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1125 }
1126
1127 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1128                                         struct kobj_attribute *attr,
1129                                         const char *buf, size_t count)
1130 {
1131         if (!fw_dump.dump_active)
1132                 return -EPERM;
1133
1134         if (buf[0] == '1') {
1135                 /*
1136                  * Take away the '/proc/vmcore'. We are releasing the dump
1137                  * memory, hence it will not be valid anymore.
1138                  */
1139 #ifdef CONFIG_PROC_VMCORE
1140                 vmcore_cleanup();
1141 #endif
1142                 fadump_invalidate_release_mem();
1143
1144         } else
1145                 return -EINVAL;
1146         return count;
1147 }
1148
1149 static ssize_t fadump_enabled_show(struct kobject *kobj,
1150                                         struct kobj_attribute *attr,
1151                                         char *buf)
1152 {
1153         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1154 }
1155
1156 static ssize_t fadump_register_show(struct kobject *kobj,
1157                                         struct kobj_attribute *attr,
1158                                         char *buf)
1159 {
1160         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1161 }
1162
1163 static ssize_t fadump_register_store(struct kobject *kobj,
1164                                         struct kobj_attribute *attr,
1165                                         const char *buf, size_t count)
1166 {
1167         int ret = 0;
1168
1169         if (!fw_dump.fadump_enabled || fdm_active)
1170                 return -EPERM;
1171
1172         mutex_lock(&fadump_mutex);
1173
1174         switch (buf[0]) {
1175         case '0':
1176                 if (fw_dump.dump_registered == 0) {
1177                         ret = -EINVAL;
1178                         goto unlock_out;
1179                 }
1180                 /* Un-register Firmware-assisted dump */
1181                 fadump_unregister_dump(&fdm);
1182                 break;
1183         case '1':
1184                 if (fw_dump.dump_registered == 1) {
1185                         ret = -EINVAL;
1186                         goto unlock_out;
1187                 }
1188                 /* Register Firmware-assisted dump */
1189                 register_fadump();
1190                 break;
1191         default:
1192                 ret = -EINVAL;
1193                 break;
1194         }
1195
1196 unlock_out:
1197         mutex_unlock(&fadump_mutex);
1198         return ret < 0 ? ret : count;
1199 }
1200
1201 static int fadump_region_show(struct seq_file *m, void *private)
1202 {
1203         const struct fadump_mem_struct *fdm_ptr;
1204
1205         if (!fw_dump.fadump_enabled)
1206                 return 0;
1207
1208         mutex_lock(&fadump_mutex);
1209         if (fdm_active)
1210                 fdm_ptr = fdm_active;
1211         else {
1212                 mutex_unlock(&fadump_mutex);
1213                 fdm_ptr = &fdm;
1214         }
1215
1216         seq_printf(m,
1217                         "CPU : [%#016llx-%#016llx] %#llx bytes, "
1218                         "Dumped: %#llx\n",
1219                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1220                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1221                         be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1222                         be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1223                         be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1224         seq_printf(m,
1225                         "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1226                         "Dumped: %#llx\n",
1227                         be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1228                         be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1229                         be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1230                         be64_to_cpu(fdm_ptr->hpte_region.source_len),
1231                         be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1232         seq_printf(m,
1233                         "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1234                         "Dumped: %#llx\n",
1235                         be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1236                         be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1237                         be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1238                         be64_to_cpu(fdm_ptr->rmr_region.source_len),
1239                         be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1240
1241         if (!fdm_active ||
1242                 (fw_dump.reserve_dump_area_start ==
1243                 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1244                 goto out;
1245
1246         /* Dump is active. Show reserved memory region. */
1247         seq_printf(m,
1248                         "    : [%#016llx-%#016llx] %#llx bytes, "
1249                         "Dumped: %#llx\n",
1250                         (unsigned long long)fw_dump.reserve_dump_area_start,
1251                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1252                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1253                         fw_dump.reserve_dump_area_start,
1254                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1255                         fw_dump.reserve_dump_area_start);
1256 out:
1257         if (fdm_active)
1258                 mutex_unlock(&fadump_mutex);
1259         return 0;
1260 }
1261
1262 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1263                                                 0200, NULL,
1264                                                 fadump_release_memory_store);
1265 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1266                                                 0444, fadump_enabled_show,
1267                                                 NULL);
1268 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1269                                                 0644, fadump_register_show,
1270                                                 fadump_register_store);
1271
1272 static int fadump_region_open(struct inode *inode, struct file *file)
1273 {
1274         return single_open(file, fadump_region_show, inode->i_private);
1275 }
1276
1277 static const struct file_operations fadump_region_fops = {
1278         .open    = fadump_region_open,
1279         .read    = seq_read,
1280         .llseek  = seq_lseek,
1281         .release = single_release,
1282 };
1283
1284 static void fadump_init_files(void)
1285 {
1286         struct dentry *debugfs_file;
1287         int rc = 0;
1288
1289         rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1290         if (rc)
1291                 printk(KERN_ERR "fadump: unable to create sysfs file"
1292                         " fadump_enabled (%d)\n", rc);
1293
1294         rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1295         if (rc)
1296                 printk(KERN_ERR "fadump: unable to create sysfs file"
1297                         " fadump_registered (%d)\n", rc);
1298
1299         debugfs_file = debugfs_create_file("fadump_region", 0444,
1300                                         powerpc_debugfs_root, NULL,
1301                                         &fadump_region_fops);
1302         if (!debugfs_file)
1303                 printk(KERN_ERR "fadump: unable to create debugfs file"
1304                                 " fadump_region\n");
1305
1306         if (fw_dump.dump_active) {
1307                 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1308                 if (rc)
1309                         printk(KERN_ERR "fadump: unable to create sysfs file"
1310                                 " fadump_release_mem (%d)\n", rc);
1311         }
1312         return;
1313 }
1314
1315 /*
1316  * Prepare for firmware-assisted dump.
1317  */
1318 int __init setup_fadump(void)
1319 {
1320         if (!fw_dump.fadump_enabled)
1321                 return 0;
1322
1323         if (!fw_dump.fadump_supported) {
1324                 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1325                         " this hardware\n");
1326                 return 0;
1327         }
1328
1329         fadump_show_config();
1330         /*
1331          * If dump data is available then see if it is valid and prepare for
1332          * saving it to the disk.
1333          */
1334         if (fw_dump.dump_active) {
1335                 /*
1336                  * if dump process fails then invalidate the registration
1337                  * and release memory before proceeding for re-registration.
1338                  */
1339                 if (process_fadump(fdm_active) < 0)
1340                         fadump_invalidate_release_mem();
1341         }
1342         /* Initialize the kernel dump memory structure for FAD registration. */
1343         else if (fw_dump.reserve_dump_area_size)
1344                 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1345         fadump_init_files();
1346
1347         return 1;
1348 }
1349 subsys_initcall(setup_fadump);